
Algorithmic Improvements for Portable Event-Based Monte Carlo Transport Using the Nvidia Thrust Library

Ryan C. Bleile∗,†, Patrick S. Brantley∗, Matthew J. O’Brien∗, Hank Childs†

∗Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551
†Department of Computer and Information Science, University of Oregon, Eugene, OR 97403

bleile1@llnl.gov, brantley1@llnl.gov, obrien20@llnl.gov, hank@uoregon.edu

INTRODUCTION

High performance computing environments are progres-
sively moving towards many-core computing architectures.
The Los Alamos National Laboratory Trinity machine, avail-
able in late 2016, will use both Intel Xeon Haswell proces-
sors and Intel Xeon Phi Knights Landing many integrated
core (MIC) coprocessors. The Lawrence Livermore Na-
tional Laboratory Sierra machine, available in 2018, will
use an IBM PowerPC architecture along with Nvidia graph-
ics processing units (GPUs). Applications that must work in
this supercomputing environment must continue to adapt in
order to take advantage of the diverse hardware architectures
that are coming. A significant consideration is not only the
performance of the application on a given platform but also
the portability of the application to other platforms.

The algorithmic improvements presented in this paper
build upon recently-reported work [1] on event-based Monte
Carlo transport in the ALPSMC code that models particle
transport in one-dimensional binary stochastic media [2].
That paper discussed the lack of available vectorization
in the traditional history-based algorithm used for Monte
Carlo transport and presented a data parallel event-based
algorithm implemented using the Nvidia Thrust library [3]
for portability. The performance of the data parallel event-
based algorithm implemented using Thrust was compared
to a native CUDA [4] implementation. The conclusions
from that work were that the Thrust library abstraction tech-
nique caused too significant a loss in performance but that
the event-based method was a viable option that should be
further investigated.

In this paper, we describe algorithmic improvements
to the data parallel event-based algorithm previously pre-
sented [1]. We made further algorithmic optimizations
to the event-based CUDA implementation, most notably:
data structure changes, a new conditional particle removal
scheme in the event-based process, and the use of multiple
GPUs. In addition to improvements to the algorithm, we
reimplemented the Thrust version from the now further opti-
mized CUDA version, giving a greater chance for success at
a performant abstraction. Finally, we revisited our previous
assumptions about the inability of the history-based method
to achieve performance on vector style architectures such as
the MICs and GPUs, with surprising and promising results.

ARRAYS OF STRUCTURES VERSUS STRUC-
TURES OF ARRAYS

One way to gain performance on Nvidia GPUs is to coa-
lesce global memory accesses in a streaming multiprocessor
(SM) [5]. SMs schedule and execute threads in lock-step
groups of 32 threads called warps. Memory accesses in
each warp are coalesced in order to produce fewer memory

transactions overall. For 16 threads in a warp, we can pull
all 16 array values into the threads with a single call into
global memory if we access the array in consecutive order.
Since the threads in a warp operate in lock step, if memory
accesses are not coalesced, more memory transactions are
needed causing the threads in a warp to stall while more
memory transactions are issued.

In order to accomplish coalesced memory accesses on
larger data structures, such as the particle class used in the
ALPSMC C++ Monte Carlo implementation [2], a common
recommendation is to transition from an array of structures
(AOS) data structure to a structure of arrays (SOA) data
structure [6]. This transition is important for all SIMD or
vector architectures (not only GPU architectures [6]) and so
makes sense as a starting point for continuing optimizations
in our ALPSMC study. For ALPSMC, this transformation
requires that the member variables in the particle class are
separated into different arrays of those members in a parent
class. This entire process can be encapsulated in a higher
level interface allowing for a compile time choice to be
made for which data structure option to use: AOS or SOA.
Maintaining flexibility in this type of option is important
when running on a diverse set of hardware, where common
and important optimizations on one set of hardware might
lead to performance loss on another.

OPTIMIZED PARTICLE REMOVAL SCHEME

One discovery we made while pursuing optimizations
for the event-based algorithm was the significant percentage
of time spent removing inactive particles from the particle
list. (The event-based algorithm is described in detail in
Ref. [1]; we omit a detailed description here due to space
limitations.) The algorithm originally collected all particles
undergoing each of the events and then performed that event
on the list of particles. The last stage of the original algo-
rithm was to always remove inactive particles (e.g. particles
that were absorbed), i.e. perform material interface crossing
events, zone boundary crossing events, collision events, and
then remove inactive particles. Table I shows the wall clock
times of each event for an example problem (Case 1a [2]
with a spatial domain of 10 cm) with ten million particles
for both the AOS and SOA data structure implementations.
All simulations in this paper were performed on the LLNL
Rzhasgpu computer described in the Numerical Results
section. We can clearly see that always removing inactive
particles dominates the time spent processing the events. We
conjectured that if we could minimize this removal function,
even at the cost of increasing compute time, we might be
able to decrease the overall time spent processing events.

