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Research Challenges for Visualization Software

Hank Childs, Berk Geveci, Jeremy Meredith, Kenneth Moreland, Christopher Sewell, E. Wes Bethel, Torsten Kuhlen, and Will Schroeder

Abstract

Over the last twenty-five years, visualization software has evolved into robust frameworks that can be used for
research projects, rapid prototype development, or as the basis of richly featured, end-user tools. In this arti-
cle, we take stock of current capabilities and describe upcoming challenges facing visualization software in six
categories: massive parallelization, emerging processor architectures, application architecture and data manage-
ment, data models, rendering, and interaction. Further, for each of these categories, we describe evolutionary
advances sufficient to meet the visualization software challenge, and posit areas in which revolutionary advances

are required.

1 Introduction

Visualization is an enabling technology; its purpose is to
create insight from data and it performs this task across many
domains. It is an essential tool for exploring, confirming,
and communicating trends in data, and its utility goes well
beyond just that of “pretty pictures." The dominant mech-
anism for delivering visualization technology to end users
is software — applications and libraries. Usage of visual-
ization software is ubiquitous, with examples ranging from
common information graphics to temperature maps on the
nightly news weather report to intricate representations of
complex physics. This software is effective because it allows
the expertise of small developments teams to be deployed
efficiently to large user groups. Further, although these user
groups know how to interpret results, the typical consumer
does not know how to create visualizations on their own;
visualization software encapsulates the details of the tech-
niques and hides complexity for these consumers by provid-
ing a set of canned visualization algorithms.

Visualization is evolving due to several major trends in
computing. Big Data [Norl1] is increasingly driving soft-
ware architectures. Such data not only brings voluminous
content, but an accelerating diversity of data forms as well.
For example, the term visualization refers to more than
the spatiotemporal data forms associated with scientific vi-
sualization. With the advent of information visualization
and analytics, visualization systems must also contend with
unstructured data forms such as text, graphs, trees, tables
and other metadata. Of course, Big Data also can refer to
very high-resolution data sets and we consider both types
throughout this article. In addition to Big Data, another im-
portant trend is the exploding diversity in parallel computing

systems, rendering solutions, interaction devices, and deliv-
ery platforms such as tablets. This stresses the ability of soft-
ware to represent, process and interact with data in efficient
ways. And finally, the assumption that data can be readily
transferred to and from storage is breaking down; power re-
quirements and bandwidth limitations mean that visualiza-
tion must move closer to the data to extract the most mean-
ingful information efficiently.

This article surveys the research challenges facing visual-
ization software today. While we primarily focus on the chal-
lenges for scientific visualization, we also touch on related
challenges for information visualization in some places. The
article is organized into discussions of general visualization
topics: massive parallelization (§2), processor architecture
(§3), application architecture and data management (§4),
data models (§5), rendering (§6), and interactions (§7). Al-
though some of the conversation borders on challenges in
the topics themselves, we always shift the focus onto the
software research challenges: how to modularize to isolate
complexity, system design and delivery mechanisms, deal-
ing with emerging computing and programming models,
providing the right abstractions to facilitate algorithm de-
velopment, and how to “future proof." Further, we conclude
our discussion of each topic with an assessment of which
challenges can be met with evolutionary changes and which
require revolutionary ones.

Sidebar: Visualization Software: 1988-2013

Over the last twenty-five years, design patterns have
emerged and standardized across a variety of visualization
software packages. These design patterns have both simpli-
fied the development of visualization software and enabled
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their user interfaces to efficiently present myriad features to
users in a streamlined fashion. The most important example
is that of breaking up visualization operations into modules
and connecting these modules, in an arbitrary and often dy-
namic fashion, to create pipelines.

