
A Dynamic Replication Approach
for Monte Carlo Photon Transport
on Heterogeneous Architectures

Ryan Bleile1,2, Patrick Brantley1, Matthew O’Brien1, and Hank Childs2

1 Lawrence Livermore National Laboratory
Livermore, California, USA 94550

2 University of Oregon
Eugene, Oregon, USA 97403

Abstract. This paper considers Monte Carlo photon transport applica-
tions on heterogenous compute architectures with both CPUs and GPUs.
Previous work on this problem has considered only meshes that can fully
fit within the memory of a GPU, which is a significant limitation: many
important problems require meshes that exceed memory size. We address
this gap by introducing a new dynamic replication algorithm that adapts
assignments based on the computational ability of a resource. We then
demonstrate our algorithm’s efficacy on a variety of workloads, and find
that incorporating the CPUs provides speedups of up to 20% over the
GPUs alone. Further, these speedups are well beyond the FLOPS contri-
bution from the CPUs, which provide further justification for continuing
to include CPUs even when powerful GPUs are available. In all, the con-
tribution of this work is an algorithm that can be applied in real-world
settings to make more efficient use of heterogeneous architectures.

Keywords: Monte Carlo · photon transport · load balance · GPU

1 Introduction

Monte Carlo transport is an important computational technique for nuclear sci-
ence applications, including applications in physics, nuclear reactors, medical
diagnostics, and more. The technique involves simulating phenomena by calcu-
lating how a sample of particles moves through and interacts with a background
medium. A key consideration for the approach is how many particles to employ,
as adding more particles provides more accuracy but comes at the expense of
increased computational requirements. In many cases, achieving sufficient ac-
curacy requires a large number of particles, which in turn creates significant
computational requirements.

Supercomputers are often used to simulate computationally-expensive Monte
Carlo photon transport problems. These machines can calculate many more
operations per second than a normal computer, which in turn enables many
workloads to be simulated on feasible time scales. That said, these machines

create significant challenges, as they require both parallel coordination within
a compute node and across compute nodes. Further, the architectures of their
compute nodes are increasingly heterogeneous, often containing both multi-core
CPUs and one or more GPUs.

A typical strategy for a heterogenous supercomputer is to use the CPUs
only for management and communication with other compute nodes and to use
the GPUs to transport particles. This approach usually pairs each GPU with
one CPU core to drive the application, and leaves the rest of the CPU cores
idle. Based on the relative FLOPS, utilizing the CPU only for management
tasks would appear to be an acceptable strategy. Using Lawrence Livermore’s
RZAnsel [1] supercomputer as an example, the GPUs make up 1,512 TFLOPS,
while the CPUs make up 58 TFLOPS, for a total system GPU+CPU count of
1,570 TFLOPS. This means that GPUs and CPUs make up 96.3% and 3.7%
of the total FLOPS, respectively — the programmer effort to engage the CPU
may not be viewed as worthwhile. However, CPUs have other benefits, including
increased memory size and reduced latency to access memory. Further, many
operations for Monte Carlo photon transport are not FLOP-bound. In all, en-
gaging CPUs to carry out computation has the potential to add benefits beyond
their FLOPS contributions (e.g., beyond 3.7%).

O’Brien et al. [8] were the first to demonstrate benefits from incorporating
CPUs alongside GPUs to carry out Monte Carlo photon transport. That said,
their algorithm was limited in utility, because it could only be applied to meshes
that could fit entirely within GPU memory. This limitation is crucial in the con-
text of supercomputers, since typical simulations at large scale use computational
meshes that exceed GPU memory. Such meshes are decomposed into domains (or
blocks), with each block small enough to fit within memory and each compute
node working on one (or more) blocks. This domain decomposition complicates
execution, as each compute node can only transport particles where it has valid
data. In this paper, we expand upon the work by O’Brien et al. to deal with
domain-decomposed meshes. We accomplish this by introducing two new algo-
rithms: one for load balancing and one for building communication graphs. We
also analyze the effects of domain decomposition on the performance of hybrid
heterogeneous approaches. In all, the contribution of this work is a practical al-
gorithm that translates the potential demonstrated by O’Brien et al. into a real
world setting.

