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Abstract—There are multiple algorithms for parallelizing
particle advection for scientific visualization workloads. While
many previous studies have contributed understanding about
an individual algorithm, our study aims to provide a holistic
understanding of how algorithms perform relative to each other
on various workloads. To accomplish this, we consider four
popular parallelization algorithms and run a “bake-off” study
(i.e., an empirical study) to identify the best matches for each.
The study includes 216 tests, going to a concurrency of up to 8192
cores and considering data sets as large as 34 billion cells with
300 million particles. Overall, our study informs three important
research questions: (1) which parallelization algorithms perform
best for a given workload?, (2) why?, and (3) what are the
unsolved problems in parallel particle advection? In terms of
findings, we find that seeding box is the most important factor
in choosing the best algorithm, and also that there is significant
opportunity for improvement in execution time, scalability, and
efficiency.

Index Terms—Scientific visualization, particle advection, flow
visualization, parallel processing

I. INTRODUCTION

Within the field of scientific visualization, the techniques
dedicated to understanding vector field behavior are called
“flow visualization” techniques. The types of flow visualiza-
tion techniques are varied. One well-known form involves
seeding particles in a volume and animating the paths of these
particles as they flow through the volume. A related approach
(“streamlines”) avoids animation, and instead plots the entire
path that each particle follows all at one time. Other flow visu-
alization techniques use particle trajectories as building blocks.
One example is stream surfaces, which starts with a curve and
considers the surface traced out as the curve is displaced by
the flow. In practice, particles are seeded along the curve and
the surface is made up of their trajectories. Another example
is Finite-Time Lyanupov Exponents (FTLE), which considers
a volume as a series of neighborhoods and assigns a scalar
value to each neighborhood. For each neighborhood, the scalar
value is determined by placing several particles within the
neighborhood, and then measuring how much these particles
separate. Overall, there is a rich space of flow visualization
techniques, these techniques utilize particle trajectories, and
their workloads of which particle trajectories to calculate are
very diverse.

Particle trajectories are typically calculated using particle
advection, which displaces a massless particle based on a vec-
tor field. A trajectory is calculated iteratively, i.e., in a series

of steps. After a particle is placed at some seed position, X0,
the first step displaces the particle to some new position, X1.
The second step displaces the particle from X1 to X2, and so
on. Each displacement involves solving an ordinary differential
equation, typically (in scientific visualization) with a Runge-
Kutta [1] operation. The process can terminate for a variety of
reasons, including traveling a fixed distance, a fixed amount of
time having elapsed, performing a maximum number of steps,
or due to exiting the volume. Once the trajectory is calculated,
it is then utilized by the flow visualization technique, whether
it is simply to plot the trajectory (streamlines/pathlines) or
for other purposes (e.g., stream surfaces, FTLE). Importantly,
this means that research on efficient particle advection in
turn informs performance of nearly all flow visualization
techniques.

The computational challenges for particle advection can be
significant. While some particle advection workloads require
few particles and/or few steps, others can involve billions of
particles and tens of thousands of steps, meaning trillions of
advection steps overall. Further, the cases with many, many
particles (billions) often come from computational simulations
on supercomputers. Typically, these simulations have highly
refined computational meshes (i.e., billions of cells or more).
As a result, the vector field from these simulations are often
so large that they cannot fit into the memory of a single
node. Instead, the mesh (and thus the vector field) has to be
decomposed into blocks, with each block small enough that it
can fit into memory.

Parallelization is a key approach for solving computationally
challenging particle advection problems. Unfortunately, de-
composing data into blocks creates a significant parallelization
challenge: getting the right particle and the right block on the
same node at the same time.

The visualization community has introduced several parallel
algorithms to address this challenge. That said, there has been
no study to date that performs a comprehensive comparison
of the which parallelization algorithm works best for which
workloads. In this paper, we fill this gap, by evaluating
and comparing the most popular parallel particle advection
algorithms. We perform an empirical study — a “bake-off”
— to answer the following research questions (RQ):

• RQ1: Which parallelization algorithm performs best for
a given workload?



• RQ2: Why does a parallelization algorithm perform best
for a given workload?

• RQ3: What are the unsolved problems in parallel particle
advection? Are there any workloads that are difficult to
balance using existing parallelization algorithms?

II. RELATED WORKS

There are two main approaches to parallelizing particle
advection algorithms: 1) parallelizing-over-data (described in
Section III-A1) and 2) parallelizing-over-particles (described
in Section III-A2). All parallel particle advection algorithms
involve either optimizing one of these two approaches, or
using a hybrid approach involving both. The extensions for
the parallelize-over-data approach include using round-robin
block distribution [2] and using a pre-processing step [3]–[5].
These extensions focused on reducing the potential of load
imbalance. The extensions for the parallelize-over-particles
approach also include techniques to balance the workload,
such as work requesting [6]–[8], and dynamic load balanc-
ing [9], [10]. Other extensions for parallelize-over-particles
reduce the I/O cost by using techniques such as extending
the memory hierarchy [11], and data prefetching [12], [13].
Hybrid solutions [7], [14] have been proposed to reduce load
imbalance while reducing the I/O cost.

