Benchmarking In Situ Triggers Via Reconstruction Error

Yuya Kawakami
Grinnell College
Grinnell, Iowa
kawakami@grinnell.edu

ABSTRACT

This work considers evaluating in situ triggers using reconstruc-
tion error. Our experiments use data from the Nyx and Cloverleaf
simulation codes, and focus on two key topics. The first topic aims
to increase understanding of total reconstruction error, both with
respect to the impact of adding more time slices and with respect
to the variation from different time slice selections. The second
topic evaluates performance for two current approaches: entropy-
based triggers and evenly spaced time slices. Finally, we use these
study components to construct a benchmarking system that enables
visualization scientists to reason about triggers.

Nicole Marsaglia
University of Oregon
Eugene, Oregon
marsagli@uoregon.edu

CCS CONCEPTS

« Human-centered computing — Scientific visualization; Vi-
sualization design and evaluation methods.

KEYWORDS
in situ processing, scientific visulazation, triggers, benchmarking

ACM Reference Format:

Yuya Kawakami, Nicole Marsaglia, Matthew Larsen, and Hank Childs. 2020.
Benchmarking In Situ Triggers Via Reconstruction Error. In ISAV’20 In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV°20), November 12, 2020, Atlanta, GA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3426462.3426469

1 INTRODUCTION

Triggers are an increasingly important approach for enabling in
situ processing. The idea behind triggers is to have an inspection
routine that studies the current state of a simulation and decides
whether or not to “fire” If a trigger does fire, then this cues addi-
tional action: visualization, analysis, or saving data to permanent
storage (“dump”). If a trigger does not fire, then no further action is
taken. The trigger-based paradigm provides potential opportunities
for both cost savings and increased insight.

With respect to cost savings, triggers can minimize total execu-
tion time if the inspection routine executes quickly and is able to
save on unneeded heavyweight visualization/analysis/dump tasks.
For example, consider the scenario where a simulation runs for
1000 cycles, a trigger inspection routine takes 0.01s, and a visu-
alization/analysis/dump routine takes 10s. In a non-trigger-based
approach, visualization/analysis would occur at regular intervals,

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

ISAV°20, November 12, 2020, Atlanta, GA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8812-2/20/11...$15.00
https://doi.org/10.1145/3426462.3426469

Hank Childs
University of Oregon
Eugene, Oregon
hank@uoregon.edu

Matthew Larsen
Lawrence Livermore
Livermore, California

larsen30@lInl.gov

for example every 100 cycles. In this case, the overhead for vi-
sualization/analysis would be 100s (10 executions X 10s). On the
other hand, if a trigger-based approach fires only seven times, then
the overhead for visualization/analysis/dump would be 80s (1000
inspection routines X 0.01s + 7 executions X 10s). Further, these
savings can be improved if the inspection routines are applied less
often (e.g., every other cycle), if the fire rate decreases, or if the
gap between inspection and visualization/analysis/dump routines
widen.

With respect to increased insight, the main idea is that triggers
can be used to perform visualization/analysis/dump at the most
important cycles. Revisiting the previous example, it may be that
the most interesting phenomenon occurs between cycles 520 and
580. A non-trigger approach that executes visualization/analysis
every 100 cycles would execute at cycles 500 and 600, potentially
missing key insights. A trigger-based approach, however, has the
potential to capture the phenomenon. If the trigger fired seven
times, then the simulation may be best conveyed by (for example)
cycles 0, 250, 520, 550, 580, 750, and 999. However, it is harder to
measure the increase in insight. This contrasts with the cost savings
analysis, which could be placed into formulas that enabled direct
comparisons. One mechanism for measuring insight is to incor-
porate perspectives from domain scientists. That said, while their
perspectives are clearly paramount, relying on domain scientists
to evaluate which time slices are most important would lead to
domain-specific answers, could be somewhat subjective (in partic-
ular varying from domain scientist to domain scientist), and user
studies can be quite time consuming. Instead, we feel that there
is value in considering this question from a quantitative perspec-
tive and in a domain-agnostic manner. This belief is the first key
premise (of two) that underlies our research.