2 Background

Monte Carlo photon transport problems divide their spatial domains amongst
its compute resources (i.e., MPI Ranks) in a non-traditional manner. In many
physics simulations, there is a one-to-one mapping between compute resources
and spatial domains — a physics simulation with N compute resources has N
spatial domains, and each compute resource has its own unique spatial domain.
With Monte Carlo photon transport problems, the full mesh is often too large
to fit into one compute resource’s memory, but not so large that it must be

fully partitioned across the total memory of all the compute nodes. Saying it
another way, there are often fewer spatial domains than compute resources, and
so multiple computational resources can operate on the same domain at the
same time. Consider a simple example with two spatial domains (D0 and D1)
and four compute resources (P0, P1, P2, and P3). One possible assignment is for
D0 to be on P0, P1, and P2 and D1 to be on P3, another possible assignment
is for D0 to be on P0 and P1 and D1 to be on P2 and P3, and so on. Overall,
domain assignment is an additional component for optimizing performance.

In the Monte Carlo community, the mapping of spatial domains to compute
resources is referred to as “replication,” as the mapping will replicate some do-
mains across the resources. There are two main strategies for replication: static
and dynamic. Static replication makes assignments when the program first begins
and uses those assignments throughout execution. Dynamic replication changes
assignments as the algorithm executes, in order to maintain load balancing.
Both replication strategies aim to improve efficiency — they operate by repli-
cating the spatial domains that have more particles, in order to distribute the
workload more evenly across compute resources.

Dynamic replication is part of an overall approach for Monte Carlo transport.
Each cycle of a Monte Carlo approach consists of three phases: initialization,
tracking, and finalization. When incorporating dynamic replication, the initial-
ization phase executes the dynamic replication algorithm. The tracking phase
does a combination of particle transport and communicating particles. Particle
transport operates mostly in an embarrassingly parallel fashion, up until parti-
cles move from one spatial domain to another (and thus need to be re-assigned
to a compute resource that has that spatial domain) and thus MPI communica-
tion is required. The finalization phase processes the distributed results of the
tracking phase. Importantly, the initialization phase determines the performance
of the tracking phase — if the domain assignments from the dynamic replication
algorithm create balanced work for each compute resource, then all compute
resources should complete the tracking phase at the same time, ensuring parallel
efficiency.

Tracking is the computationally dominant portion of the algorithm. During
tracking, each particle makes small advancements for short periods of time, and
each advancement is referred to as a “segment.” The type of activity within
a segment can vary, which affects the computational cost and duration of the
advancement for a segment. In this paper the three relevant activities are: (1)
collisions with the background material, (2) moving between mesh elements, and
(3) moving to the end of the time step. Tracking concludes when each particle has
advanced for a period equal to the overall cycle duration — if the overall cycle
takes ∆T seconds, if a given particle advances via N segments for that cycle,
and if each segment i advances for some time ti seconds, then

∑N−1
i=0 ti = ∆T .

3 Related Works

Many works have studied spatial domain decomposition methods for Monte
Carlo particle transport. The method was introduced by Alme et al. [2], as they
split a problem into a few parts, allowing for replications of spatial domains in or-
der to parallelize the workloads while maintaining processor independence. Their
proposed method was adopted by the Mercury simulation code and implemented
in a production environment; this team then provided empirical evidence for its
efficacy [11]. Spatial domain decomposition methods were further analyzed by
Brunner et al. [4, 5], who also contributed improvements for increasing scalabil-
ity and improving performance overall. One of their important improvements
for scalability was to add point-to-point communication, allowing processors in
different spatial domains to communicate directly with one another. This was a
change from a model where each spatial domain had a single processor which
was in charge of all communication for that group of processors.

Work by O’Brien et al. [9] introduced dynamic replication. Their scheme
performed regular evaluation of parallel efficiency and then performed load bal-
ancing when efficiency dropped below a specified threshold. O’Brien et al. [10]
extended this work by adding a communication graph, which defined which pro-
cessors can perform point-to-point communication during a cycle. Using these
new communication graph algorithms, O’Brien was able to successfully scale
Mercury on LLNL’s Sequoia supercomputer to over one million processors while
maintaining good parallel performance. This work showed that keeping the load
balance during particle communication within a cycle is important for scaling
parallel performance. When particles were communicated to neighbors without
considering load balance, a single processor could become bogged down with
significantly more work — work which potentially could have been shared. Ad-
ditional extensions to this work can be seen in other groups as well, such as
with Ellis et al. who looked into additional mapping algorithms under specific
conditions in the Monte Carlo transport code, Shift [6]. Their work extends
the communication graph concept by combining it with Monte Carlo variance
reduction techniques to improve the overall efficiency for their use-cases.