Visualization libraries form the basis of most visualiza-
tion applications. Popular examples of these libraries are
the Visualization ToolKit (VTK) [SML96], Advanced Vi-
sual Systems (AVS) [UJK*89], and Open Data Explorer
(OpenDX) [AT95]. At their heart, visualization libraries
typically provide three things: an execution model, a data
model, and a collection of modules that input, process,
and/or output data. Their design is deceptively elegant;
they define natural interfaces that encapsulate functional-
ity (meaning that software is centralized, isolated, and im-
plemented only once). For example, the data model, which
comprises the core memory structures capturing the nature
of the data, is independent from both execution model and
modules. The program execution strategy, which includes
issues such as dependencies, caching, and load balancing,
is totally separate from the modules that process data. The
modules that process data — whether they are file format
readers, filters that contain algorithms that transform data,
or rendering modules — do not require any knowledge of the
context in which they are executing. They simply know that
they produce an output and what their inputs are. By defin-
ing boundaries between data model, modules, and execution,
the job of implementing each of them is significantly less
cumbersome. This division is particularly important because
there are often hundreds to thousands of modules compared
to a handful of execution strategies (or even just a single one)
and one data model.

There are additional advantages to this design. First, it
is highly extensible. New modules can be developed with-
out modifying the core infrastructure. For example, readers
that process a new file format can be added seamlessly to
the library, because these readers produce output using the
same data model that the filters consume. Second, the de-
sign allows for dynamic composition of modules. Stringing
together multiple visualization operations is often useful —
e.g., read data, then slice it, then trace particles along the
slice, then remove the particle paths that do not travel far,
then render the resulting long paths. As a result, visualiza-
tion libraries tend to have modules that perform small, in-
divisible tasks that users can build up to produce the exact
visualization they want.

Visualization applications often utilize visualization li-
braries; further, they provide an interface that allows users to
combine modules and set their attributes to produce the de-
sired results. A significant benefit of this approach is that ap-
plication development costs are substantially reduced. In the
simplest form, visualization applications merely contain user
interface code and control code to set up and connect mod-
ules from the visualization library. Further, since the visual-

ization libraries have many modules, applications that “buy
in" to a library’s infrastructure can pick up new modules
at minimal costs, providing functionality developers could
have deemed too expensive to implement otherwise. Another
benefit of reduced development costs is that prototype appli-
cations can be easily constructed, often in less than a day or
even through automated application builders.

Visualization applications have thousands of options; or-
ganizing them is a task no less daunting than that of

the interface design for applications like PowerPointTM or
Photoshop®. Visualization applications often mirror the ab-
stractions presented by visualization libraries as a way to or-
ganize these options, meaning they present users with a list
of modules, attributes for a module, and module composi-
tion controls. The resulting interface gives the user a high
level of control over how to carry out a visualization, and,
surprisingly, is often deemed intuitive. VisIt [CBW*11] and
ParaView [AGLOS] (applications developed by the authors
of this article) are popular examples that fit this model.

2 Massive Parallelization

Parallelization can occur both within a compute node and
across compute nodes'. The parallelization techniques for
these environments are distinct and we divide their treat-
ment into two sections. This section focuses on the paral-
lelism across multiple compute nodes, while §3 focuses on
parallelism within a single compute node.

Due to increasing data sizes and the emergence of the Big
Data problem, the need for massive parallelization is a driv-
ing visualization research challenge. Supercomputing sim-
ulations regularly generate massive data sets with billions
of data points per time step. Parallelization is an effective
way of dealing with such data: there is more memory for
storing data, there is more compute power for executing al-
gorithms, and there is often more I/O bandwidth for read-
ing data. The basic challenge for parallel visualization algo-
rithms is to decompose the problem into independent tasks
that can be run concurrently on all of the processing ele-
ments (i.e., the instances of the program), thus avoiding idle
time. Data parallelism is the dominant technique; data sets
are decomposed into pieces and the pieces are partitioned
over the processing elements. This approach has been shown
to be highly scalable with results for hundreds of thousands
of processing elements in research prototypes [HBC12] and
tens of thousands of processing elements in production soft-
ware [CPA™10].