In order to justify removing inactive particles at all,
we investigated not removing particles to show that, while



TABLE I: Wall clock times [s] for each event for a
10 million particle study using the CUDA event-based
method.

AOS Data Structure
Event Remove

Always
Remove
Never

Remove
Half Size

Material Interface 0.50 4.13 0.60
Zone Boundary 0.81 4.79 0.90

Collision 1.14 5.55 1.35
Remove 2.83 3.15 0.88

Total 5.28 17.62 3.77
SOA Data Structure

Event Remove
Always

Remove
Never

Remove
Half Size

Material Interface 0.39 2.23 0.44
Zone Boundary 0.64 2.98 0.77

Collision 0.73 3.50 0.93
Remove 4.46 1.48 0.87

Total 6.22 10.19 3.01

removing particles is an expensive operation, it is more
costly to operate on the full list every time. There is still
some amount of time spent in the Remove stage of the algo-
rithm because it is necessary to check if all particles have
completed processing, which is the end condition for the
simulation. In light of our conjecture above, we also im-
plemented an algorithm in which we only remove inactive
particles when removing them produces a significant impact
on the size of the list. Following numerical experimentation,
we chose to perform the remove operation if the number of
inactive particles to be removed is at least half the size of the
list. As a result, the maximum number of times we perform
the expensive removal operation becomes log(n), where n is
the size of the list. As shown in Table I, the “Remove Half
Size” algorithm produces a 1.4X and 2.1X improvement in
total wall clock time over the “Remove Always” algorithm
for the AOS and SOA implementations, respectively. Fi-
nally, we observe that the SOA implementation produces a
1.3X improvement in total wall clock compared to the AOS
implementation.

We also investigated replacing the Remove function
with a sort function to understand the full effect on compute
and remove times, both sorting each iteration and in the
same remove half scheme described above. The sorting
resulted in a significant slowdown for each method when
compared to the most efficient approach: 84.9X slower
when sorting each time and 3.2X slower when using the
remove half scheme. Overall, increasing removal times
(that includes the time for the sort) far outweighs the cost
of decreasing the compute times. As a result, sorting is not
effective, even when we include the new conditional sorting
scheme.

NUMERICAL RESULTS

All simulations in this paper were performed on the
LLNL Rzhasgpu computer that has 16 Intel Xeon Haswell
3.2 GHz host cores with 2 Nvidia Tesla K80 GPU device

accelerators per node. GPU results are run in maximum
batch sizes of 10 million particles on a given CUDA device,
with multiple batches able to run on different devices at one
time. Each Nvidia Tesla K80 appears as two devices, so
there are four CUDA devices usable at a time.

Thrust and CUDA Event-Based Approach

The main conclusion from our previous paper [1] was
that the event-based Monte Carlo transport algorithm is
viable on GPU architectures, but the use of the Thrust library
portability abstraction resulted in a significant performance
penalty. With the goal of reducing this performance penalty,
we reimplemented the Thrust library version of the code
(that could run on CPUs and GPUs) based on the the most
efficient CUDA version that incorporated the algorithmic
modifications described above as well as some additional
minor optimizations. This section presents the results of
this work.

Figure 1 shows the results of a particle scaling study
performed with the optimized event-based CUDA version
compared to the original, serial, history-based version. The
CUDA version has a higher initial overhead and so is less
efficient than the serial history-based version at low numbers
of Monte Carlo particles. As the number of Monte Carlo
particles increases, the CUDA version scales in a super
linear fashion. After the number of particles exceeds the
batching threshold [1], the wall clock time of the CUDA
version begins scaling linearly as we would expect.

1.00E-‐04	  
1.00E-‐03	  
1.00E-‐02	  
1.00E-‐01	  
1.00E+00	  
1.00E+01	  
1.00E+02	  
1.00E+03	  
1.00E+04	  

1.00E+02	   1.00E+04	   1.00E+06	   1.00E+08	  

Ti
m
e	  
[s
]	  

Number	  of	  Par<cles	  

CUDA_Event_AOS	  
CUDA_Event_SOA	  
Serial	  

Fig. 1: Log-log plot showing wall clock times versus
number of particles for the CUDA event-based algo-
rithm compared to the original serial history-based al-
gorithm.

Figure 2 shows the results of a particle scaling study per-
formed with the optimized Thrust version of the ALPSMC
code that was generated from the optimized CUDA version.
In contrast to the results of our previous paper [1], the opti-
mized Thrust version now exhibits the same performance
characteristics as the optimized CUDA version. After mak-
ing these algorithmic transformations, the Thrust version
now performs slightly more efficiently than the CUDA ver-
sion. This outcome demonstrates that an abstraction layer
can be performant as long as the code in the abstraction
layer uses the same optimizations utilized in the explicit
CUDA implementation.