While many works have focused on algorithmic improvements, many oth-
ers have focused on evaluating load imbalance effects. In his PhD thesis, Paul
Romano expanded upon the concept of domain decomposition algorithms by
providing new analytical understanding [12]. In particular, Romano provided a
basis for understanding the importance of load imbalance and being able to de-
termine analytically the benefit of this method. Wagner et al. [13] took a more
empirical approach when studying load imbalance of reactor physics problems.
They considered the problem of load imbalance stemming from spatial decom-
position, and proposed new decomposition methods for handling this issue. Sim-
ilarly, Horlik et al. [7] explored several spatial domain decomposition methods
and analyzed their effect on load imbalance. In summary, each of these groups
identified load imbalance as a problem and proposed analysis and solutions that
fit their specific needs.

As noted in the introduction, our closest comparator is a separate work from
O’Brien et al. [8]. This work considered the problem of balancing particles in a
given spatial domain among processors of varying speeds, but it did not consider
domain decomposed meshes. As domain replication strategy is an important as-
pect to achieve performant algorithms, developing an algorithm that supports
both heterogenous computing and domain decomposition is non-trivial and re-
quires fresh investigation. This gap is the focus of our work.

4 Our Method

This section describes our novel dynamic replication algorithm for Monte Carlo
transport. Our algorithm is optimized for heterogenous architectures — it as-
sumes that individual computational resources will have different levels of com-
pute power, and makes assignments based on that knowledge. Our algorithm
consists of three steps:

1. Assignment (Section 4.1): identify how many times to replicate each spatial
domain, and then assign those domains to compute resources.

2. Distribution (Section 4.2): partition the particles across compute resources.

3. Mapping (Section 4.3): build a communication graph between compute
resources in order to communicate particles that have exited their current
spatial domain during tracking.

4.1 Step 1: Assignment

This step produces an assignment of compute resources to spatial domains, with
the goal of making an assignment that minimizes execution time. In particular,
the number of particles per spatial domain varies, and so the goal is to replicate
the domains with the most particles in order to assign a commensurate level of
compute to each domain. The algorithm works by considering work and com-
pute as proportions — if a domain has 10% of the particles, then that domain
should be replicated so that it gets 10% of the compute resources. Further, if
the assignments are effective, then all compute resources should complete at the
same time during the tracking phase.

To make assignments, our algorithm needs to understand (1) how much work
needs to be performed and (2) how capable the compute resources are. In both
cases, we use results from the previous cycle, which we find to be a good repre-
sentation for what work to expect in the next cycle. Explicitly, the total work for
each domain is the number of segments to execute. We consider the per-domain
work from the previous cycle as our estimate for the upcoming cycle. For com-
pute rate, we consider how many segments per second each type of resource
achieved. That is, we measure the average number of segments per second over
all of the CPUs and the same for GPUs. Using past performance automatically
accounts for variation in translating FLOPS to segments across hardware; where
the FLOP ratio between a GPU and CPU may be 100:1, the ratio in average
number of segments per second may be much lower, like 20:1.

Our algorithm depends on considering both work and compute in proportion
to the whole, and we define three terms for ease of reference. Let PWi be the
proportion of work within spatial domain i. For example, if domain i has 10% of
the total estimated work, then PWi = 0.1. Further, let PC-GPU and PC-CPU
be the proportion of total compute for a GPU and a CPU, respectively. For
example, if a GPU can do 100 million segments per second, if a CPU can do 5
million segments per second, and if there are 4 GPUs and 20 CPUs, then the
total capability is 500 million segments per second, and PC-GPU = 0.2 and
PC-CPU = 0.01.

At the beginning of program execution, we assign each domain one GPU and
one CPU. This ensures that every domain has “surge” capability in case the work
assignment estimates are incorrect (which can happen when particles migrate
from one domain to another at a high rate). Such surge capability prevents the
worst case scenario — one compute resource takes a long time to complete its
work, and the others sit idle. Further, one of these compute resources (either
the CPU or GPU) can act as a “foreman” for its spatial domain. These foremen
are bound to a spatial domain throughout program execution. When a compute
resource is assigned a new spatial domain, it can get that domain from the
appropriate foreman. The remaining compute resources can then be assigned to
work on spatial domains dynamically.