The role of visualization software, with respect to paral-
lelization, is to provide a framework that shields algorithm
developers from complexity. Most commonly, this frame-
work extends the same abstractions found in the traditional

T This article defines a compute node as group of cores that can
share memory.



data flow design. Much in the same manner that data flow
design hides execution details from algorithms in a serial
setting, parallel visualization software can hide an even more
complex story in a parallel setting, i.e., managing the decom-
position, distribution, and collection of pieces, ensuring that
artifacts don’t occur along piece boundaries, etc. In short, a
single investment in the framework can spare redundant im-
plementations in a multitude of filters.

Upcoming Challenges:

As High Performance Computing (HPC) progresses to-
wards the exascale (1018 floating point operations per sec-
ond), today’s parallelization approaches will face many chal-
lenges.

First, though the number of cores on a single supercom-
puter will likely exceed one billion, the growth in paral-
lelism from today will mostly occur within a compute node.
For example, visualization software may require as few as
one million tasks at scale—one per compute node — and
instead achieve parallelism within a node using techniques
discussed in §3. Visualization software has already been run
successfully with hundreds of thousands of processing el-
ements, so exasale computers should lead to only an addi-
tional order of magnitude. Algorithms that parallelize well
should require only modest improvements, while algorithms
that are hard to parallelize today will get that much harder.
The biggest challenge, however, will become how to man-
age the hybrid parallelism that blends between distributed-
and shared-memory techniques. Visualization software will
again need to provide infrastructure that both shields algo-
rithm developers from complexities and also provides them
the richness to process data in the most efficient way. Is-
sues that must be addressed at the infrastructure level in-
clude work scheduling, fault tolerance, and efficient support
for heterogeneous resources.

Second, the energy requirements of these machines will
be a fundamental concern, and this will limit data movement.
As a result, the traditional model of a visualization program
acting as a post-processor (i.e., reading simulation results
from disk after the simulation has finished) will be jeopar-
dized, as the cost to regularly store snapshots of the simu-
lation to disk will be prohibitive. Instead, visualization soft-
ware will need to be transformed to operate in an in situ man-
ner, where it either performs visualization directly or where
it reorganizes and reduces data so that significantly smaller
data sets can be stored for later processing. Of course, in
situ processing also can have benefits, by enabling access to
more data, by providing immediate feedback, and creating
the possibility for steering capabilities. The software issues
for in situ processing are discussed further in §4.

Third, data sizes will increase from billions of data points
per time slice to trillions of data points per time slice. Paral-
lelization should provide the necessary compute power to
carry out algorithms on this massive data. However, sec-
ondary challenges emerge centering around data integrity

and data understanding as data gets reduced to millions
of pixels. Whatever new techniques to address these chal-
lenges, visualization software will need to provide infras-
tructure that supports it.

Finally, scientific visualization does not have a monopoly
on Big Data. Information visualization data sets have the po-
tential to increase at an even faster rate and will share many
of the same challenges: how software can manage massive
concurrency, how and where to process data, and how to rep-
resent data in a way that maintains integrity.

Evolutionary / Revolutionary: 75% / 25%

Although higher levels of parallelization will produce
qualitatively new challenges, the fundamental elements of
parallel visualization software provide a solid foundation for
future extensions. The challenges for visualization software
that have the most revolutionary potential will be managing a
heterogeneous environment, delivering in situ solutions, and
supporting new approaches for non-embarrassingly parallel
algorithms.

3 Processor Architecture and Programming Model

Visualization software today most often is implemented in
standard languages such as C and C++ with no specialized
constructs for parallelism beyond the ability to pass mes-
sages between nodes (i.e. “MPI" programming). This is be-
cause, historically, improvements in CPU performance have
been obtained through gains in single-threaded performance
(i.e. a faster clock speed). The most common form of paral-
lelism in visualization has been the form described in §2, via
a distributed decomposition of the data. The processing after
the decomposition is, in essence, serial.

In recent years, the energy costs for gains in single-
threaded performance have become significant. As a re-
sult, CPU clock speeds have remained largely constant, but
more cores are being placed on a single node. Software has
been slow to keep pace and a common strategy is to cre-
ate a processing element for each core. Opportunities for
increased efficiency through reduced communication over-
head and better synchronization have recently led to serious
efforts employing true threading constructs for parallelism
within a node. In these cases, the programming models have
remained manageable; techniques like POSIX threads and
OpenMP style compiler pragmas can be used within the
same frameworks already familiar to visualization algorithm
developers.