A separate line of inquiry has been on hybrid parallelism,
i.e., continuing to use distributed-memory across nodes, but
adding shared-memory parallelism within each node. Camp
et al. [15] were the first to consider hybrid parallelism and
streamlines, showing surprising benefits due to reduced com-
munication costs. This was followed by additional works [16],
[17] that considered the best hardware to solve a particle
advection workload, CPU or GPU. Finally, Pugmire et al. [18]
devised a platform portable method for shared-memory parti-
cle advection, within VTK-m [19].

While all of these works are important to our study, none
sufficiently answer our research questions. In particular, many
studies have incomplete comparators. As an example, our
own work on Lifeline-based work requesting [8] extended
parallelize-over-particles, and so compared to only parallelize-
over-particles and other work requesting studies. It did not
compare to parallelize-over-data techniques, hybrids between
parallelize-over-data and parallelize-over-particles, or even op-
timizations for parallelize-over-particles that did not include
work requesting.

The closest works to an empirical study have been:

• The algorithmic paper that introduced the Master/Worker
approach [20], a hybrid between parallelize-over-data and
parallelize-over-particles. Since it was a hybrid between
the two approaches, it compared with both. That said,
this study is over ten years old, leading to significant
shortcomings: (1) it considers only modest scale and data
size, (2) it does not consider algorithmic advancements
that have occurred in the last decade, and (3) it was
performed with “MPI-only” parallelism, since it predated
research on hybrid parallelism for particle advection.

• The Camp et al. study [15] that demonstrated the value of
hybrid parallelism for particle advection. Once again, this
study has shortcomings with respect to our own research
questions: (1) it considers runs of only 128 cores and (2)
it looks at only parallelize-over-data and parallelize-over-
particles.

In total, we feel there is no study that provides a holistic
understanding of parallel particle advection for scientific visu-
alization workloads on modern supercomputer platforms, and
also that the closest previous works were pursuing different
research questions. The purpose of this empirical study is to
close this research gap, which in turn addresses the research
questions identified in the introduction. Further, an important
component to our study is that we implement all of the algo-
rithms within the same software framework. This ensures fairer
comparisons than often occur within studies that introduce a
new algorithm and focus on workloads that best align with
their new algorithm.

Finally, an important distinction for particle advection is
whether or not the velocity field evaluations are for time-
varying data. The large majority of parallelization techniques
focus on a single time step, although some also consider time-
varying data [2], [4], [21], [22]. In total, we view the topic
of parallelization for time-varying to be at its infancy, and
not yet deserving of inclusion in an empirical study. As a
result, the scope of our study is for single time slice data. In
our opinion, this choice does not diminish our study, as most
particle advection use cases are also for single time slice data,
in order to stave off exorbitant I/O costs.

III. EMPIRICAL STUDY OVERVIEW

This section provides an overview of our empirical study.
It is organized into three parts: Subsection III-A describes
the algorithms we consider, Subsection III-B describes our
software system that implements these algorithms, and Sub-
section III-C describes considerations behind the factors that
define our workloads.
A. Overview of Studied Algorithms

This subsection describes the four parallel particle advection
algorithms considered in our study. We chose these four since
they are some of the most used algorithms today, and also to
consider a diversity in approaches. In summary, we study:

• The two main parallelization algorithms, parallelize-
over-data and parallelize-over-particles, to understand the
strengths and drawbacks of each one.

• A work requesting-based extension of parallelize-over-
particles [6], to understand the tradeoff between the cost
of the additional communication and load imbalance.

• The Master/Worker algorithm [20], which is a hybrid be-
tween parallelize-over-data and parallelize-over-particles,
to understand their performance benefit, which is particu-
larly important given their increased implementation cost.

In the remainder of this subsection, we briefly describe
each of the four algorithms. Our descriptions are broken into
two parts: overview of the algorithm and intuition about its
performance characteristics.



1) Parallelize-Over-Data Algorithm (POD): In this
method, the data is distributed among nodes. Each node
advects the particles located in its data block until it terminates
or exits the current block. When a particle leaves the current
data block, it is communicated to the node that owns the
needed data block. This process continues until all particles
have reached termination.

This method reduces the I/O cost, which is usually more
expensive than the computational cost. However, in the case
of a dense seeding distribution (i.e., small seeding box) this
method can suffer from load imbalance.

2) Parallelize-Over-Particles Algorithm (POP): In this
method, particles are distributed across nodes. Particles are
sorted spatially before distributing them to different nodes to
enhance spatial locality. Each node advects its particles and
load data blocks on demand. To reduce the I/O cost, this
method advects all particles that are located in the current
loaded data block until they terminate or exit the block. This
method stores blocks in cache and uses the least-recently used
(LRU) approach to remove data blocks from cache.

While this method has a better load balance in the case of
a dense seed distribution, it has a high I/O cost.

3) Work Requesting Algorithm with the Lifeline Scheduling
Method (LSM): An extension of POP that uses a dynamic load
balancing method based on work requesting has been proposed
by Mueller et al. [6]. The algorithm starts by distributing
particles across nodes. Each node advects its particles and
loads data on demand. When a node finishes its work, it
requests work from other nodes. The requesting node is called
a thief and the other node is called a victim. The most common
approach to choose a victim is randomly [23]. In this paper,
we use our improved work requesting algorithm that uses the
Lifeline Scheduling Method [8] (LSM).