Our assignment algorithm works in two phases. The first phase decides how
many compute resources should be assigned to each spatial domain, and what
type they should be. The second phase uses this information to make actual
assignments to specific compute resources, being careful to minimize commu-
nication by keeping the same spatial domains on the same compute resources
when possible.

The first phase employs a greedy algorithm, and is described in pseudocode
below labeled “MakeGreedyAssignments.” It begins by setting up an array vari-
able that tracks how much work is remaining for each spatial domain (“Re-
mainingWork”) using the predicted work (PWi) and taking into account the
pre-allocated resources (one CPU and one GPU for each of the M spatial do-
mains). The final step is to assign the remaining compute resources to spatial
domains. NGPU is the number of GPUs, it begins by assigning the NGPU−M
available GPUs to spatial domains, one at a time. Each time, the algorithm first
finds the spatial domain d with most remaining work, i.e., its evaluations takes
into account that resources have been assigned previously. After the GPUs, it
then makes assignments for each of the NCPU −M available CPUs in a similar
manner.

function MakeGreedyAssignments(M, NGPU, NCPU, PW, PCGPU, PC-
CPU)

for i in range(M) do
WorkRemaining[i] = PW[i]

end for
for i in range(M) do . Account for preallocated resources

WorkRemaining[i] -= (PCGPU+PCCPU)

end for
NGPU -= M
NCPU -= M
for i in range(NGPU) do . Replicate remaining resources greedily

d = FindDomainWithMostWork(WorkRemaining)
WorkRemaining[d] -= PCGPU
AssignGPUToSpatialDomain(d)

end for
for i in range(NCPU) do

d = FindDomainWithMostWork(WorkRemaining)
WorkRemaining[d] -= PCCPU
AssignCPUToSpatialDomain(d)

end for
end function

All replication schemes nearly always have some load imbalance. Consider
a problem with two spatial domains with equal amounts of particles (PW0 =
PW1 = 0.5) and three GPU compute resources, C0, C1, C2 where PC-GPU =
0.333. Then C0 and C1 will be foremen, and the only question is whether to
replicate domain 0 or 1 on C2. Whatever the outcome, one domain will have a
WorkRemaining value of 0.167. In this example, it would be up to the foreman
to carry out this extra work and it would be likely that the extra compute
resources would be idle as it does so. Fortunately, these effects get smaller as
concurrencies get larger. Also, the heterogeneous nature of compute helps on
this front, as there are more resources (the CPUs) that are smaller (i.e., smaller
values of PC-CPU) leading WorkRemaining values being closer to 0 on the
whole.

The second phase assigns specific compute resources. Every time a compute
resource is assigned a new domain, it must retrieve this domain from its corre-
sponding foreman, incurring a communication cost. So the goal of this phase is
to repeat assignments between compute resources and domains. For example, if
the output of the first phase indicates that domain d should have 3 GPUs, then
the second phase checks to see if there are 3 GPUs that had d in the previous
cycle. If so, then those GPUs should be assigned to d again for the current cy-
cle, as this prevents unnecessary communication. Of course, as the number of
compute resources applied to a domain increases, new compute resources must
be located and communication costs are inevitable.

4.2 Step 2: Distribution

This step partitions the particles across compute resources. This partitioning
must honor the spatial domain assignments, i.e., if particle P lies within spa-
tial domain D, then the particle can only be to assigned to compute resources
that were assigned D. In our approach, we perform this partitioning relative to
performance — GPU compute resources get more particles and CPU compute
resources get less, and the proportion between them corresponds to PC-GPU

PC-CPU .
The remainder of implementation details follow trivially from previous work [8].

4.3 Step 3: Mapping

Fig. 1. Result of our Map step with 4
spatial domains, 4 GPU compute re-
sources, and 6 CPU compute resources.
The square boxes show which domains
neighbor (1-2, 2-3, 3-4).

