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Streamline Integration using MPI-Hybrid Parallelism
on a Large Multi-Core Architecture

David Camp, Student Member, IEEE, Christoph Garth, Member, IEEE, Hank Childs, Dave Pugmire,
and Kenneth I. Joy, Member, IEEE
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Abstract—Streamline computation in a very large vector field data
set represents a significant challenge due to the non-local and data-
dependent nature of streamline integration. In this paper, we conduct a
study of the performance characteristics of hybrid parallel programming
and execution as applied to streamline integration on a large, multi-
core platform. With multi-core processors now prevalent in clusters
and supercomputers, there is a need to understand the impact of
these hybrid systems in order to make the best implementation choice.
We use two MPI-based distribution approaches based on established
parallelization paradigms, parallelize-over-seeds and parallelize-over-
blocks, and present a novel MPI-hybrid algorithm for each approach to
compute streamlines. Our findings indicate that the work sharing be-
tween cores in the proposed MPI-hybrid parallel implementation results
in much improved performance and consumes less communication and
I/O bandwidth than a traditional, non-hybrid distributed implementation.

1 INTRODUCTION
Streamlines, or more generally integral curves, are one
of the most illuminating techniques to obtain insight
from simulations that involve vector fields and they
are a cornerstone of visualization and analysis across a
variety of application domains. Drawing on an intuitive
interpretation in terms of particle movement, they are an
ideal tool to illustrate and describe a wide range of phe-
nomena encountered in the study of scientific problems
involving vector fields, such as transport and mixing
in fluid flows. Moreover, they are used as building
blocks for sophisticated visualization techniques (e.g.,
[1], [2], [3]), which typically require the calculation of
large amounts of integral curves. Successful application
of such techniques to large data must crucially lever-
age parallel computational resources to achieve well-
performing visualization. Streamline computations are
notoriously hard to parallelize in a distributed memory
setting [4], because runtime characteristics are highly
problem- and data-dependent.

Supercomputers are increasingly relying on nodes that
contain multiple cores to achieve FLOP performance
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while minimizing power consumption. While current
supercomputer nodes contain two to six cores, current
trends indicate that future supercomputers will consist
of individual nodes with tens to hundreds of cores. This
hardware approach gives rise to an important software
question: which parallel programming model can effec-
tively utilize such architectures? The classical method,
advocated for example by the widely prevailing Message
Passing Interface (MPI) is to assign an MPI task to every
core on every node; this approach is often the simplest
way to write parallel programs. An increasingly popular
approach, however, is to use hybrid parallelism, where
fewer MPI tasks are used (typically one per node) and
shared-memory parallelism is employed within a node.
This approach, although more challenging to implement,
can enable significant performance and efficiency gains.
In this paper, we study the difference between a tra-
ditional MPI-based implementation and a MPI-hybrid
parallel approach applied to the problem of streamline
integration in a large vector-field data set. This study is
complementary to a scaling study; we are studying the
benefits of hybrid parallelism applied to streamline inte-
gration, which is related to, but distinct from scalability.

The aim of this work is to explore the performance
of parallel, distributed streamline computation when
implemented using both hybrid and non-hybrid pro-
gramming models. The hybrid parallel implementation
is a blend of traditional message passing between CPUs
and shared memory parallelism between cores on a
CPU. We investigate the thesis that a hybrid parallel
implementation can leverage significant improvements
in performance via factors such as improved efficiency,
reduced communication, and reduced I/O costs. The
problem of streamline integration should especially ben-
efit from such an approach since its runtime complexity
and I/O varies greatly with respect to both the data
set under investigation and the number and distribution
of streamlines to be computed. Based on a wide range
of experiments we perform for typical streamline com-
putation scenarios (Section 4), our findings (Section 5)
indicate that there is an opportunity for significant per-
formance gains under the hybrid approach, resulting
from reductions in memory footprint, communication,
I/O and improvements in parallel efficiency. Our exper-
iments are conducted with the VISIT visualization tool,
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and hence, the performance observations we arrive at
in this paper directly apply to real-world, production
visualization scenarios.

2 PREVIOUS WORK

2.1 Parallel Streamline Integration
The parallel solution of streamline-based problems has
been considered in previous work using a multitude
of differing approaches. Generally, both data set, repre-
sented as a number of disjoint blocks, and computation
in the form of integration work can be distributed. An
early treatment of the topic was given by Sujudi and
Haimes [5], who made use of distributed computation by
assigning each processor one data set block. A stream-
line is communicated among processors as it traverses
different blocks. Other examples of applying parallel
computation to streamline-based visualization include
the use of multiprocessor workstations to parallelize
integral curve computation (e.g., [6]), and research
efforts were focused on accelerating specific visualiza-
tion techniques [7]. Similarly, PC cluster systems were
leveraged to accelerate advanced integration-based visu-
alization algorithms, such as time-varying Line Integral
Convolution (LIC) volumes [8] or particle visualization
for very large data [9].

Focusing on data size, out-of-core techniques are com-
monly used in large-scale data applications where data
sets are larger than main memory. These algorithms
focus on achieving optimal I/O performance to access
data stored on disk. For vector field visualization, Ueng
et al. [10] presented a technique to compute streamlines
in large unstructured grids using an octree partitioning
of the vector field data for fast fetching during streamline
construction using a small memory footprint. Taking
a different approach, Bruckschen et al. [11] described
a technique for real-time particle traces of large time-
varying data sets by isolating all integral curve compu-
tation in a pre-processing stage. The output is stored
on disk and can then be efficiently loaded during the
visualization phase.