This method can suffer from high I/O and additional com-
munication cost.

4) Master/Worker Algorithm (MW): Hybrid solutions have
been proposed to address the limitations that POD and POP
have individually and maintain load balance. Pugmire et al.
[20] proposed a hybrid solution known as the master/worker.
In this method, nodes are divided into groups, where each
group has a master and workers. Particles are distributed
equally among groups, and each master assigns particles to
workers. Each node advects it is particles, when a node needs
a data block, the master follows a set of rules to decide whether
the worker should load the block or send the particle to another
worker.

While hybrid solutions reduce load imbalance, they are
more complicated to implement and they introduce additional
costs.

B. Software System Overview

This section describes the details of our testing infras-
tructure. It is organized as follows: foundational algorithmic
concepts (III-B1), carrying out advection work (III-B2), and
communication between nodes (III-B3).

Algorithm 1 Skeleton pseudocode for the four algorithms.
1: numActive← TotalNumParticles
2: activeParticles← GenerateSeeds()
3: while numActive > 0 do
4: if activeParticles.size() > 0 then
5: WorkerFunction(activeParticles)
6: end if
7: CommunicationFunction(activeParticles)
8: end while

1) Foundational Algorithmic Concepts: All four algorithms
described share common elements. First, they start by gener-
ating the seeds and distributing them among compute nodes.
Then, in all four algorithms, each node executes the main
loop which is composed of a worker function and a com-
munication function. The worker function performs the I/O
operations, the advection, and the processing of particles after
each advection round. The communication function sends
and receives data. This data can be particles or messages.
The algorithm completes when all particle trajectories are
calculated. Pseudocode 1 describes the general program that
runs identically on each node for all four algorithms.

The pseudocode uses the following building blocks:
• GenerateSeeds(): a function that generates the initial

seeds.
• WorkerFunction(): a function that performs I/O opera-

tions, advection and process the particles after advection.
• CommunicationFunction(): a function that sends and re-

ceives data (particles or messages) between nodes.
The implementation for these functions varies depending on

the algorithm.
2) Worker Function: The worker function is responsible

for executing three operations: 1) I/O, 2) advection, and 3)
processing particles.

The I/O operation varies depending on the algorithm; it can
be either a static allocation or load on demand. If the algorithm
uses static allocation, then each node only reads the blocks
assigned to it. If the algorithm uses load on demand, then each
node loads the data blocks as needed. The POD algorithm uses
static allocation, while the POP and LSM algorithms use load
on demand. The MW varies, with workers using either load
on demand or static allocation, based on instructions from the
master.

In all four algorithms, each node passes the particles in
the current data block to the VTK-m [18], [19] routine.
The VTK-m routine performs the advection using shared-
memory parallel. For our experiments, we used VTK-m’s Intel
Threading Building Blocks [24] option.

Finally, each node must perform particle processing after
performing advection, and the four algorithms have both
similarities and variations for this processing. For all four
algorithms, each node terminates the particles that reached
the maximum number of advection steps or exited the data
set. Each node also notifies the other nodes of the number
of terminated particles. The four algorithms vary in the way



they handle particles that exited the current data block. In the
POD algorithm, the node stores the particle in a communicate
queue to be sent to other nodes. In the POP and LSM algo-
rithms, the node stores the particle in an inactive, which will
be processed after advecting all the particles from the current
block. In the MW algorithm, at each iteration, workers either
communicate particles or store the particles in an inactive
queue and load the needed data block.

3) Communication Function: The communication function
is responsible for sending and receiving data, which can be
particles or messages.

We built a communication routine that uses the Message
Passing Interface (MPI) [25] for communication across the
nodes. The routine uses a non-blocking communication, and
can communicate messages and particles. It takes care of
serializing and de-serializing the data.

Different algorithms communicate different types of data. In
the four algorithms, each node sends a message to other nodes
to notify them with the number of particles it terminated. Both
POD and LSM communicate particles, the POD algorithm,
nodes communicate particles according to the data block
assignment, while in the LSM algorithm an idle node requests
particles from other nodes. In the MW algorithm, nodes
exchange different types of data. Master and workers exchange
messages, where workers request work or a data block from
the master. At the end of each iteration, the worker updates
the master with information about its status, including the
block IDs currently loaded and the number of particles it has.
The master uses this information to send workers instructions.
Workers communicate particles to other workers according to
the master’s instructions.

C. Workload Factors

An important consideration for an empirical study is what
workloads to evaluate. In our case, we consider multiple
factors that impact the particle advection workload. We then
consider what happens as these factors vary, and how algo-
rithm performance varies. In the remainder of this section,
we describe the workload factors we consider. In Section IV
(Experiment Overview), we describe specific options for each
factor.

• Size of Seeding Box: The size of the seeding box
represents the particle distribution. This impacts the I/O
cost and can impact load balance. If the distribution is
dense i.e., all the seeds originate in a small box, only a
subset of the data set will be required, which reduces the
cost of I/O. However, this might result in load imbalance
if only a subset of the nodes is responsible for advecting
these particles.