Unfortunately, the architectural changes are not limited
to just modest increases in core counts. Some projections
of future architectures have per-node concurrency exceed-
ing a thousand-fold increase in this decade, leading to a dif-
ferent type of processor design with multiple consequences.
Graphics processing units (GPUs), already successful for a
variety of computational tasks and containing over one thou-
sand lightweight cores, provide the best approximation of
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these future architectures. Visualization software will face
several challenges and require substantial investment.

Upcoming Challenges:

Visualization algorithms will be difficult to parallelize at
a fine-grain level on these architectures. They depend more
heavily on topology-based operations, such as information
about neighboring elements, than many other algorithms.
For example, at each cell a convolution filter requires in-
formation from all neighboring cells within the filter radius,
and an isosurface requires information from every vertex of
a cell, where vertices are shared with adjacent cells. Access-
ing such geometric connectivity information becomes even
more complex in the context of data with no regular struc-
ture, such as those data forms found in information visual-
ization such as graphs and trees.

Visualization algorithms often exhibit different access
patterns than simulations running on the same hardware.
This is because visualization algorithms typically exhibit a
greater dependence on memory movement for their perfor-
mance than computational horsepower. For example, an iso-
surface operator may only involve a few linear interpolations
per cell, and a convolution operator only a weighted aver-
age computation, compared to a typical physics simulation
that utilizes computation-intensive operations such as iter-
ative non-linear solvers. Achieving good performance with
memory accesses on highly parallel architectures is difficult,
requiring investigation of strided access patterns, memory
coalescing, bank conflicts, alignment and padding, and even
exploring the use of built-in vector types for memory access.

As the variety of multi-core and accelerator hardware de-
signs continues to increase, the visualization software devel-
oper is faced with the increasingly daunting challenge of re-
optimizing or even re-writing his or her algorithms for dif-
ferent architectures, or even preparing for unknown future
hardware. The variety of low-level programming models is
also increasing, including options such as CUDA, OpenCL,
and OpenACC. And while some are cross-platform stan-
dards, allowing the same code to compile and run on plat-
forms as divergent as CPUs and GPUs, they do not ensure
good performance on different platforms without platform-
specific tuning and optimizations, as they do not attempt to
solve the underlying issue that different algorithms, memory
access patterns, etc. perform better on different architectures.
This challenge is not unique to visualization software, but
a variety of techniques are well suited to mitigating these
issues in visualization frameworks. One such technique is
the development of cache-oblivious algorithms, which pre-
vent the algorithm from having to be tuned to the differing
characteristics of each architecture’s cache. Another tech-
nique is to design algorithms with very fine threading (e.g.,
millions of lightweight threads), which is far beyond what
current architectures require, but increases their portability
to different core counts and arrangements. Finally, we note
that programming expertise in fine-grained parallelism is not

common among veteran visualization software developers;
as universities ramp up on teaching these skills, our commu-
nity may struggle to find the personnel who can implement
the next generation of visualization software.

Evolutionary / Revolutionary: 10% / 90%

Although it is true that the current generation of produc-
tion visualization software is written in the wrong language
for future architectures, the larger problem is that their al-
gorithms must be re-thought to make use of fine-grained
parallelism and optimize for performance across diverse ar-
chitectures. The resulting frameworks must incorporate pro-
gramming models that provide levels of abstraction that cur-
rent frameworks lack. They must allow developers to encap-
sulate away idiosyncrasies of particular processor architec-
tures and achieve portable performance. Ideally, these frame-
works will go beyond array manipulations and provide sup-
port for a robust data model with a structural framework that
optimizes data access patterns, as well as common visual-
ization operations like field interpolations, adjacency rela-
tionships, topology generation, coincident point resolution,
and cell finding. There are multiple attempts underway at
building new frameworks that apply this approach to visual-
ization software and the authors of this article are involved
with several: DAX [MAGM11], EAVL [MAPS12], and PIS-
TON [LSA12].