More recently, different partitioning methods were
introduced with the aim of optimizing parallel integral
curve computation. Yu et al. [12] introduced a parallel
integral curve visualization that computes a set of rep-
resentative, short integral segments termed pathlets in
time-varying vector fields. A preprocessing step com-
putes a binary clustering tree that is used for seed
point selection and block decomposition. This seed point
selection method mostly eliminates the need for commu-
nication between processors, and the authors are able
to show good scaling behavior for large data. However,
this scaling behavior comes at the cost of increased pre-
processing time and, more importantly, loses the ability
to choose arbitrary, user-defined seed-points, which is
often necessary when using streamlines for data analysis
as opposed to obtaining a qualitative data overview.
Chen and Fujishiro [13] applied a spectral decomposition

using a vector-field derived anisotropic differential op-
erator to achieve a similar goal with similar drawbacks.

More recently, Pugmire et al. presented a systematic
study of the performance and scalability of three par-
allelization algorithms [4]: the first two correspond to
parallelization over seed points and over data blocks,
respectively, while the third algorithm (termed Master-
Slave) adapts its behavior between these two extremes
based on the observed behavior during the algorithm
run. Such an adaptive strategy was found to roughly
equal the better performance of either extreme, thus
making an a-priori choice of parallelization strategy
unnecessary (see also Section 4.1). This study is partially
based on this previous work as we focus on the two
non-adaptive parallelization approaches, and our imple-
mentations are improved from the original ones done
in Pugmire et al. [4]. Comparing hybrid and traditional
parallelism with the Master-Slave approach is a difficult
undertaking due to the high complexity of the algorithm;
we leave this to future work. However, we understand
streamline parallelization choices as a spectrum between
parallelizing over data and parallelizing over computa-
tion. In this paper, we show that both ends of the spec-
trum are greatly improved with hybrid parallelism and
presume that it is reasonable to conclude that algorithms
in the middle of the spectrum (such as Master-Slave) will
also strongly benefit. Finally, we exclude any notion of
(typically time-consuming) data set preprocessing and
focus on unmodified data, as our intent is to quantify
the potential benefits of a hybrid parallel approach over
a traditional one in a production visualization scenario,
where exhaustive preprocessing is not feasible.

2.2 Hybrid Parallelism

In the recent past, the Message Passing Interface (MPI)
evolved as the de-facto standard for parallel program-
ming and execution on supercomputers and clusters [14]
due to its ability to effectively abstract machine ar-
chitecture and communication modes. To make use of
MPI, applications must explicitly invoke MPI library
calls to implement parallel execution and communica-
tion paradigms such as data scatter and gather and
execution synchronization. In MPI terminology, a task
is the fundamental unit of execution. A parallel MPI
application consists of multiple tasks, all executing a
single identical program, distributed over all processors
of a parallel system. Historically, each MPI task maps
one-to-one to the processors of a parallel system. More
recently, with the evolution of multi-core processors,
MPI implementations provide support to map tasks onto
one or more cores of such chips. In this configuration,
each task maps to a single core of a multi-core chip.
However, treating each core of a multi-core chip as an
individual processor with isolated resources incurs a
number of avoidable penalties. Since tasks are treated as
individual processes with separate address spaces, there
is little opportunity for direct sharing of data residing
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in the same physical memory shared by all cores on a
single chip. Because all communication between tasks is
abstracted through the MPI library and a corresponding
penalty is incurred in such scenarios, it stands to reason
that MPI applications may not perform optimally on
multi-core platforms, where there is the opportunity
for more efficient communication through local, high-
speed, shared memory that completely bypasses the MPI
interface.

It is considerably easier to develop shared-memory
parallel applications than distributed memory ones since
the need for explicit data movement between the parallel
program elements is obviated, since all CPUs have access
to the same, shared memory. In this model, an applica-
tion typically consists of one or more execution threads,
and two common programming models for building
shared-memory parallel codes are POSIX threads [15]
and OPENMP [16]. These APIs allow applications to
manage creation and termination of threads, and syn-
chronize thread execution through semaphores, mu-
texes and condition variables. The scalability of shared-
memory codes is typically limited by physical con-
straints: there are usually only a few cores in a single
CPU – four to six cores per CPU are common today,
although current trends indicate the future availability
of multi-core chips containing hundreds to thousands of
cores.

In both of the above programming models, a de-
veloper must explicitly design for parallelism, as op-
posed to relying on a compiler to discover and im-
plement parallelism. Other approaches are data-parallel
languages (e.g., CUDA [17]), languages with data paral-
lel extensions (e.g., High Performance Fortran [18], and
Partitioned Global Address Space (PGAS) languages (e.g.,
Unified Parallel C [19]), which provide a unified address
space of distributed memory platforms; here, parallelism
is expressed implicitly via language syntax and program
design.

In this paper, we focus on exploiting a hybrid paral-
lelism approach that makes use of a distributed-memory
approach between nodes, and leverages shared-memory
parallelism using threads across the cores of a node. In
the following, we will refer to this also as MPI-hybrid, as
opposed to MPI-only or traditional parallelism for a purely
distributed-memory technique.

Prior implementations of parallel algorithms in MPI-
hybrid form have focused on benchmarking well-known
computational kernels. Hager et al. [20] describes po-
tentials and challenges of the dominant programming
models on multi-core SMP nodes systems. Mallon et
al. [21] work evaluated the MPI performance against
Unified Parallel C (UPC) and OpenMP on multi-core
architectures. In contrast, ours is the first study that takes
aim at this space from the point of view of integration-
based vector field visualization. Previous studies do
not provide a clear answer as to which approach is
preferable in terms of performance in this scenario
since elements of overall runtime under both approaches

Processor 2Processor 1Processor 0

Parallelize-over-blocks Parallelize-over-seeds

Fig. 1. Immediate parallelization approaches for dis-
tributed streamline integration. Parallelize-over-blocks
(left) relies on a fixed assignment of data blocks to
processors and passes streamlines between processor
as they advance into new blocks. Parallelize-over-seeds
(right) distributed streamlines evenly among processors,
and data blocks are loaded on demand when required to
integrate a streamline.

are complex, and include a mixture of problem- and
configuration-specific factors (refer also to the discussion
in Section 4.1).