• Total Number of Steps: The total number of steps
represents the amount of work defined as the product
of the number of particles and the maximum number of
advection steps. Different flow visualization algorithms
require different representations. Some algorithms require
a small number of particles that advect for a long du-
ration, while others require a large number of particles

(a) (b) (c)

Fig. 1. The three seeding boxes considered in the study: (a) large, (b) mid,
and (c) small.

that advect for a short duration. As the number of total
advection steps increases, the computation complexity
increases and thus distributing this complexity might be
important. On the other hand, if that number is small,
then it is better to distribute the data to reduce the I/O
cost.

• Concurrency: Distributing the workload among multiple
MPI ranks increases the amount of computational power
and memory available. This can reduce the computation
per rank, however, additional communications may also
be required to better load balance the workload.

Although the underlying vector field can clearly affect
performance, we did not consider it as a workload factor.
Many previous studies [8], [15], [17], [20] have considered
multiple data sets. The intuition behind studying multiple
data sets is to evaluate the extent that vector field changes
performance. For example, a sink in the vector field can attract
many particles to a single block, which can create imbalance
for some algorithms. That said, these previous studies have
consistently found underwhelming results with respect to the
vector field significantly altering performance. Therefore, we
decided to apply our limited compute resources to consider
additional choices for the three workload factors we felt would
most significantly inform this space.

IV. EXPERIMENT OVERVIEW

This section describes the details of our study.

A. Algorithm Comparison Factors

There are three main axes to our study:

• Size of seeding box (3 options)
• Total number of steps (6 options)
• Number of MPI ranks (3 options)

In total, we considered 54 (=3*6*3) configurations. We
tested each configuration with all four algorithms, meaning
216 (=54*4) experiments overall. The following subsections
discusses specific configurations.

1) Size of Seeding Box: In this study, we consider three
options for the size of the seeding box: “large” box, “mid”
box, and “small” box. The large box has particles uniformly
spread through the data set, while the small box has them in
a small sub-region. Figure 1 plots the three options.



2) Total Number of Steps: The total number of steps
depends on the number of particles and the number of steps
each particle goes (duration). We consider three options for
the former, and two for the latter, for a total of 6 options.
With respect to number of particles, we consider options as a
ratio of particles per cell, i.e., 1 particle for each C cells. Our
three options are: for every 100 cells, every 1000 cells, and
every 10, 000 cells, and denote these as P/100C, P/1KC,
and P/10KC, respectively (“P/1KC” meaning 1 particle
for every one thousand cells). As the value of C decreases,
the density of particles per cell increases, increasing the total
number of particles. With respect to duration, we consider 1K
and 10K steps.

Consider an example where the data set size is 1024∗1024∗
512. If we seed according to P/10KC, then we would have
a particle for every 10, 000 cells. Since the total number of
cells is approximately 537M , then the number of particles
will be approximately 54K. Further, if the duration is 1000
steps, then the total number of advection steps would be 54M
(54K particles × 1000 steps per particle).

3) Concurrency: We test the weak scalability of the algo-
rithms by varying the number of MPI tasks, as well as the
number of data blocks. The runs were on the NERSC Cori
machine (see Subsection IV-D), which has 32 cores per node.
Each experiment placed 4 MPI tasks on a node, with 8 cores
supporting each task. This enabled us to explore higher MPI
task counts while staying within constraints on total cycles.
The data increased with concurrency by adding additional
blocks. At all concurrencies, the size of a given block was
1283. In all, the experiments were as follows:

Config. Name Nodes MPI tasks Cores Blocks
Concurrency1 4 16 128 256
Concurrency2 32 128 1024 2048
Concurrency3 256 1024 8192 16384

Again, the goal was to inform the space while minimizing
compute costs. Further, the tests were designed to increase
in factors of eight, i.e., Concurrency2 is 8X bigger than
Concurrency1 and Concurrency3 is 8X bigger than Con-
currency2.

B. Data Set

We use the “Fishtank” data set for our study, which comes
from a thermal hydraulics simulation by the NEK5000 [26]
code. In this particular simulation, twin inlets pump water of
differing temperatures into a box, and the vector field captures
the fluid flow within the box. The simulation’s focus is on
understanding mixing behavior, as well as temperature at the
box’s outlet.

C. Algorithm Settings

For all four algorithms, we use the Many-Core Visualization
Toolkit (VTK-m) [18], [19] library for shared-memory paral-
lelism. Many of the algorithms have “knobs” to optimizing
their performance. In our study, we used the following values:

• POP: Cache size: The cache size in our study is 25
blocks per node, where each block has approximately

two million cells. We adapted the settings presented by
Camp et al. [11], while taking into account the data size
and hardware differences between their study and ours.

• LSM: Number of lifelines: The number of lifelines was
set as log2(#Ranks), as per guidance in [8].

• MW: Group size: The group size varied depending on
the number of MPI tasks (for details see Section III-A4).
We tried different group sizes and found out that the best
results are when there are 4 masters:

– 16 Ranks: group size is 4, which means there are 4
masters.