When we closely inspect the results from the explicit
CUDA version compared with those from the Thrust CUDA



1.00E-‐04	  

1.00E-‐03	  

1.00E-‐02	  

1.00E-‐01	  

1.00E+00	  

1.00E+01	  

1.00E+02	  

1.00E+03	  

1.00E+04	  

1.00E+02	   1.00E+04	   1.00E+06	   1.00E+08	  

Ti
m
e	  
[s
]	  

Number	  of	  Par<cles	  

Thrust_CUDA_AOS	  
Thrust_CUDA_SOA	  
Serial	  

Fig. 2: Log-log plot showing wall clock times versus
number of particles for the Thrust event-based algo-
rithm running with a CUDA backend compared to the
original serial history-based algorithm.

version, we see an interesting and unexpected result. Fig-
ure 3 shows the comparison of the CUDA and Thrust CUDA
event-based version using the SOA data structures. The
Thrust version is slightly faster than the CUDA version for
all numbers of particles. We expect that this result is due
to two possible factors. First, the Thrust scheduler may be
launching kernels more effectively than the kernel launching
scheme we implemented. Second, the memory locations
of the read-only tallies and written tallies are stored with
the Thrust functor which may allow Thrust to optimize
what memory exists in registers or caches when the kernel
launches. In the explicit CUDA version, the memory exists
in either global memory or the constant memory which is
already predetermined.

0.01	  

0.1	  

1	  

10	  

100	  

1000	  

1.00E+02	   1.00E+04	   1.00E+06	   1.00E+08	  

Ti
m
e	  
[s
]	  

Number	  of	  Par:cles	  

CUDA_Event_SOA	  

Thrust_CUDA_SOA	  

Fig. 3: Log-log plot showing wall clock times versus
number of particles for the Thrust event-based algo-
rithm running with a CUDA backend compared to the
explicit CUDA event-based version.

Re-Evaluating the History-Based Method

Recent work performed by Nvidia’s Anthony Scud-
iero [7] suggests that it may be possible to achieve perfor-
mance on GPUs using a history-based Monte Carlo transport
algorithm if the correct transformations are made. Addition-
ally, since Monte Carlo transport is a memory bound prob-
lem, using a less compute-optimized approach with lower
memory overhead might be a more efficient approach.

To re-evaluate the use of the history-based algorithm [1]
on GPUs, we began by making changes suggested by Scud-
iero [7]. First, we moved those calculations that only needed

to be performed once for all particles out of the single large
kernel. Second, we utilized shared memory for storing the
particle data structure and read-only constant memory for
storing the material data (e.g. cross section values). Finally,
we removed all atomic tally updates and replaced them with
a shared per particle tally that is reduced to single values
after the kernel is complete. The results of this work are
shown in Figure 4.

1.00E-‐04	  

1.00E-‐03	  

1.00E-‐02	  

1.00E-‐01	  

1.00E+00	  

1.00E+01	  

1.00E+02	  

1.00E+03	  

1.00E+04	  

1.00E+02	   1.00E+04	   1.00E+06	   1.00E+08	  

Ti
m
e	  
[s
]	  

Number	  of	  Par<cles	  

CUDA_History	  

Serial	  

Fig. 4: Log-log plot showing wall clock times versus
number of particles for the CUDA history-based algo-
rithm compared to the original serial history-based al-
gorithm.

The results from this test were very promising. This
plot shows that the CUDA history-based algorithm has better
scaling with number of particles as well as a significant
performance increase at high numbers of particles. At low
numbers of particles, the wall time of the CUDA version
is constant, regardless of the number of particles, which
is due to the overhead involved with accessing the GPU
hardware. This overhead is sufficiently low (on the order of
0.01 seconds) that it should only affect problems using an
unrealistically low number of particles.

Thrust and CPU

In order for the Thrust implementation to be considered
portable, we must be able to demonstrate the possibility
for performance of the Thrust approach on multiple plat-
forms. For this study, we will compare the particle and
processor scaling of the Thrust event-based method com-
piled with both the CUDA backend (for GPUs) and the
OpenMP backend (for CPUs) to that of the original serial
history-based method running on a single CPU core. The
speedups of the event-based method compared to the origi-
nal serial method are shown in Figure 5. The event-based
method is slower on the CPU than the history-based method
for a single thread, with a 0.5X speedup corresponding
to a 2X slowdown. The Thrust event-based method with
two OpenMP threads is roughly equivalent to the original
history-based serial method. The Thrust event-based model
reaches speedups around 5X at 16 threads when compared
to the original serial history-based algorithm.