The same studies highlight several issues for consid-
eration when comparing hybrid and traditional paral-
lelism. Generally, hybrid approaches can be expected
to require less memory due to avoiding duplication of
data in a data distribution scenario, as well as using
operating system resources more efficiently. Similarly,
they typically require less time-consuming inter-node
communication. In this work, we examine the validity of
these assumptions for two parallelization strategies that
center on streamline integration in large data sets; our re-
sults indicate that significant performance and efficiency
improvements can be leveraged by a hybrid parallel
implementation. The speedup factors we have observed
range from two to ten on a quad-core architecture. The
communication and I/O bandwidth are also lowered by
significant amounts.

3 HYBRID PARALLEL STREAMLINE INTEGRA-
TION

In all algorithms, the problem mesh is decomposed into a
number of spatially disjoint blocks. The two paralleliza-
tion strategies that we present differ fundamentally in
how blocks are assigned and reassigned among proces-
sors, changing the I/O, memory, and processing profiles
so as to address the challenges in data set size, seed set
size, seed set distribution, and vector field complexity,
as discussed in Section 4.1.

There are two straightforward parallelization ap-
proaches that partition either the computation workload,
with seed points as the elementary unit of work, or the
data set, where data blocks are distributed (see Figure 1).
In the following, we describe how we implement both
strategies using MPI-only and MPI-hybrid models.
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Non-Hybrid Task Ncore / Node 1 / NodeHybrid Task

I/O
INT

INTINTINTINT
Ncore worker threads

Thread Data Block Active Streamline (can integrate on the resident blocks) Inactive Streamline

I/OI/OI/OI/O
Ncore I/O threads

Cache

Cache

Fig. 2. Implementation of the parallelize-over-seeds algorithm with non-hybrid (left) and hybrid (right) versions. In the
non-hybrid model, each MPI task integrates streamlines (INT) and manages its own cache by loading blocks from
disk (I/O), whereas Ncore worker threads share a cache in the hybrid implementation. In this case, multiple I/O threads
manage the cache and observe which streamlines can (active) and cannot (inactive) integrate with the resident data
blocks. Future blocks to load are determined from the list of inactive streamlines. MPI communication is limited to
gathering results and is not shown.

3.1 Parallelization-over-Seeds
The parallelize-over-seeds algorithm parallelizes over
the set of seed points, assigning each MPI task a fixed
number of seed points from which streamlines are then
integrated. Data blocks are loaded on demand when
required, i.e. when a streamline integration must be
continued in a block that is not present in memory.
Multiple such blocks are kept in memory in a block cache
of size Nblocks, and new blocks are only loaded when
no streamline can be continued on the current resident
blocks. Since blocks might be used repeatedly during
the integration of streamlines, they are kept in the cache
as long as possible. Blocks are evicted in least recently
used order to make room for new blocks. Figure 2
provides an overview of both MPI-only and MPI-hybrid
implementations of this algorithm. This algorithm ben-
efits from a small amount of communication; the only
communication occurs at initialization and termination.

The initial assignment of seed points to nodes is based
on spatial proximity, following the reasoning that the
integral curves traced from spatially close seed points
are likely to traverse the same regions, and thus blocks,
of a dataset. We find this approach effective in reducing
overall I/O cost; this is especially true for dense seeding.

In the MPI-only version, a single thread, correspond-
ing to the MPI task’s process, maintains an overview of
both the set of streamlines and the cache, and performs
integration and I/O as required.

In the MPI-hybrid implementation, streamlines are
maintained in two sets. Streamlines contained in the
active set can be integrated on the blocks currently
residing in the cache, while inactive streamlines require
further block I/O to integrate. The I/O threads identify
blocks to be loaded from the inactive set and then initiate
I/O if there is room in the cache. After a block is
loaded, the streamlines waiting on it are migrated to the
active set. A team of worker threads fetches streamlines
from the active set, performs integration of each one
on the available blocks, and then retires them to the

inactive set. Streamlines that have completed integration
are sent to a separate list, and the algorithm terminates
once both active and inactive sets are empty. Access
to active and inactive sets as well as the block cache
is synchronized through standard mutex and condition
variable primitives. In our implementation, the number
of worker and I/O threads is arbitrary. However, we
typically choose it to reflect the number of cores (Ncore)
dedicated to each MPI task.

Overall, the performance of the parallelize-over-seeds
scheme depends crucially on the data loads and cache
size Nblocks; if the cache is too small, blocks must be
brought in from external storage repeatedly. We expect
MPI-hybrid to have three main advantages over MPI-
only: (i) MPI-hybrid will have a larger shared cache
and will do less redundant I/O, (ii) when a significant
number of streamlines are inside the same data block,
MPI-only must load that block separately on each MPI
task, where MPI-hybrid can perform one read and im-
mediately share it amongst its threads and (iii) since I/O
and integration are separated into different threads, they
can execute asynchronously, and new blocks to load can
be identified as soon as streamlines are returned to the
inactive queue.

3.2 Parallelization-over-Blocks

The parallelize-over-blocks approach distributes data
blocks over MPI tasks using a fixed assignment. Stream-
lines are then communicated between the tasks to mi-
grate them to the task owning the block required to
continue integration. This algorithm performs minimal
I/O: before integration commences, every task loads all
blocks assigned to it, leveraging maximal parallel I/O
bandwidth.