Domain
1

Domain
2

Domain
3

Domain
4

P1 P2

P5 P6 P7 P8

P3 P4

Hybrid
Uniform Distribution

GPU

CPU

P9 P10

Mapping refers to establishing a com-
munication graph between compute re-
sources. This mapping is needed when
particles exit their spatial domain. When
this happens, they need to be sent from
their current compute resource to another
compute resource that is operating on
their new spatial domain.

In a domain replication environment,
a poor communication graph can affect
overall performance. For example, assume
that domain d is replicated by K compute
resources — C0, C1, ... C(K−1). One pos-
sible communication graph could instruct
all other compute resources to send their
particle entering d to C0. This is bad: C0

would spend more time doing communi-
cation than the other Ci resources and it
also will end up with more particles to transport. Instead, a better mapping
would lead to an even spread of particles between the Ci’s.

For a given compute resource, our Map algorithm makes connections to all
neighboring domains. It uses a round robin algorithm to prevent load imbalance,
specifically:

indexA mod sizeB = indexB mod sizeA

where A is a list of resources from one domain and B is a list of resources from
a second domain (see Figure 1). Our Map algorithm makes two connections for
each neighboring domain d — one to a CPU compute resource that contains
d and one to a GPU compute resource that contains d. Each connection also
has a weighting which dictates the proportion of particles communicated. For
our experiments, we set the weights to be proportional to their compute abili-
ties (PC-GPU and PC-CPU), i.e., a GPU resource would be sent many more
particles than a CPU resource. That said, exploring different weights would be
interesting future work, in particular weights where CPUs get more particles.

5 Experiment Overview

This section provides an overview of our experiments, and is organized into
three subsections. Subsection 5.1 describes the hardware and software used for
our experiments. Subsection 5.2 describes the factors we vary to form our set
of experiments. Finally, Subsection 5.3 describes the measurements we use to
evaluate our results.

5.1 Hardware and Software

Our experiments were run on LLNL’s RZAnsel supercomputer. This platform
has two Power 9 CPUs (22 cores per CPU, of which 20 are usable), 4 Nvidia
Volta GPUs (84 SMs per GPU), and NVLink-2 Connections between the sockets
on each node. In addition, there are a total of 256 GB of CPU memory and 64
GB of GPU memory per node [1]. For software, we used Imp [3], a Monte Carlo
code that solves time-dependent thermal x-ray photon transport problems.

5.2 Experimental Factors

Our experiments vary two factors: workload (11 options) and Hardware con-
figuration (3 options). We ran the cross product of experiments, meaning 33
experiments overall.
Workloads: our 11 unique workloads consisted of three distinct problems (“Crooked
Pipe,” “Holhraum,” and “Gold Block”), with one of those problems (“Gold
Block”) having nine different variations. Details for each of the three distinct
problems are as follows:

– Crooked Pipe: a problem that simulates transport through an optically
thin pipe with a U-shaped kink surrounded by an optically thick material.
The Crooked Pipe problem is load imbalanced since particles are sourced
into the leading edge of the pipe, causing spatial domains that contain this
region to have a much higher amount of work per cycle than the others. This
is a common test problem in the Monte Carlo photon transport community
as well as an excellent driver for testing load balancing methods.

– Hohlraum: a problem that simulates the effects of Lawrence Livermore’s
NIF laser on a gold hohlraum. Particles in this problem start in an incredibly
hot gold wall and then propagate throughout the mostly hollow interior,
colliding with a central obstruction as well as the surrounding gasses. This
problem starts out very load imbalanced with most work in the hot region.

– Gold Block: a homogenous test problem that simulates a heated chunk
of gold. This problem is a solid cylinder of gold with reflecting boundary
conditions. Since this problem is a homogeneous material with reflecting
boundary conditions, we can modify the length scale of the problem in order
to change the ratio of the number of collision segments with the number
of total segments by changing the number of mesh element crossing seg-
ments and leaving all else fixed. We use this length scaling to create a total
of 9 configurations, with an unscaled version at the center we refer to as
the Base Gold Block. Specifically, we took our Base Gold Block problem
and halved the length scale 4 times consecutively, and similarly doubled the
length scale 4 times consecutively to create these configurations. The goal
with this scaling is to understand performance with respect to the percent
of time performing collisions segments versus other segment types.

Hardware configurations: we ran each of the workloads with:

– Hybrid: our algorithm, scheduled with both GPUs and CPUs.