4 Application Architecture and Data Management

Application architecture refers to the system design of
visualization software. Data management for visualization
must provide visualization techniques that integrate into the
data life cycle. Although these two topics are distinct, they
are treated together here, since emerging data management
needs will drive application architecture.

Traditionally, data management has not been a pressing
concern for visualization software. Data, whether observed
or simulated, was stored in the file system for processing;
visualization software simply read whatever data it needed
from files whenever it needed it. However, increases in data
size, observed and simulated, as well as diversity of data
sources, mandate new approaches in data management.

Application architectures exist to solve the simplest use
model: “have data, want a picture," where the application ar-
chitecture serves as a black box that consumes data and pro-
duces imagery with user-selected methods and parameters.
Twenty-five years ago, the architecture for most visualiza-
tion applications was a single binary that read from the local
file system and produced images using local graphics. A lit-
tle over a decade ago, scientific visualization applications for
large data shifted to a client-server design where data was
processed by a remote parallel server, producing geometry
that was rendered by a local client. Today, application archi-
tectures for visualization frequently involve web clients and



remote data access. In short, application architectures evolve
to meet evolving data management needs.

Upcoming Challenges:

The Big Data explosion happening worldwide directly af-
fects visualization software and this software must evolve to
fit within the data management ecosystem. The goal must be
flexible, lightweight packages that can be integrated in a va-
riety of delivery scenarios. For example, consider the exper-
imental data measured by sensors. In many areas, this data
is increasing dramatically both temporally and in fidelity. As
a result, the data often can not be stored and sometimes can
not even be transferred to compute-heavy resources, due to
network limitations. The common strategy for this scenario
is data triage; data is transformed and reduced as it comes
off the device. A similar problem is occurring with simulated
data for high-end supercomputers. As discussed in §2, in situ
processing will be necessary to deal with power constraints.
The best way to carry out this processing is unknown. It may
involve direct incorporation into the simulation code, send-
ing data to nearby resources where they are processed, or
some combination of the two. Whatever the form, visualiza-
tion software will need to be cognizant of the larger system
in which it operates, as consuming inordinate amounts of
memory or compute time can impact the simulation’s perfor-
mance. Consider an example: simulation data follows a fixed
layout, i.e., their arrays are column-major or row-major, the
components of their vector data are interleaved or not, etc.
Visualization software often fixes the data layout it consid-
ers; when encountering simulation data that follows a dif-
ferent data layout, it copies the simulation’s data into its fa-
miliar layout, using additional memory. Instead, the software
must be able to perform “zero-copy" in situ that adapts to the
simulation code’s layout by using templates or virtual func-
tion calls. Thinking about the bigger picture, the common
theme to these examples is that software must be designed to
be lightweight and “run anywhere." Further, the associated
complexities need to be abstracted away so that algorithm
developers can focus solely on the details of their algorithm.

A second challenge comes from diverse sources of data.
Successful analysis of observed data increasingly requires
data fusion (i.e., merging multiple inputs). This may include
classic scientific data forms, as well as unstructured meta-
data that may represent data outside of the spatiotemporal
coordinate frame. Further, simulations now occur on multi-
ple length-scales, and visualization is required to see how
these length-scales interact. For both examples, visualiza-
tion software must be able to deal with heterogeneous in-
puts from multiple sources and integrate them into in a sin-
gle output. These sources may come from the local file sys-
tem, from a remote database, or even from the cloud. The
challenge for visualization software is to create systems that
will manage multiple data management paradigms and iso-
late their associated complexities.

Finally, a shift in the computational landscape, namely the

ubiquitous use of web- and cloud-based resources and deliv-
ery vehicles ranging from traditional desktop to web browser
to tablet to smart phone, offers new challenges and opportu-
nities not present in the early days of visualization applica-
tion design and development. The main challenge here fo-
cuses on abstracting key interfaces, such as a rendering in-
terface, in order to be able to take advantage of different
rendering platforms and delivery vehicles. Further, it will
be increasingly commonplace for a single visualization ap-
plication to deploy on multiple platforms (e.g., web, tablet,
etc.), including possible simultaneous usage (i.e., coordinat-
ing powerwall usage with a tablet); software infrastructure
needs to insulate algorithms from the details of where it is
being delivered so code can be delivered in multiple plat-
forms simultaneously.