Figure 3 provides an overview of both MPI-only and
MPI-hybrid implementations of this algorithm. As in the
parallelize-over-seeds case, the MPI-only version con-
sists of a single thread that maintains a set of streamlines
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Non-Hybrid Task Ncore / Node 1 / NodeHybrid Task

receive

send

COMM
INT

Other MPI 
Tasks

Other MPI 
Tasks

receive

send

INTINTINT

COMM
INT

Ncore-1 worker threads

Thread Data Block Active Streamline (can integrate on the resident blocks) Inactive Streamline

Cache Cache

Fig. 3. Implementation of the parallelize-over-blocks algorithm with non-hybrid (left) and hybrid (right) versions. In the
non-hybrid model, each process integrates streamlines (INT) and communicates with the cloud to receive and send
them (COMM). In the hybrid implementation, Ncore − 1 worker threads only integrate over a shared set of domains,
while one thread additionally handles communication and integration. Data I/O is limited to initially loading the blocks
assigned to each MPI task and is not shown.

to integrate. After each streamline is integrated as far
as possible on the available data blocks, the next block
is determined and the streamline is sent to the cor-
responding task; then, further streamlines are received
from other tasks and stored for integration. Streamline
communication is limited to a small amount of inte-
gration state. Streamline geometry generated during the
integration remains with the task that generated it.

In the MPI-hybrid implementation, streamlines are
maintained in two queues, with the MPI task again
split between a supervisor thread responsible for com-
munication and (initial) I/O, and a team of worker
threads. Newly received streamlines are again kept in
the active queue; workers fetch from it, integrate, and put
streamlines in the inactive queue if they exit data blocks
loaded by this task. From there, they are sent off to
other tasks by the supervisor, or retired to a separate list
when complete. All MPI tasks’ supervisor threads also
maintain a global count of active and complete stream-
lines to determine when to terminate. Synchronization
between threads is performed as in the parallelize-over-
seeds case.

Technically, it proves difficult to have the supervisor
thread wait on both incoming streamlines and those
returning to the active queue simultaneously. We initially
used a polling approach with a fixed sleep interval;
however, finding an optimal interval proved to be dif-
ficult and dependent on the problem characteristics. If
the timeout was chosen too large, streamlines would
remain in the inactive queue for too long. On the other
hand, a small timeout resulted in many cycles used
up by the polling, visibly decreasing the amount of
computation performed by the workers. We thus settled
on the approach of reducing the worker team to Ncore−1
threads, and let the supervisor thread participate in the
integration, with communication performed in between
streamline integrations. The communication interval is
thus coupled to the average duration of integration, and
balancing is automatic. Note that for Ncore = 1, this
exactly corresponds to the MPI-only case (as opposed to

the parallelize-over-seeds approach that still maintains
two threads in this case).

The parallelize-over-blocks algorithm presupposes
that the combined memory over all tasks can accommo-
date the entire data set. Aside from this, the algorithm
behavior is not dependent on any further parameters.

We expect the parallel efficiency of the parallelize-
over-seeds algorithm to be improved in the MPI-hybrid
case. In the case where a majority of the streamlines
traverse the same block at the same time, the MPI tasks
that own those blocks become bottlenecks. With the MPI-
hybrid approach, multiple cores can access that block
and advance the streamlines, where only one core can do
so with the MPI-only implementation. Further, we expect
the overall amount of communication of streamlines in
the MPI-hybrid implementation to be reduced from the
MPI-only case. This depends on how often a streamline
needs to change tasks to continue integration and is thus
a function of the vector field complexity and the chosen
distribution scheme for the data blocks. The increased
amount of memory available to each task in the hybrid
setting allows more blocks to reside in a given task, thus
decreasing the probability that a streamline needs to be
communicated over the non-hybrid approach. However,
if an unfortunate block distribution is chosen, the actual
amount of communication might not be lowered. Exam-
ining the distribution of blocks with respect to the vector
field structure is a complex task (see e.g., [12]) and
beyond the scope of this paper; since we are primarily
aiming at quantifying the benefits of a hybrid approach
for integration in this work, we choose a simple, fixed
data distribution scheme that assigns blocks to tasks
in numerical order. Our results (see Section 5) indicate
that over three data sets with very different structural
characteristics and four distinct test cases per data set,
communication is substantially reduced in the MPI-
hybrid integration scheme.
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4 EXPERIMENTS

In the following we describe the test cases used to quan-
tify performance in our experiments. First, we briefly
discuss a number of factors that determine the charac-
teristics of a streamline integration problem and provide
the basis for our selection of tests.

4.1 Problem Complexity

As pointed out above, a number of strongly varying
problems and configuration specific factors are inherent
in streamline integration and need to be taken into
account when evaluating performance and efficiency of
a parallel streamline algorithm. Generally, streamline
based problems can be classified according to four crite-
ria:

Data Set Size: The size of the data set describing the
vector field under consideration is crucial in choosing a
parallelization strategy. If the considered field is small in
the sense that it fits into main memory in its entirety,
then optimally performing integral curve computation
profits most from distributed computation and to a lesser
amount from distributed data. However, for data so large
that it cannot be loaded in its entirety, more complex
schemes are required. Here, adaptive distribution of data
over available parallel resources and optimal scheduling
and dispatch of integral curve computation are necessary
traits of a well performing parallelization approach.
Large data is commonly compressed to save space and
I/O load time, but this saving is at the expense of CPU
decompression time which adds to the complete I/O
time.

Seed Set Size: If the problem at hand requires
only the computation of a thousand streamlines, parallel
computation takes a secondary place to optimal data
distribution and loading; we refer to the corresponding
seed set as small, and they are most often encountered
in interactive exploration scenarios where few integral
curves are interactively seeded by a user. A large seed
set encompasses many thousands of seed points for
integral curves. For such problems to remain computa-
tionally feasible, it is paramount that the considered data
distribution scheme allows for parallel computation of
integral curves.