– CPU-Only: scheduled using only CPU resources

– GPU-Only: scheduled using only GPU resources

For the CPU-Only and GPU-Only tests, we were able to perform experiments
using our algorithm, since our algorithm simplifies to be the same as predecessor
work when the resources are homogeneous. Further, all experiments were run on
4 nodes, meaning we used: for CPU-Only 160 CPU resources, for GPU-Only 16
GPU resources, and for Hybrid 144 CPU resources + 16 GPU resources. Each
of these experiments were run with a total of 80 million particles.

5.3 Measurements

To analyze our results, we considered three types of measurements:

– Throughput defines the number of segments, on average, that a processor
will be able to process in one second. This metric is used to compare applica-
tion performance in a consistent manner, regardless of hardware or software
configuration.

– Segment Counters divide the segments into the three different activity
types considered in this paper (see Section 2). Specifically, these counters
count the total number of times each type of segment has occurred across all
segments in the simulation. Segment counters are useful for understanding
how performance varies with respect to different segment types.

– Efficiency determines the success of a load balance algorithm. For each
domain i, we calculate the ratio of the compute resource applied to that
domain (sums of PC-GPU and PC-CPU for the assigned Ci’s) and work
for that domain (PWi). For example, a given domain may have 8% of the
compute resources and 10% of the total work, for a ratio of 0.8 or an efficiency
of 80%. Our efficiency metric is the minimum of these ratios over all domains,
meaning 1.0, 100%, is a perfect score (compute resources applied perfectly in
proportion to work for all domains) and less than 1.0 indicates the inefficiency
— a score of 0.5 indicates that one domain has been given half the resources
it needs, i.e. it has an efficiency of 50%.

6 Results

Our results are organized into three parts:

– Section 6.1 evaluates the performance of our overall heterogenous algorithm.
– Section 6.2 evaluates the efficacy of our load balancing algorithm.
– Section 6.3 evaluates the importance of our algorithm’s surge capability.

6.1 Algorithm Performance

Figure 2 shows the performance results for our 33 experiments. This figure con-
tains a line for “peak” performance. This does not represent actual experiments,

Fig. 2. Plot showing throughput (segments per second) as a function of what propor-
tion of the segments were of the type “collision,” as given by the segment counters. It
plots four lines, one for each of our three hardware configurations, and one for a theo-
retical “peak” configuration (described in Section 6.1). Each of the dots come from our
workloads — the left-most (∼0% collisions) come from the Crooked Pipe problem, the
right-most (∼100% collisions) come from the Hohlraum problem, and the remainder
come from variations of the Gold Block problem.

 0

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

 7x108

 8x108

 9x108

 0 10 20 30 40 50 60 70 80 90 100

S
e
g

m
e
n
ts

 P
e
r

S
e
co

n
d

Percent Collision

Throughput by Percent Collision

GPU
CPU

Peak
HYB

but rather a theoretical analysis of the potential peak speedup from using both
CPUs and GPUs. This line was calculated by taking the GPU performance and
adding 90% of the CPU performance (since some CPUs are needed to manage
GPUs in a heterogeneous environment, specifically 36 of the 40 CPU cores were
used for computation, while the remaining 4 managed GPUs). This peak line
should be viewed as a “guaranteed-not-to-exceed” comparator.

One important finding is on the potential of heterogenous computing for
this problem. While the CPUs have only 3% of the FLOPs of the GPUs, their
performance (i.e., throughput) is much better than 3%. CPUs have 26.2% of
the throughput for the Crooked Pipe problem, 20.4% for the Base Gold Block
problem, and 10.4% for the Hohlraum problem. In all, this provides important
evidence that including CPUs can be much more beneficial than a basic FLOP
analysis. Of course, this potential can only be leveraged with an effective algo-
rithm.

With respect to actual achieved performance, our heterogenous algorithm
(“Hybrid”) performed quite well. It was 20.4% faster than GPU-only for the
Crooked Pipe problem, and approximately 10% faster for the other problems.
Relative to the peak line, our algorithm achieved 95.1% for Crooked Pipe, 91.8%
for Base Gold Block, and 99.6% for Hohlraum. The performance is greatest
where the amount of collision segments is dominant, which is also where there is
a larger amount of compute used by the resources. In this region, the CPUs are
less valuable, but still more valuable than the hardware specification predicts.
On the other end of the spectrum, where there are less collisions and more
mesh element crossing segments, the compute is lower, and the GPUs are less
performant. This enables the CPUs to provide an even greater benefit overall.