Evolutionary/Revolutionary: 80% / 20%

Although the challenges from Big Data will require fur-
ther innovation, current visualization software design al-
ready has many lightweight and flexible aspects that will
serve as a foundation. The main challenges encountered in
data management touch on this article’s other topics (§3, §6,

§7).
5 Data Model

Visualization software is intended to be used with a wide
range of data types. Scientific visualization tools must sup-
port data output from simulations in a disparate range of
scientific domains, such as climate, fusion, and cosmology.
Though this includes a wide range of application codes, they
share many features and have a high degree of commonal-
ity in their needs. For example, general-purpose scientific
visualization libraries have been able to import and analyze
results from these codes by supporting structured and irregu-
lar finite element grids, from one to three spatial dimensions,
with field data on the nodes and cells of the grids. Infor-
mation visualization tools have faced a bigger challenge in
supporting the large variety of structured and unstructured
data encountered in informatics: from simple tables to com-
plex graphs to unstructured collection of data samples. How-
ever, a few visualization libraries have been able to address a
larger subset of information visualization challenges by pro-
viding relatively simple data models together with flexible
programming interfaces to mold the data structure to fit a
variety of problems.

Upcoming Challenges:

One significant challenge to data models in existing visu-
alization software is that the types of data they are expected
to handle is growing. In the scientific space, new refinement
structures, new types of polynomial fields, and even high di-
mensional grids are becoming more common. The need for
these structures are motivated both by the demands of new
science and by the evolution of scientific computing algo-
rithms.



Expectations for visualization software data type support
are also growing because the demands on their analysis ca-
pabilities are growing. For example, general-purpose visual-
ization software, which historically supported only contin-
uum grids, might now be expected to handle results from
particle codes. Furthermore, as scientists expand their tool-
box to include emerging analytics techniques, they deal
more and more with non-spatial data that is best explored
by information visualization techniques. As users commonly
expect to handle all this data and the associated visualiza-
tion algorithms within a single visualization tool or library,
its data model must be a superset of a vast array of other data
models.

Other significant challenges in the area of data models
are forced by coming changes in system architectures. The
most obvious of these is that while we expect core counts to
rise drastically, total system memory will increase only mod-
estly; this results in a massive reduction in per-core memory.
This means visualization libraries must be creative in find-
ing new ways of storing the same data. In some cases, this is
as straightforward as reducing redundancy inherent in a less
descriptive data model. One example seen in today’s soft-
ware is a subset of a regular grid; in some data models, this
can be achieved only via conversion to a much more expen-
sive unstructured grid. A more flexible data model would al-
low hybrids of regular and explicit coordinates resulting in a
more memory efficient representation critical for a memory-
constrained future.

Another change in coming system architectures is the ad-
dition of heterogeneous processing units and many-core de-
vices, as discussed in §3. Although programming these de-
vices is itself a challenge, some aspects of this challenge
must fall on the data model. The heterogeneity inherent in
using discrete accelerator devices is one example; the under-
lying data structures should have support for these discrete
memory spaces, or else accessing simulation data in sifu may
multiply memory usage in an already highly memory con-
strained scenario. These many-core devices, because of their
need to hide memory latency through massive parallelism,
are more sensitive to array layout than traditional cores, and
in fact, have only limited caching at best. If the data model
requires strided arrays for coordinates, for example, then it
is enforcing a data layout that will preclude optimal perfor-
mance on these devices.

The biggest software challenge associated with these
emerging requirements is maintaining a programming in-
terface that enables algorithm developers to produce gen-
eral and special purpose algorithms easily while hiding the
complexity of the underlying data structures. Recent history
shows that the most successful visualization libraries have
been those that make it easy for programmers to develop
and maintain algorithms that work on a large set of data
types. Next generation visualization software must maintain

this property while supporting a growing set of data types,
programming models, and target architectures.