– 128 Ranks: group size is 32, which means there are
4 masters.

– 1024 Ranks: group size is 256, which means there
are 4 masters.

D. Hardware Used

The study was run on Cori at Lawrence Berkeley National
Laboratory’s NERSC facility. It contains 2,388 Intel Xeon
“Haswell” processor nodes. Each node has two 2.3 GHz 16-
core processors, each core supports 2 hyper-threads and there
is 128 GB of memory per node.

E. Performance Measurements and Metric

For performance measurements, we instrumented our own
timers using Unix system calls, capturing when each MPI rank
was performing I/O, advection, communication, etc.

We also created a metric, SPRPS, to measure perfor-
mance. Let ST be the total number of advection steps for the
workload, T be the total execution time for the slowest rank,
and N be the number of ranks. Then we define SPRPS as:

SPRPS =
ST

(T ∗N)
(1)

Intuitively, SPRPS measures number of steps computed
per rank per second. The higher the number of steps is,
the more efficient the algorithm is, since it indicates lower
execution time.

V. DATA CORPUS

This section introduces the data corpus generated by our
experiments. This corpus is used in the analysis in Section VI,
which addresses our research questions.

The main part of our corpus is Figure 2, which plots
the efficiency of each algorithm with respect to our metric
(SPRPS). The other part of our corpus is Figure 5, which
plots the total execution time. As most of our analysis focuses
on SPRPS, we place Figure 5 at the end of the paper. This
enables other figures to be placed in a better flow within the
paper, i.e., placing a figure and the analysis that incorporates
the figure as proximate as possible.

We note two patterns from the organization of the figures:
• For two tests that have the same number of particles

(for example P/10KC ∗ 1K and P/10KC ∗ 10K), the
performance is better when the duration is longer. This is
because the total work done (advection step) per particle
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Fig. 2. Performance results for each of the four algorithms: POD (upper left), POP (upper right), LSM (lower left), and MW (lower right). For each sub-figure,
the X axis is “Particle for every C Cells * #Steps per Particle.” For example, P/10KC ∗ 1K means there is one particle for every 10K cells and the duration
for each particle is 1K advection steps. The leftmost value is the smallest number of total advection steps and the rightmost is the largest. However, some
workloads are equal: 1) P/10KC ∗10K is equal to P/1KC ∗1K and 2) P/1KC ∗10K is equal to P/100C ∗1K. The Y axis represents our performance
metric: the number of steps per rank per second (see Section IV-E) — higher is better. Lines are colored by seeding size, and the size of each glyph corresponds
to the concurrency.

is increased, which offsets the cost of the operations to
manage particles.

• For two tests that have the same amount of work (total
number of advection steps), the performance is better
when the number of particles is smaller and the duration
is larger. For example, P/10KC∗10K, and P/1KC∗1K
have the same amount of work, yet, the performance of
P/10KC∗10K is better than P/1KC∗1K. This is again
due to amortizing costs for managing particles.

VI. RESULTS

The results section is organized around our research ques-
tions — RQ1 is addressed in subsection VI-A, RQ2 in
subsection VI-B, and RQ3 in subsection VI-C.

A. RQ1: Which parallelization algorithm performs best for a
given workload?

This question is relevant to both domain scientists and
visualization practitioners. From a practical perspective, this
question informs which algorithm to use in production set-
tings.
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Fig. 3. This figure reorganizes the information from Figure 2 to compare
algorithms by workload. Its nine subfigures are arranged as a 3x3 matrix, with
concurrency changing across columns and seeding box size changing across
rows. Each subfigure corresponds to a specific choice for concurrency and
seeding box, showing the performance of all four algorithms. The algorithms
are differentiated by color: POD is green, POP is orange, LSM is blue, and
MW is pink. The units and plotting for each subfigure are the same as Figure 2.
In particular, the X-axis has increasing number of steps, and the Y-axis is
efficiency (SPRPS) in log scale.

TABLE I
SPRPS FOR THE BEST PERFORMING ALGORITHM WITH RESPECT TO

SIZE OF SEEDING BOX.

Size of Seeding Box Small
Box

Mid
Box

Large
Box

Best Algorithm LSM LSM POD
Performance (SPRPS): 16 Ranks 16M 15M 14M

128 Ranks 12M 11M 6M
1024 Ranks 9M 5M 4M

Figure 3 addresses this research question by comparing
the four parallelization algorithms. Each curve in Figure 3
also appears in Figure 2, with the difference being that
Figure 3 is organized by workload, where Figure 2 is organized
by algorithm. This new arrangement allows us to consider
comparative performance (i.e., how the algorithms compares
with respect to performance).

“Size of seeding box” is the only factor that influences
comparative performance. If the seeding box is large, then
POD offers the best performance. For the mid and small seed-
ing boxes, LSM offers the best performance. That said, POP
performance closely tracks LSM, making POP an attractive
choice for this setting as well. Table I shows specifics about
algorithm performance with respect to size of seeding box.