6.2 Load Balance Efficiency

Table 1. This table shows the efficiency for our three workloads over a full program
execution. Minimum efficiency represents the worst assignment over all compute re-
sources and cycles: for one cycle of the Crooked Pipe problem, there was a compute
resources which had about 20% too much work to finish on time with the other compute
resources. Maximum efficiency speaks to the best cycle: for one cycle of the Crooked
Pipe problem, the most underpowered compute resource had only 0.1% too much work.
Average efficiency speaks to the behavior across cycles: (1) for each cycle, identify the
most underpowered compute resource and calculate how much extra work it has, and
(2) take the average over all cycles of the extra work amounts. For the Crooked Pipe
problem, the average efficiency is 99.55%, meaning that the average slowdown for com-
pleting a cycle due to load balancing was <0.5%.

Problem Minimum Efficiency Maximum Efficiency Average Efficiency

Crooked Pipe 81.76% 99.92% 99.55%

Base Gold Block 81.76% 99.9% 99.90%

Hohlraum 81.76% 86.16% 85.80%

Table 1 plots efficiency results for our three workloads. On the whole, the
minimum efficiency values for these workloads are low. That said, these con-
ditions occur in the first few cycles, as these cycles do not have a history of
performance to base their load balancing decisions on. For Crooked Pipe and
Base Gold Block, the average efficiencies indicate that good load balance is
achieved quickly and maintained throughout the run. The Hohlraum problem
had worse efficiency. This was because one domain was a “hot spot” — it had
much more work than the other domains. This topic is explored further in the
following subsection.

6.3 Surge Capability

The Hohlraum workload demonstrates the value in our “surge capability” (en-
suring that one GPU and CPU are assigned to each domain). This workload had
4 domains, and domain 1 had the majority of particles, to the point meriting
assignment of every non-foreman compute resource. That said, during a com-
pute cycle, domain 1’s particles stream out rapidly into neighboring domains.
Our surge capability ensured extra compute resources were allocated, and this
made a 3X performance improvement for this case. Figure 3 has more details on
this comparison, with Gantt charts that show behavior within a cycle. Finally,
the “surge” allocation had no impact on the other two problems since their work
was more balanced, and they would have received those resources anyway.

7 Conclusion

In this paper, we introduce a novel load balancing algorithm which can efficiently
partition heterogeneous compute resources across domains. We demonstrate re-

0 CPU

0 GPU

1 CPU

1 GPU

2 CPU

2 GPU

3 CPU

3 GPU

 0 5 10 15 20 25 30

R
ep

. P
ro

c
B

y
D

om
ai

n

Time [s]

GPU Every Domain True

0 CPU

0 GPU

1 CPU

1 GPU

2 CPU

2 GPU

3 CPU

3 GPU

 0 20 40 60 80 100

R
ep

. P
ro

c
B

y
D

om
ai

n

Time [s]

GPU Every Domain False

Fig. 3. Gantt charts for a single cycle of the Hohlraum workload. The left Gantt
chart corresponds to our algorithm, and completes in 30s. The right Gantt chart is
a variant of our algorithm where there is no minimum compute allocation (i.e., the
“surge capability” is disabled). This variant took 113s, 3.8X slower. The Gantt plots
show an evolution over time per compute resource, with red representing “idle” time,
yellow representing communication time (“MPI Send/Recv”), and green representing
time spent tracking particles. The blank spaces in the right chart occur because there is
no compute resource assigned to that domain, for example no GPU resource for domain
3. Finally, these Gantt charts show only the first CPU and first GPU for a domain,
and the other compute resources are not plotted. In particular, the remaining compute
resources in the left Gantt chart (our algorithm) are doing tracking (green) at a high
rate, consistent with the overall efficiency of 85% — some of the worst performers for
this workload (domains 0, 2, and 3) are being plotted.

sults using this algorithm, in a production Monte Carlo photon transport code,
running a variety of workloads. This work was motivated by the performance
difference seen in practice between Monte Carlo transport codes running on
CPUs and GPUs when compared with the ratio of the available FLOPs. Our
algorithm demonstrated up to a 20% performance benefit, which is much greater
than the 3.7% predicted by solely looking at the ratio of FLOPs. Additionally,
our algorithm achieves 85% to 99% load balancing efficiency on the problems
demonstrated.