Evolutionary / Revolutionary: 75% / 25%

The challenges of supporting new data models may re-
quire intrusive changes to existing software, and opportu-
nities to optimize data structures to minimize memory usage
and improve support for coming architectures are vast. How-
ever, there is no single step that appears to be revolutionary.
Indeed, attempts at revolutionary data models risk becom-
ing buried in mathematical quandaries and never achieving
practicality. Instead, a number of evolutionary changes to ex-
isting data models are more likely to balance benefits with
pragmatism.

6 Rendering

The rendering system is the bridge between the human ob-
server and data. As such, it must map large, disparate, often
complex data forms into graphics primitives (e.g., simple ge-
ometric shapes like points, lines and triangles), and typically
do so at high speed (to meet the needs of data interaction, see
§7). Further, the rendering system faces the daunting chal-
lenge of successfully engaging with the visual system of the
human observer. It is not simple enough to draw millions of
primitives, no matter how fast, because overwhelming the
user with data does not help in the efficient transmission of
meaningful information. Thus effective rendering strategies
must work closely with the data processing pipeline to ex-
tract and filter relevant information.

Upcoming Challenges:

Some of today’s most rapidly evolving computing tech-
nologies address the challenge of exchanging data with the
user, in other words human-computer interaction. Such in-
teraction may involve a variety of delivery considerations
ranging from the hardware platform (supercomputer, desk-
top, mobile phone or tablet); rendering technology (GPU or
CPU, and the supporting software libraries such as OpenGL
and CUDA); and the means of delivery (web browser, mo-
bile or desktop application). These myriad choices, com-
bined with rapidly changing technologies, place a significant
burden on visualization systems. Complex, large visualiza-
tion applications may require extensive rework to support a
new rendering technology in a consistent manner, only to see
the technology become obsolete shortly thereafter. Smaller,
more agile applications can adapt quickly, but fail to provide
an integrated environment in which to perform sophisticated
visual analysis.

One obvious approach to addressing this challenge is to
architect rendering subsystems as independent modules and
then build on these interchangeable modules. While this
works well for many visualization applications, often there
are special capabilities found in one rendering architecture
that do not easily translate into others. Volume rendering is



a classic example—use of complex GPU capabilities can pro-
duce extreme speeds, capabilities that a device like a tablet
may not be able to provide. Another complication is the de-
livery of data; large data may require separation of the data
(server) from the rendering client, including clients such as
WebGL available on many web browsers. However, such
separation requires careful coordination and control of the
data being passed between the server and client. Otherwise,
excessive latency or even program failure may result as data
overloads the rendering system.

Evolutionary/Revolutionary: 80% / 20%

Most of the work to support the variety of rendering op-
tions involves developing clever software architectures and
adaptors to leverage emerging technologies. In some cases,
applications can be designed to use different strategies de-
pending on the particular delivery platform. Another ap-
proach is to abstract and simplify the number of supported
rendering capabilities; using this reduced palette, which can
be designed for portability and efficiency, can produce more
agile visualization systems.

7 Interaction

Interaction deals with how users direct visualization soft-
ware and how they gather results. A common usage model
has a user employing a mouse to click buttons in a graphical
user interface to direct visualization software and viewing
pictures on their desktop to gather the results. Here we ex-
plore the visualization software ramifications of improved
interactions. Two topics dominate: (1) how does Big Data
change the nature of interaction? And (2) what visualization
software improvements are necessary to further realize the
potential of virtual reality?

The importance of interaction varies over the type of anal-
ysis being performed. For confirmative analysis, an animated
visualization is most often adequate to confirm or withdraw
a hypothesis about the character of a simulated phenomenon,
and interaction is not critical. For exploratory analysis, how-
ever, interaction is very important. Exploratory analyses are
characterized by a trial-and-error process, where domain ex-
perts vary visualization methods, visualization parameters,
and views in an interactive session. Visualization tasks that
are performed by the user with high frequency must be an-
swered as fast as possible, if not in real-time.