The speedups of the Thrust event-based method com-
pared to the same Thrust event-based method run serially
are shown in Figure 6. The speedups are generally as ex-
pected up to four threads but are less than expected at eight
and sixteen threads. The Thrust event-based model reaches



maximum speedups around 10X compared to the Thrust
model run serially.

0	  

1	  

2	  

3	  

4	  

5	  

6	  

1.00E+02	   1.00E+04	   1.00E+06	   1.00E+08	  

Sp
ee
du

p	  

Number	  of	  Par:cles	  

Thrust_OMP_1	  
Thrust_OMP_2	  
Thrust_OMP_4	  
Thrust_OMP_8	  
Thrust_OMP_16	  

Fig. 5: Speedups versus number of particles for the
event-based Thrust CPU method with 1, 2, 4, 8, and
16 OpenMP threads compared to the original serial
history-based algorithm.

0	  

2	  

4	  

6	  

8	  

10	  

12	  

1.00E+02	   1.00E+04	   1.00E+06	   1.00E+08	  

Sp
ee
du

p	  

Number	  of	  Par8cles	  

Thrust_OMP_1	  
Thrust_OMP_2	  
Thrust_OMP_4	  
Thrust_OMP_8	  
Thrust_OMP_16	  

Fig. 6: Speedups versus number of particles for the
event-based Thrust CPU method with 1, 2, 4, 8, and 16
OpenMP threads compared to the Thrust CPU method
serially.

Results Summary

Table II shows the speedups achieved for each method
running 109 particles on either two Nvidia Tesla K80 GPUs
or a CPU with sixteen OpenMP threads. These results
demonstrate that a significant amount of performance po-
tential exists in the optimization choices that are made. The
use of Thrust as a portability abstraction is not only viable
but outperforms the other methods on the GPU. In addition,
history-based approaches perform better or at least as well
as the event-based approaches on the GPU for this problem.
While the event-based Thrust OpenMP results are signif-
icantly less than optimal, they do demonstrate portability
and some performance gain.

TABLE II: Maximum speedups for each approach
when compared to the original history-based serial
method

Method Speedup
CUDA Event SOA 31.32

CUDA History 52.78
Thrust Event CUDA SOA 54.62

Thrust Event OpenMP SOA 5.54

CONCLUSIONS

We described the algorithm improvements we made for
event-based Monte Carlo particle transport using Thrust as a
portable performance abstraction. This work has shown that
the event-based approach for Monte Carlo transport on GPU
architectures is viable and can achieve node level speedup
results that are acceptable. We have also shown that, with
the same optimization choices, the Thrust abstraction layer
can be just as effective as writing native CUDA. This result,
enabled by the algorithmic improvements described in this
paper, is in contrast to our previous conclusion that Thrust
was not a viable option for an abstraction layer in Monte
Carlo transport [1].

We have also demonstrated that the history-based
Monte Carlo transport algorithm can perform efficiently
on the GPU. As a result, the history-based approach should
be investigated further for use on GPU architectures. For
the Monte Carlo test code and numerical problem we in-
vestigated, we see even greater speedups with the CUDA
history-based approach then we do with the CUDA event-
based approach, and it required significantly fewer code
modifications.

Finally, we were able to create a portable algorithm
that scales with processors on a node level. While we were
not able to achieve the expected 16X performance increase
when applying 16 OpenMP threads to the problem, we do
obtain speedups of approximately 5X. Future work could
include improving the CPU OpenMP performance of the
Thrust implementation.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. Funding
was provided by the LLNL Livermore Graduate Scholar
Program.

REFERENCES

1. R. C. BLEILE, P. S. BRANTLEY, S. A. DAWSON, M. J.
O’BRIEN, and H. CHILDS, “Investigation of Portable
Event-Based Monte Carlo Transport Using the NVIDIA
Thrust Library,” Trans. Am. Nucl. Soc., 114, 941–944
(2016).

2. P. S. BRANTLEY, “A Benchmark Comparison of Monte
Carlo Particle Transport Algorithms for Binary Stochas-
tic Mixtures,” Journal of Quantitative Spectroscopy and
Radiative Transfer, 112, 599–618 (2011).

3. “Thrust Web Site,” (2014),
https://developer.nvidia.com/Thrust.

4. “CUDA Web Site,” (2014),
http://www.nvidia.com/object/cuda_home_new.html.

5. NVIDIA, “CUDA C Programming Guide,” (2015), ver-
sion 7.5.

6. M. PHARR and W. R. MARK, “ispc: A SPMD compiler
for high-performance CPU programming,” Innovative
Parallel Computing (InPar), pp. 1–13 (2012).

7. A. SCUDIERO, “personal communication,” (2016).