Seed Set Distribution: Similar to the seed set size,
the distribution of seed points is an important problem
characteristic. In the case where seed points are located
densely within the spatial and temporal domain of def-
inition of a vector field, it is likely that it will traverse
a relatively small amount of the overall data. For some
applications such as streamline statistics, on the other
hand, a sparse seed point set covers the entire vector
field evenly. This results in integral curves traversing
the entire data set. Hence, the seed set distribution
determines strongly if performance stands to gain most
from parallel computation, data distribution, or both.

Vector Field Complexity: Depending on the choice
of seed points, the structure of a vector field can have
a strong influence on which parts of the data need to
be taken into account in the integral curve computation
process. Critical points or invariant manifolds of strongly
attracting nature draw streamlines towards them, and
the resulting integral curves seeded in or traversing their
vicinity remain closely localized. On the other hand, the
opposite case of a nearly uniform vector field requires
integral curves to pass through large parts of the data.

Overall, these factors determine to what extent a
given integration-based problem can profit from parallel
computation and data distribution. We next describe a
number of prototypical test cases derived from practical
visualization problems that exhibit varying characteris-
tics and upon which we base our performance studies.

4.2 Test Cases

To cover a wide range of potential problem character-
istics, four tests addressing all combinations of seed set
size (small or large) and distribution (sparse or dense)
are defined for each of three data sets (see Figure 4).
Although our techniques are readily applicable to any
mesh type and decomposition scheme, the data sets
we study here are multi-block and rectilinear. We have
intentionally chosen this simplest type of data represen-
tation to exclude additional performance complexities
that arise with more complex mesh types from this study.

Astrophysics: This data set results from the sim-
ulation of the magnetic field surrounding a solar core
collapse resulting in a supernova. The search for the
explosion mechanism of core-collapse supernovae and
the computation of the nucleosynthesis in these spec-
tacular stellar explosions is one of the most important
and most challenging problems in computational nuclear
astrophysics. Understanding the magnetic field around
the core is very important and streamlines are a key
technique for doing so. The simulation was computed by
a GENASIS simulation [22], a multi-physics code being
developed for the simulation of astrophysical systems
involving nuclear matter [23]. GENASIS computes the
magnetic field at each cell face. For the purposes of this
study, a cell-centered vector is created by differencing
the values at faces in the X, Y and Z directions. Node-
centered vectors are generated by averaging adjacent
cells to each node. To see how this algorithm would
perform on very large data sets, the magnetic field was
upsampled onto a total 512 blocks with 1 million cells
per block. The dense seed set corresponds to streamlines
placed randomly in a small box around the collapsing
core, whereas the sparse test places streamline seed
points randomly throughout the entire data set domain.
The small and large seeds sets contained 2,500 and 10,000
seed points respectively, with integration times of 4,000
and 1,000 time units.

Fusion: The second data set is from a simulation of
magnetically confined fusion in a tokamak device. The
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Fig. 4. The data dependent nature of streamlines creates a large opportunity for biased results when studied in the
context of a single data set. To safeguard against such a bias, we used three data sets with widely varying vector
field behavior in our study. The data sets were from Astrophysics, Fusion, and Thermal Hydraulics Simulations (left to
right).

development of magnetic confinement fusion, which will
be a future source for low cost power, is an important
area of research. Physicists are particularly interested in
using magnetic fields to confine the burning plasma in a
toroidal shape device, known as a tokamak. To achieve
stable plasma equilibrium, the field lines of these mag-
netic fields need to travel around the torus in a helical
fashion. Using streamlines the scientist can visualize the
magnetic fields. The simulation was performed using the
NIMROD code [24]. This data set has the unusual prop-
erty that most streamlines are approximately closed and
traverse the torus-shaped vector field domain repeatedly
which stresses the data cache. For the tests conducted
here, we resampled onto 512 blocks with 1 million cells
per block. Dense seeding is performed randomly on a
small box inside the torus, while sparse seeding again
randomly distributes seeds over the entire domain. Here,
2,500 seed points with an integration time of 20 were
used for the small seed, and the large seed sets contain
10,000 seeds with an integration time of 5.

Thermal Hydraulics: The third data set results
from a thermal hydraulics simulation. Here, twin inlets
pump water into a box, with a temperature difference
between the water inserted by each inlet; eventually
the water exits through an outlet. The mixing behavior
and the temperature of the water at the outlet are of
interest. Non-optimal mixing can be caused by long-
lived recirculation zones that effectively isolate certain
regions of the domain from heat exchange. The simu-
lation was performed using the NEK5000 code [25] on
an unstructured grid comprised of twenty-three million
hexahedral elements. Again, resampling was performed
to a regular mesh of 512 blocks with 1 million cells each.
Streamlines are seeded according to two application
scenarios. First, sparse seeds are distributed uniformly
through the volume to show areas of high velocity,
areas of stagnation, and areas of recirculation. Second,
we place seeds densely around one of the inlets to
examine the behavior of particles entering through it.
The resulting streamlines illustrate the turbulence in the
immediate vicinity of the inlet. Small seed sets contained

1500 seed points with an integration time of 12 units, and
the large case consists of 6000 seed points propagated for
3 time units.

4.3 Runtime Environment
All measurements discussed in the following were ob-
tained on the NERSC Cray XT4 system Franklin. The
38,288 processor cores available for scientific applications
are provided by 9572 nodes equipped with one quad-
core AMD Opteron processor and 8GB of memory (2GB
per core). Compute nodes are connected through Hyper-
Transport for high performance, low-latency communi-
cation for MPI and SHMEM jobs. I/O is handled through
the parallel Lustre file system that provides access to
approximately 436 TB of user disk space.