Upcoming Challenges

The interactivity requirement creates special challenges
when it comes to Big Data. Where current approaches typ-
ically use parallelization to maximize the overall speedup
of visualization algorithms, in explorative tools scheduling
strategies must be totally different in a way that they take
into account both latency-issues and the user’s interaction
behavior. A suitable architecture would adapt between uti-
lizing HPC resources and local resources, similar to that de-
scribed in §6. With HPC resources, data can be accessed at

its full resolution (but with rather high latency), while on
local resources, computation and rendering can occur on re-
duced data only (but with extremely low latency). Although
§4 discusses the need for flexible application architecture for
visualization software, it merits its own mention here: short
of highly optimized hardware, the requirements that systems
treat Big Data and provide an interactive experience are in-
compatible. Visualization software must be flexible enough
to adaptively switch between presenting results from mul-
tiple resources based on context. There are many systems
research directions that will need to be incorporated into vi-
sualization software to accomplish this goal. What are the
scheduling strategies for data loading? How can they pre-
dict user interaction inquiries? How can navigation in time
be optimized?

While interactivity definitely becomes more and more im-
portant, it has not been proved yet whether Virtual Reality
(VR) will make its way as a widely accepted feature in the
visual analysis of scientific data. However, due to the recent
availability of large stereoscopic monitors, low-cost tracking

systems like the Microsoft KinectTM, and alternative input
methods found on tablets and smartphones, the next gen-
eration of scientists will become increasingly comfortable
with VR devices. Further, several studies give a strong hint
that interactive scientific visualization cannot only signifi-
cantly profit from stereoscopic, but in particular from user-
centered projections with wide field of regard, as they are
realized in large Virtual Reality displays like PowerWalls
or CAVEs (see e.g., [LSSB12]). While all of these devices
have been incorporated into visualization programs previ-
ously, supporting them may become a requirement for future
visualization libraries. Although formalized support can fit
well within these libraries, additional abstractions are nec-
essary for input devices, interpreting movements from input
devices, and display across a variety of output devices.

Evolutionary / Revolutionary: 50% / 50%

While extensions for ever-more-prevalent interaction de-
vices is on the evolutionary path for visualization software,
the conflicting requirements of interactivity and Big Data de-
mand new software architectures that distribute data over lo-
cal and remote resources. Beyond massive parallelism, intel-
ligent scheduling and data reduction techniques will have to
be developed and incorporated into the core of any visualiza-
tion software framework in order to achieve full interactivity.

8 Conclusion

This article describes challenges facing visualization soft-
ware. Big Data is a common theme throughout, and it will
be one of the major drivers behind many upcoming changes
in visualization software. While we often know the form so-
lutions must take, we still do not know the details behind the
form; the topics discussed truly are research challenges for
the field of visualization software.



Over the last twenty-five years, design patterns in visual-
ization software have emerged that encourage modulariza-
tion and isolation of complexity. The challenge going for-
ward will be to establish new designs that continue this trend
while supporting requirements in parallelization, processor
architecture, application architecture and data management,
data models, rendering, and interactions. A second challenge
is how to adapt existing community efforts, which represent
millions of lines of code and thousands of developer years,
to deal with upcoming challenges. While some of these chal-
lenges may fit naturally and require modest resources (such

as adding support for a KinectTM), other challenges seem to
require near total re-writes (such as dealing with many-core
architectures). Clearly, given the myriad open questions fac-
ing visualization software and the large investment neces-
sary to make it a success, the community is well served to
coordinate their efforts going forward.

Visualization libraries started over twenty-five years ago
are still in active use today. As we re-orient our software
to deal with upcoming challenges, we must ask ourselves
how new efforts can last for the next twenty-five years. Suc-
cessfully dealing with diverse processor architectures, dis-
tributed systems, diverse data sources, massive parallelism,
input and output devices, and interactivity will go a long way
towards future-proofing our efforts, but the lessons learned
from the past — abstraction, interfaces, and design patterns —
will undoubtedly help lead the way.
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