We find this result very surprising. Parallel particle advec-
tion has been well studied, and previous studies have shown

TABLE II
THIS TABLE CONTAINS INFORMATION ON THE BEST SPRPS AND WORST
SPRPS FOR EACH OF THE FOUR ALGORITHMS, AND ALSO HOW THOSE

EXTREME CASES SCALE. FOR EXAMPLE, THE HIGHEST SPRPS FOR
POD WAS ACHIEVED WITH THE LARGE SEEDING BOX AND THE

P/100C ∗ 10K WORKLOAD, SO THIS WORKLOAD IS LISTED AS POD’S
“BEST CASE.” THE CHANGE COLUMN SHOWS THE DROP IN PERFORMANCE

COMPARED TO THE SMALLEST CONCURRENCY (16 RANKS). FOR ALL
FOUR ALGORITHMS, THE BEST SPRPS WAS ACHIEVED WITH

P/100C ∗ 10K , WHICH WE ABBREVIATE “LW” (LARGEST WORKLOAD).
SIMILARLY, THE WORST SPRPS WAS ACHIEVED WITH P/10KC ∗ 1K ,

WHICH WE ABBREVIATE “SW” (SMALLEST WORKLOAD).

POD Best Case: Large Box, LW
Concurrency SPRPS Time (s) Change

16 14M 223 –
128 6.7M 462 2.1X

1024 4.3M 713 3.2X
POD Worst Case: Small Box, SW

Concurrency SPRPS Time (s) Change
16 700K 4.41 –

128 319K 7.99 1.8X
1024 76K 40.6 8.7X

POP Best Case: Small Box, LW
Concurrency SPRPS Time (s) Change

16 14.2M 219 –
128 9.6M 322 1.5X

1024 6.7M 432 2.1X
POP Worst Case: Large Box, SW

Concurrency SPRPS Time (s) Change
16 600K 5.03 –

128 484K 6.44 1.3X
1024 92K 34.2 6.8X

LSM Best Case: Small Box, LW
Concurrency SPRPS Time (s) Change

16 16M 195 –
128 12M 257 1.3X

1024 9M 326 1.7X
LSM Worst Case: Large Box, SW

Concurrency SPRPS Time (s) Change
16 690K 4.53 –

128 508K 6.14 1.4X
1024 101K 30.8 6.8X

MW Best Case: Small Box, LW
Concurrency SPRPS Time (s) Change

16 8.4M 368 –
128 8.1M 382 1.03X

1024 2.9M 984 2.6X
MW Worst Case: Large Box, SW

Concurrency SPRPS Time (s) Change
16 458K 6.81 –

128 414K 7.54 1.1X
1024 78K 39.6 5.8X

that performance varies greatly based other factors as well,
specifically total number of steps and concurrency. That said,
our results do not overturn these previous studies: we also find
that total number of steps and concurrency impact performance
greatly. However, our novel contribution is in identifying that
comparative performance is not affected. In other words, it is
possible to select the best parallel algorithm based on seeding
box, regardless of choices for the other factors.

Finally, the performance of the MW algorithm bears special
discussion. For mid and small seeding boxes at 128 ranks,
MW jumps in performance (relative to the other algorithms)
at the most compute-heavy workload (P/100C * 10K). In
the mid case, it outperforms POP, and, in the small case, it
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Fig. 4. Analyzing how algorithms spend their time, among four possible actions: I/O (dark blue), advection (red), communication (orange), and other, which
includes idle time and management cost (light blue). The figure is broken into two sub-figures. Sub-figure (a), on the left, considers the workload with the
least computation, i.e., those that involve P/10KC ∗ 1K. Sub-figure (b), on the right, considers the workload with the most computation, i.e., those that
involve P/100C ∗ 10K. Each sub-figure contains three rows, with each row corresponding to a seeding box size (t-b: large, mid, small). Within a row, there
are three groupings, with each grouping corresponding to a concurrency (l-r: 16 ranks, 128 ranks, 1024 ranks). A grouping consists of eight bars. These eight
consist of the MPI Rank that does the lowest proportion of advection (“Min”) and highest proportion of advection (“Max”) for each of the four algorithms.
The proportion of a bar devoted to a color indicates the percentage of time spent doing that activity. For example, if a bar is half red, then that MPI Rank
spent 50% of its time doing advection.

is similar to POP. Extrapolating to even more computation-
heavy work cases, it is conceivable that MW could eventually
outperform either algorithm. That said, P/100C * 10K already
likely represents a practical upper bound, as it represents
˜1000 seconds of execution time. Even more computationally-
heavy workloads would likely be prohibitive, except for off-
line scenarios.

B. RQ2: Why does a parallelization algorithm perform best
for a given workload?

This question is relevant to visualization researchers, as it
informs future algorithms that could maintain strengths while
addressing weaknesses. Further, understanding this question
provides further credibility to our conclusions for RQ1.

The performance of each algorithm is explored in its own
subsection. That said, each subsection uses common infor-
mation to inform its analysis. Specifically, Figure 4 shows
breakdowns for how individual algorithms are spending their
time (I/O, advection, communication, idle). Further, Table II
shows performance for best and worst-case scenarios, as well
as exploring effects due to changes in concurrency. Of course,
our data corpus from Section V (i.e., Figures 2 and 5) is used
as well.