The two hybrid algorithms discussed above were im-
plemented into the VISIT [26], [27] visualization sys-
tem, which is available on Franklin and routinely used
by application scientists. Non-hybrid variants of both
parallelize-over-blocks and parallelize-over-seeds are al-
ready implemented in recent VisIt releases and were
instrumented to provide the measurements discussed be-
low. Benchmarks were performed during full production
use of the system to capture a real-world scenario. No
special measures were taken to exclude operating system
I/O caching. The default queuing system (QSUB) was
used to distribute the nodes and cores as required; how-
ever, while this system can bind individual tasks to cores,
we manually bind threads to individual cores to avoid
bouncing, resulting in a notable performance increase.
Here, bouncing refers to the phenomenon where a single
thread is scheduled on multiple cores, resulting in cache
thrashing

Each benchmark run was performed using 128 cores
(32 nodes). For the non-hybrid algorithm tests, 128 MPI
tasks (one per core) are spawned. The hybrid tests were
conducted such that the total number of worker threads
over all nodes is 128. For example, 32 MPI tasks (one
per node) are run, with each spawning four worker
threads. Note that the additional I/O or communication
thread running per MPI task in the hybrid approach is
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Fig. 5. A comparison of performance for hybrid and non-
hybrid variants of the parallelize-over-seeds algorithm, in
terms of the metrics from Section 4.4: the hybrid version
is faster in all cases because fewer blocks are loaded, al-
lowing for an increased integration ratio. See Section 5.1
for a detailed discussion.

not counted in this scheme; here, we are purely focused
on employing a constant number of worker threads
performing actual integration work to determine the
impact of hybrid parallelism. All tests were run for the
non-hybrid case as well as for the hybrid implementation
with four worker threads per MPI task.

4.4 Measurements
To obtain insight into the relative benefits of the hybrid
parallel approach to streamline integration, we have
obtained a number of timings and other statistics be-
yond the pure execution time Ttotal of the corresponding
combination of algorithm and test case.

Every thread in the entire system, including workers,
communication and I/O threads, keeps track of the time
spent executing various functions using an event log
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Fig. 6. Performance of hybrid versus non-hybrid variants
of the parallelize-over-blocks algorithm as measured ac-
cording to Section 4.4: the hybrid version has strongly de-
creased runtime for the same test because reduced com-
munication enables a higher integration ratio is higher.
See Section 5.2 for a detailed discussion.

consisting of pairs of timestamp and event identifier.
Events include, for instance, start and end of integration
for a particular streamline for worker threads, begin and
end of an I/O operation for corresponding threads, and
time spent performing communication using MPI calls.
Timestamps are taken as wall time elapsed since the
start of the MPI task. These event logs are carefully
implemented to have negligible impact on the overall
runtime behavior, and analyzed later to provide the
summary statistics discussed in the following and rep-
resented in Tables 1 and 2. Furthermore, they allow
to illustrate the distribution of work across tasks and
threads using Gantt charts (see Figures 7 and 8) to obtain
a differentiated picture of the runtime distribution of
work, communication and I/O.

The pure integration time Tint represents the actual
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TABLE 1
Results for the Parallelize-over-Seeds Algorithm

Test Ttotal Nload Npurged TI/O Tint Rint

case MPI-only MPI-hybrid MPI-only MPI-hybrid MPI-only MPI-hybrid MPI-only MPI-hybrid MPI-only MPI-hybrid MPI-only MPI-hybrid

A (LD) 12.5 s 12.5 s 5,568 2,185 1,832 0 2,504 s 1,007 s 81.9 s 98.3 s 1.55 % 6.16 %
A (LS) 41.2 s 19.3 s 8,405 3,525 4,573 175 3,670 s 1,565 s 92.2 s 103.1 s 1.16 % 4.18 %
A (SD) 62.1 s 14.6 s 6,699 2,914 2,995 2 3,142 s 1,272 s 38.2 s 43.1 s 0.71 % 2.31 %
A (SS) 63.4 s 19.7 s 9,787 4,151 5,986 493 4,159 s 1,783 s 49.2 s 54.8 s 0.61 % 2.17 %
T (LD) 27.3 s 9.3 s 6,544 2,194 2,710 0 2,276 s 805 s 55.9 s 62.3 s 1.60 % 5.20 %
T (LS) 43.5 s 12.3 s 4,535 2,755 1,130 2 1,816 s 1,085 s 21.6 s 24.0 s 0.39 % 1.53 %
T (SD) 53.6 s 22.0 s 12,715 5,153 8,875 1,313 4,834 s 1,966 s 23.4 s 27.0 s 0.34 % 0.96 %
T (SS) 59.9 s 24.8 s 9,776 5,449 5,969 1,610 3,836 s 2,111 s 17.7 s 19.8 s 0.23 % 0.62 %
F (LD) 43.2 s 13.0 s 6,621 1,461 2,781 0 2,848 s 691 s 196.7 s 214.1 s 3.55 % 12.85 %
F (LS) 360.3 s 36.1 s 44,864 9,173 41,024 5,333 17,238 s 3,534 s 140.5 s 158.4 s 0.30 % 3.42 %
F (SD) 381.6 s 39.9 s 74,487 5,345 70,647 1,726 29,917 s 3,534 s 196.9 s 235.6 s 0.40 % 4.62 %
F (SS) 717.1 s 125.1 s 117,672 30,524 113,842 26,684 44,912 s 11,166 s 129.4 s 146.6 s 0.14 % 0.91 %

For each test case X(YZ), X indicates dataset (Astrophysics, Thermal hydraulics, Fusion),
Y describes seed set size (Small or Large), and Z denotes seed distribution (Sparse or Dense).