In terms of future work, we wish to study more workloads, such as neutron
transport, and to run larger problems using more compute resources. We also
plan to look more at the surge capability, and whether better predictions can
be made about when it is needed. In particular, the assignment of at least one
GPU to every domain can be wasteful in some configurations, possibly limit-
ing performance by as much as 15% in extreme cases. Further, while domain
replication algorithms assume that each MPI rank has a single domain for a
given cycle, more adaptive approaches, including switching a domain mid-cycle
and splitting a domain into pieces could have performance benefits. Another
improvement would be adapting assignments based on current loads, in case the
target resource already is overloaded. Finally, we plan to extend our algorithm
to work with even more heterogeneous architectures in the future, including
multiple types of accelerators on a node and even nodes with different types of
compute power. This work will happen as such machines come online, as most
supercomputers are using strictly CPUs and GPUs at this time.

NOTICE: This manuscript has been authored by Lawrence Livermore National Se-
curity, LLC under Contract No. DE-AC52-07NA2 734-I with the US. Department of
Energy. The United States Government retains, and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States Government pur-
poses. LLNL-CONF-817536-DRAFT

References

1. Livermore computing center high performance computing: Rzansel,
https://hpc.llnl.gov/hardware/platforms/rzansel, accessed: 2020-12-09

2. Alme, H.J., Rodrigue, G.H., Zimmerman, G.B.: Domain decomposition models for
parallel monte carlo transport. The Journal of Supercomputing 18(1), 5–23 (2001)

3. Brantley, P., et al.: A new implicit monte carlo thermal photon transport capability
developed using shared monte carlo infrastructure. In: The International Confer-
ence on Mathematics and Computational Methods Applied to Nuclear Science and
Engineering (M&C 2019). pp. 25–29. Portland, Oregon (August, 2019)

4. Brunner, T.A., Brantley, P.S.: An efficient, robust, domain-decomposition algo-
rithm for particle monte carlo. Journal of Computational Physics 228(10), 3882–
3890 (2009)

5. Brunner, T.A., et al.: Comparison of four parallel algorithms for domain decom-
posed implicit monte carlo. Journal of Computational Physics 212(2), 527–539
(2006)

6. Ellis, J.A., et al.: Optimization of processor allocation for domain decomposed
monte carlo calculations. Parallel Computing 87, 77–86 (2019)

7. Horelik, N., Siegel, A., Forget, B., Smith, K.: Monte carlo domain decomposition
for robust nuclear reactor analysis. Parallel Computing 40(10), 646–660 (2014)

8. O’Brien, M., et al.: Hybrid cpu-gpu load balancing for monte carlo particle trans-
port. In: Proceedings of the 26th International Conference on Transport Theory
(ICTT-26), Sorbonne Univeristy, Paris, France (2019)

9. O’Brien, M.J., Brantley, P.S., Joy, K.I.: Scalable load balancing for massively par-
allel distributed monte carlo particle transport. In: Proceedings of International
Conference on Mathematics and Computational Methods Applied to Nuclear Sci-
ence & Engineering (M&C 2013), Sun Valley, Idaho. vol. 45, pp. 647–658 (2013)

10. O’Brien, M.: Dynamic load balancing of parallel monte carlo transport calcula-
tions via spatial redecomposition. In: Proceedings of the Joint International Top-
ical Meeting on Mathematics & Computation and Supercomputing in Nuclear
Applications. pp. 16–19 (2007)

11. Procassini, R., O’Brien, M., Taylor, J.: Load balancing of parallel monte carlo
transport calculations. In: Proceedings of the 2005 ANS Topical Meeting in Math-
ematics and Computation. Avignon, France (September 12-15, 2005)

12. Romano, P.K.: Parallel algorithms for Monte Carlo particle transport simulation
on exascale computing architectures. Ph.D. thesis, Massachusetts Institute of Tech-
nology (2013)

13. Wagner, J.C., et al.: Hybrid and parallel domain-decomposition methods develop-
ment to enable monte carlo for reactor analyses. Progress in nuclear science and
technology 2(1), 815–820 (2011)