1) POD Behavior: POD provides the most extreme perfor-
mance of the four algorithms, with the best overall with the
large seeding box and the worst overall for the mid and small
seeding boxes.

In the large seeding box case, POD is able to keep MPI
ranks busy enough to outperform the other algorithms. As seen
in Table II, POD achieves an SPRPS of 14M in its best
configuration, which is competitive with the other algorithms
in their best configurations. That said, the SPRPS drops as
the concurrency increases. Figure 4(b) explains why. At low
concurrency, all MPI Ranks are performing advection nearly
the entire time. Further, the load is balanced — the “Min”
rank is performing nearly as much as advection as the “Max”
rank. This balance is maintained as the problem is scaled to
1024 ranks, but the efficiency drops. Instead of the advection
rates above 80% seen at 16 ranks, the rates drop to ˜30%,
as communication plays an increasingly large role. This is
because each block takes up a smaller portion of the spatial
domain, and so particles cross blocks more often (leading to
communication).

The mid and small seeding box cases expose POD’s short-
comings. The “Min” ranks in all six relevant experiments



in Figure 4 are 100% idle. While Figure 4 shows only the
behavior of the “Max” and “Min,” our analysis of the other
ranks shows that a large number are idle, and fully explain
the slowdown. Ranks that are responsible for the data blocks
inside the seeding box perform all the work, while other ranks
remain idle during the entire execution time. In short, compute
resources are not being used effectively.

2) POP Behavior: With POP, every MPI rank operates
independently, and so each rank achieves similar efficiency.
This similarity can be seen in all POP configurations in
Figure 4, specifically with the “Min” profile being quite similar
to “Max” profiles for each workload.

Table II and Figure 2 show that POP performs better on
small boxes than large boxes. This reason is that a small
seeding boxes starts more particles within the same block, so
fewer block loads are needed overall. Figure 4 confirms this
intuition. In particular, Figure 4(a) shows a trend where the
proportion spent doing I/O decreases as the seeding box gets
smaller. For 16 MPI Ranks, POP is spending nearly 80% of
its time doing I/O for a large box, but only 50% of its time for
a small box. The actual time to perform advection for these
two workloads is the same, meaning that the small box larger
proportion doing advection is indicative of a faster run-time.

POP’s scalability is generally good for small box (dropping
by a factor of 2X), but much poorer for large box (dropping
by a factor of 6.8X). As blocks get smaller, particles cross
block boundaries more often, leading to more I/O. That said,
this effect is lessened for small box, since the particles being
advected often lie in the same block.

3) LSM Behavior: LSM is generally similar to POP, and the
trends described in Section VI-B2 are applicable to this algo-
rithm as well. Figure 4 supports this, showing similar profiles
for POP and LSM, although LSM has more communication
from searching for additional work. Table II shows that LSM
is a little better than POP for both “best case” and “worst case”
and that they scale similarly. In short, the ability to improve
workload balance via work requesting outweighs the overhead
to locate victims.

4) MW Behavior: MW contained surprising findings. De-
spite MW outperforming POD and POP in a previous study
[20], we found that MW did not perform well in our exper-
iments. We note that a key difference was that the previous
study, performed over ten years ago, did not use hybrid paral-
lelism. Using hybrid parallelism increases the ratio between
compute and communication. Further, our experiments had
more compute per node than the previous study. Finally, Figure
4 shows that MW had a significant amount of idle time — the
“Max” MPI Rank was waiting for work at least 20% of the
time in all of our configurations.

Despite this, MW does have merit. Figure 3 shows that
MW beats POP for the workload consisting of P/100C ∗10K
(“Largest Workload”) with 128 MPI Ranks and the Mid box.
Looking at Figure 4(b), MW is doing much less I/O than POP,
offsetting its idle time. Improvements to MW that account
for increased compute per node could possibly propel the
algorithm to better performance than the other algorithms.

Finally, Table II shows that MW scaled quite poorly with
the large seeding box.

C. RQ3: What are the unsolved problems in parallel particle
advection? Are there any workloads that are difficult to
balance using existing parallelization algorithms?

These questions are relevant to both visualization re-
searchers and domain scientists. For visualization researchers,
these questions inform research gaps for future algorithmic
improvements. For domain scientists, these questions inform
workloads to avoid when using visualization tools.

Our treatment of RQ3 is divided into two parts, due to
the nature of our study. Our empirical study selected four
algorithms for evaluation, since these algorithms are popular
today. That said, those four algorithms do not represent all
possible algorithms, and so our answers for RQ3 must reflect
that our results are for a subset of algorithms. We do this by
answering RQ3 in two ways. Subsection VI-C1 considers how
the findings from this study inform RQ3. Subsection VI-C2
considers additional algorithms that were not part of the study,
and speculates on their role in answering RQ3.

1) Findings from This Study for RQ3: This subsection an-
swers RQ3 from the perspective of the four studied algorithms.
We see three main findings:

• F1: Execution times are quite slow on workloads with
a large number of total steps. That said, these times are
in-line with previous findings.