See Section 4.4 for a description of each test.

computational workload and is the sum of all times
taken by the worker threads to integrate streamlines.
This time should be almost independent across all runs
for a specific test case, since the integration workload
in terms of the number of integration steps taken over
all streamlines is identical in each case. Similarly, TI/O

and Tcomm accumulate the time spent doing I/O and
communication, respectively. To obtain better insight
into the role of the block cache in our benchmarks,
we furthermore sum the numbers of blocks loaded
and purged from the cache in Nload and Npurged. The
amount of MPI communication between tasks in bytes
is measured by Ncomm. Finally, as a derived measure of
efficiency, we examine the integration ratio Rint as the
fraction of the total algorithm runtime that was used to
integrate streamlines.

In total, 12 tests of the form X(YZ) were run per al-
gorithm in hybrid and non-hybrid variants (see Tables 1
and 2), where X indicates the dataset (Astro, Thermal
Hydraulics, Fusion), Y denotes the seed set size (Large
or Small), and Z the seed set density (Sparse or Dense).

5 RESULTS AND ANALYSIS

We found that both parallelize-over-seeds and
parallelize-over-blocks had improved performance
in a hybrid setting. However, we found that the causes
of their improved performance differed. We discuss the
technique’s results in the following subsections.

5.1 Parallelization-over-Seeds
A hybrid parallelize-over-seeds algorithm has three funda-
mental advantages:

1) Both the MPI-hybrid and MPI-only algorithms
keep a cache to store domains for later re-use, spar-
ing additional I/O. For the hybrid case, the cache is
shared and hence can be larger by the proportion of
the threading factor. For our experiments, the cache

was four times larger. The cache size could have
been larger, but we wanted the scale factor to be
the same between the MPI-only and MPI-Hybrid.

We can observe the effect of this factor by looking
at the number of blocks purged due to a full cache.
In Table 1, column Npurged, the number of purges
in the MPI-hybrid case is significantly less than in
the MPI-only case, which results in reduced I/O
calls to reload data blocks.

2) For the MPI-only algorithm, when multiple MPI
tasks on the same node need to access the same
block, they must read the block redundantly from
the disk. For the hybrid case, only a single read
is required and the block is shared between all
threads. This use case occurs frequently when the
seed points are densely located in a small region.

We can observe the effect of this factor by looking
at the number of blocks loaded (see Table 1 column
Nload), and the time it takes to load these blocks
(see Table 1 column TI/O). Looking at the A(LD)
test in Table 1 column Nload, we can see that the
MPI-only had to load over double the number of
blocks of data compared to the MPI-hybrid. On
average the MPI-hybrid loads 64% less data, with
the low of 39% to the max of 93% less data loads.
The graph of the number of blocks loaded is shown
in Figure 5. Note that this measure conflates with
the purge metric. However, since the number of
purges is small for some use cases, we can safely
conclude that the remainder of the benefit, which
is significant, is from this factor.

3) The time to calculate each streamline varies from
streamline to streamline, because of the data de-
pendent nature of the advection step. We refer to
the streamlines that take longer to execute as “slow
streamlines.” Since streamlines are permanently
assigned to MPI tasks, the MPI tasks that get slow
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TABLE 2
Results for the Parallelize-over-Blocks Algorithm

Test Ttotal Ncomm Tcomm Tint Rint

case MPI-only MPI-hybrid MPI-only MPI-hybrid MPI-only MPI-hybrid MPI-only MPI-hybrid MPI-only MPI-hybrid

A (LD) 21.2 s 10.95 s 26.69 MB 11.96 MB 2,006 s 279 s 82.6 s 82.7 s 3.04 % 5.90 %
A (LS) 13.8 s 5.76 s 29.63 MB 11.08 MB 894 s 143 s 93.3 s 93.0 s 5.27 % 12.62 %
A (SD) 8.7 s 3.50 s 9.76 MB 4.82 MB 690 s 91 s 38.2 s 38.3 s 3.41 % 8.54 %
A (SS) 6.9 s 3.39 s 11.75 MB 5.18 MB 493 s 87 s 49.3 s 49.3 s 5.52 % 11.35 %
T (LD) 25.3 s 4.71 s 22.68 MB 12.3 MB 990 s 120 s 56.4 s 56.5 s 1.74 % 21.69 %
T (LS) 3.3 s 0.79 s 11.26 MB 3.75 MB 104 s 20 s 22.2 s 21.9 s 5.17 % 15.94 %
T (SD) 5.6 s 1.14 s 7.37 MB 4.3 MB 230 s 29 s 23.2 s 23.3 s 3.24 % 23.48 %
T (SS) 3.2 s 0.59 s 5.62 MB 2.86 MB 71 s 14 s 17.8 s 17.6 s 4.35 % 0.62 %
F (LD) 36.4 s 33.20 s 52.51 MB 26.92 MB 3,789 s 980 s 199.1 s 197.4 s 4.27 % 4.65 %
F (LS) 6.0 s 3.57 s 44.77 MB 20.11 MB 326 s 80 s 141.8 s 140.2 s 18.27 % 30.72 %
F (SD) 22.8 s 11.10 s 46.08 MB 23.63 MB 2,197 s 272 s 190.0 s 189.0 s 6.49 % 13.31 %
F (SS) 5.1 s 3.13 s 31.53 MB 15.77 MB 268 s 72 s 121.9 s 121.1 s 18.61 % 30.27 %

For each test case X(YZ), X indicates dataset (Astrophysics, Thermal hydraulics, Fusion),
Y describes seed set size (Small or Large), and Z denotes seed distribution (Sparse or Dense).

See Section 4.4 for a description of each test.

streamlines will take longer to execute. Towards
the end of the calculation, the MPI tasks with slow
streamlines will still be executing while the MPI
tasks with “fast streamlines” will be done, meaning
there is poor parallel efficiency. In Figure 7, we
can see that the MPI-hybrid implementation has
less volatility between tasks. With the hybrid im-
plementation, a larger number of streamlines are
shared between the worker threads, which creates
a more even distribution of slow streamlines. For
example, if an MPI task in the MPI-only case
received many slow streamlines there is only one
thread to handle them, but in the hybrid case, there
will be more worker threads to advance these slow
streamlines. We were surprised by the significance
of this advantage.

We can measure this factor by dividing the time to
execute for the average MPI task execution time
by the slowest time to execute, which is a way
to measure parallel efficiency. These values can be
seen in Table 1 column Rint and in Figure 5.

One unexpected outcome was with I/O performance.
Our original design had only a single I/O thread, assum-
ing that I/O performance would be bandwidth-bound,
not latency-bound. However, the blocks were relatively
small (approximately four megabytes each) and so band-
width was not an issue. However, we found that each
read took approximately half a second, regardless of
the number of requests per node. With the MPI-only
implementation, there were up to four block reads at any
time, meaning that four blocks could be read in a half
second. With the original hybrid implementation, we
were limited to one block read, meaning that only one
block could be read in a half second. As a result, the MPI-
only representation outperformed our original hybrid
implementation in many of our tests. After making the
switch to four I/O threads, the hybrid implementation

was the clear winner in all tests. We believe that ad-
ditional performance could be gained by adding more
I/O threads. However, we did not pursue this approach
because the MPI-only implementation could also use
additional asynchronous I/O requests and we wanted
to ensure the fairness of our comparisons. Of course,
this phenomenon will decrease as the I/O performance
approaches the bandwidth limit of the system.

5.2 Parallelization-over-Blocks

A hybrid parallelize-over-blocks algorithm has two fun-
damental advantages:

1) The hybrid parallelize-over-blocks algorithm’s fun-
damental advantage is that it can improve parallel
efficiency. Because data is partitioned over the MPI
tasks, the only MPI task that can advance a given
streamline is the MPI task that own the block the
streamline resides in. When many streamlines tra-
verse the same block, the corresponding MPI task
becomes a bottleneck. With the hybrid algorithm,
more cores can be used to relieve the bottleneck.
Figure 8 illustrates this point. The MPI-only imple-
mentation has only two MPI tasks working on the
longest streamlines, which translates to two cores.
The hybrid implementation also has two MPI tasks
working on these streamlines, but that equates
to eight cores. The additional workers allow the
hybrid case to finish more quickly. We can quantify
this factor by measuring the percentage of time
each core spends doing integration. The integration
ratio Rint is very low for both implementations, but
it is higher for the hybrid implementation.

2) The communication cost of moving streamlines
between MPI processes is much lower in most of
the MPI-hybrid cases of the parallelize-over-blocks
method, which can be seen in the communication
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Fig. 7. A parallelize-over-seeds algorithm Gantt chart of the integration and I/O activity for the F(LD) test (cf. Section 4
and Table 1) comparing MPI-hybrid and MPI-only implementations. Each line represents one thread (left column) or
task (right column). The hybrid approach outperforms the non-hybrid implementation by about 10×, since the 4 I/O
threads in the hybrid model can feed new blocks to the 4 integration threads at an optimal rate, and each node uses
I/O and computation maximally; however, work distribution between nodes is not optimally balanced. In the non-hybrid
implementation, I/O wait time dominates computation by a large margin, due to redundant block reads, and work is
distributed less evenly. This can be easily seen in the enlarge section of the Gantt chart. See Section 5.1 for more
details.

time and data transmitted between tasks (see Fig-
ure 6 and Table 2). The MPI-hybrid parallelize-
over-blocks method has four times less number
of MPI tasks than the MPI parallelize-over-blocks
method and because each process holds four times
more data it is less likely to have to send the
streamline to another process which reduces the
communication over head.

As with parallelize-over-seeds, we did not expect the
I/O performance difference, which is reflected in the
different length of the blue I/O time in Figure 8. Since
the loading of the data only occurred once at the start of
the program it would not affect the integration time and
was left to future work to achieve the same behavior as
the MPI-only version.

6 CONCLUSION
In this paper, we examined the benefits of a hybrid
parallel programming approach to distributed stream-
line integration. We investigated two parallel streamline

algorithms, and measured the performance of a straight-
forward distributed implementation that assigns an MPI
task to each core, making each core an isolated resource,
against a hybrid parallelism approach that leverages the
potential for local shared-memory on multi-core nodes.
To fully explore the performance characteristics and
differences of these parallelization approaches, we ex-
amined a wide variety of real-world scenarios in which
streamlines must be computed.

Our findings indicate that the work shared between
cores in the MPI-hybrid parallel implementation results
in much improved performance and consumes less com-
munication and I/O bandwidth than a traditional MPI-
only implementation. We observed speedups ranging
from two to ten (even though our threading factor was
limited to four). Overall, we conclude that it is well
worth using hybrid-parallel implementation strategies in
the context of streamline-based algorithms.

In the future, we wish to examine specific applica-
tions of streamline-based visualization solutions in more
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Fig. 8. A parallelize-over-blocks algorithm Gantt chart of the integration, I/O, MPI Send, and MPI Recv activity for the
F(LS) test (cf. Section 4 and Table 2) comparing MPI-hybrid and MPI-only implementations. Each line represents one
thread (top) or task (bottom). The comparison reveals that the initial I/O phase using only one thread takes about 4×
longer. The successive integration is faster, since multiple threads can work on the same set of blocks, leading to less
communication. Towards the end, 8 threads are integrating in the hybrid approach, as opposed to only two tasks in
the MPI-only model. See Section 5.2 for more details.

detail, such as integral surfaces [2] and Lagrangian
methods [1]. Furthermore, we are interested in observing
scalability properties of corresponding hybrid parallel al-
gorithms, as well as research adaptive parallel streamline
algorithms [4].
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