• F2: Scalability is acceptable, but not excellent. Our
experiments rose in concurrency from 16 MPI Ranks
to 1024 MPI Ranks (128 cores to 8192 cores), for an
increase of 64X. Since we ran a weak scaling study,
we would expect execution time to remain constant as
concurrency increased. Instead, we saw execution times
go up by a factor of 2X to 4X, depending on workload.
(Note that some algorithms worsened by more than 2X or
4X; the preceding sentence is referring to the behavior of
the best performing algorithm for a workload, i.e., POD
for large seeding boxes and LSM for the remainder.)

• F3: Efficiency is much lower for workloads with low
numbers of advection steps. Figure 4(a) shows that I/O is
the main reason — there is not enough advection work
to amortize loading of blocks.

2) Speculation on RQ3 Regarding Additional Algorithms:
In this section, we speculate on algorithms that may address
some of the findings above:

• Regarding finding F2, Peterka et al. [2] extended POD
to use a round-robin assignment and dynamic geometric
repartitioning. Importantly, they were able to achieve
better scalability with a large seeding box.

• Regarding finding F3, improving efficiency would need to
come through reduced I/O costs. For POP, LSM, and MW,
one possibility would be to use more of a deep memory
hierarchy to prevent reloading blocks. This was first
suggested by Camp et al. [11] for POP. That said, finding
F3 centers around small workloads, so it is unlikely that



P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n 
Ti

m
e 

in
 S

ec
on

ds
 (l

og
 s

ca
le

)
Small Box
Mid Box
Large Box
POD 16
POD 128
POD 1024

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n 
Ti

m
e 

in
 S

ec
on

ds
 (l

og
 s

ca
le

)

Small Box
Mid Box
Large Box
POP 16
POP 128
POP 1024

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n 
Ti

m
e 

in
 S

ec
on

ds
 (l

og
 s

ca
le

)

Small Box
Mid Box
Large Box
LSM 16
LSM 128
LSM 1024

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n 
Ti

m
e 

in
 S

ec
on

ds
 (l

og
 s

ca
le

)

Small Box
Mid Box
Large Box
MW 16
MW 128
MW 1024

Fig. 5. Execution times for our four algorithms: POD (top left), POP
(top middle), LSM (top right), and MW (bottom). The organization matches
Figure 2, except the Y-axis is execution time (log scale) — lower is better.

blocks will be reloaded repeatedly. Another idea is to
fetch blocks from other MPI Ranks rather than the disk,
with the thinking that communication will be faster than
I/O. This direction was first suggested by Peterka et
al. [7]. That said, we implemented this direction for our
own study, and found that it did not affect performance
(disk loads were as fast as retrieving from other MPI
Ranks). As a result, we used a straightforward POP
implementation for our study.

Revisiting our findings from Section VI-C1, we feel only
finding F2 requires additional scrutiny. From our own experi-
ments, we felt scalability was acceptable, although not perfect.
Our worst performing experiments were large seeding boxes,
and we speculating that the round-robin assignment with
dynamic geometric repartitioning would improve scalability
for this case. Assuming it could boost performance by 2X
at large scale, then best performing algorithms would be
achieving ˜2X slowdowns over 64X increases in concurrency.

VII. CONCLUSION AND FUTURE WORK

Our empirical study was designed to answer three research
questions. While a fixed compute allocation bounded the num-
ber of experiments we could perform, we were pleased that
our experiments provided significant clarity for our questions

— we believe we have answered our research questions. For
RQ1, we found that seeding box size is the only consideration
for deciding on the best algorithm to choose. We think this
is an exciting finding, as this provides simple and practical
guidance for practitioners. We also think these findings suggest
future work in terms of developing a new meta-algorithm that
adapts between approach (POD or LSM) based on workload.
For RQ2, we found that POD is efficient for large seeding
boxes, while smaller seeding boxes create so much inefficiency
that redundant I/O becomes a better strategy. We also feel our
study advanced understanding of behavior across algorithm,
in particular with the results in Figure 4. Further, a major
finding was that the MW algorithm was performing poorly,
suggesting that future work should look at updating MW’s
rules and procedures for today’s increased compute capability
on a node. Finally, for RQ3, we see that execution times
on large workloads are quite large. While consistent with
previous studies, our study increases the evidence that this
issue needs more attention, especially since these workloads
enable deeper understanding of flow fields, such as Lagrangian
Coherent Structures. In particular, the computer graphics ray
tracing community has invested significantly in preprocessing
steps and acceleration strategies (hot caches, ray bundling) that
enable billions of ray intersections in seconds. When asked to
perform billions of advection steps, we speculate that similar
preprocessing and acceleration strategies could benefit particle
advection.

Future work could explore the limitations of our study that
stemmed from having finite compute cycles. In particular,
we ran on the NERSC Cori machine, which fixes the ratios
between compute, I/O, and communication. Certainly, other
machines would see different execution times. That said, we
predict that our findings for RQ1 and RQ2 will translate
to new environments, since they speak to load balancing
issues. However, GPU-based supercomputers may have better
execution times (RQ3), partially addressing this issue. Finally,
limits in available compute time forced us to consider only one
data set and block size. While we do not expect these factors
to significantly alter the answers to our research questions,
future work could confirm this.
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