Explicitly, our driving question is: “if a trigger can fire for K time
slices, then which K should it choose?” With this work, our guiding
principle to answer this question is: “the best K time slices are the
ones that best reconstruct the remaining time slices” This guiding
principle is the second key premise that underlies our research.
From the perspective of this guiding principle, we consider how
to calculate these time slices and evaluate error. We then use this
method to explore reconstruction error, both from the perspective
of how more time slices improve reconstruction error and from
the perspective of how error varies across different selections of
time slices. We conclude the paper by evaluating how a current
trigger approach (entropy) compares to choices that minimize re-
construction error. In all, while we feel the results of our study are
quite interesting, we feel the greatest utility from our efforts are
in providing a benchmarking system that can evolve to consider
more data sets, reconstruction methods, error metrics, and trigger
techniques. This benchmark system, developed as part of this study,

https://doi.org/10.1145/3426462.3426469
https://doi.org/10.1145/3426462.3426469

ISAV’20, November 12, 2020, Atlanta, GA, USA

is available as open source software and is described in an appendix
as part of ISAV’s reproducibility initiative.

2 RELATED WORK

As several existing works survey in situ processing, and identify
challenges with the approach [4, 6, 7, 16], this section focuses
on research directly related to triggers and time slice selection.
Specifically, the first two subsections are on triggers, and orga-
nized into two categories: domain-specific triggers and domain-
agnostic triggers. These subsections serve to document the increas-
ing prevalance of triggers for enabling in situ processing, and also
— when possible — discuss how these works evaluated their trigger
technology. The final subsection is on time slice selection outside
of the trigger context.

2.1 Domain-Specific Triggers

There have been a number of recent works that have developed
domain-specific triggers. Bennett et al. [5] developed a domain-
specific trigger that detects ignition during combustion simulations.
A premise of their work was that a large change in value indicated
ignition, which eliminated the need for accuracy metrics. This work
was continued by Salloum et al. [17] whom proposed an additional
method to detect sudden heat release, and subsequently increasing
the robustness of the trigger.

Liu et al. [14] developed a sea level anomaly (SLA)-based trig-
ger that uses ocean satellite altimeter data to detect eddies. They
compared their resulting eddy tracking with existing eddy track-
ing techniques. Sun et al. [18] built upon this work with a hybrid
approach that utilizes both the physical and geometric properties
of eddies to produce more accurate results over time compared to
previous approaches.

Ullrich et al. [20] developed TempestExtremes, a framework for
analyzing climate data sets that uses a number of climate-specific
triggers, so as to support a wide-array of detection schemes for cli-
mate data. This work focused on frameworks, and did not consider
evaluation of trigger efficacy. Zhao et al. [22] also uses climate-
specific triggers in order to detect tropical storms within climate
simulations. Similar to the work by Bennett and Salloum, the au-
thors designed their triggers using domain knowledge, and did not
make evaluating its efficacy a focal point of their study.

2.2 Domain-Agnostic Triggers

Ling et al. [13] developed a machine-learning trigger that detects
and then saves local changes in the data by comparing local data to
non-local data as well as previous time steps. This work established
the relevance of machine learning in this space, but did not focus
on evaluating the accuracy of the results.

Aditya et al. [1] proposed a method for detecting anomalies in
distributed data. They evaluated their work using the “local outlier
method” (LOF). A method like this could be incorporated into our
benchmarking system in the future.

A number of works have found success using statistical methods
as a trigger. Wendelberger et al. [21] applied change detection
methods to images as a general approach to summarizing data,
identifying important variables, selecting informative time steps
and detecting events in the simulation. Banesh et al. [3] also used
change point detection to detect events, to guide researchers to
areas of interest, or to narrow a data set for further analysis. In both

Kawakami, et al.

cases, the works proposed a method and demonstrated it on real-
world data sets, but did not provide a framework for evaluating their
selections. Finally, Myers et al. [15] made use of statistical methods
to find time steps of global and local importance, respectively. They
compare their technique to saving at regular intervals.

2.3 Time Slice Selection

Zhou and Chiang [23] considered the problem of automating story-
boards for users, i.e., finding the best time slices to display to users.
That said, our approaches for evaluating reconstruction error and
tractable computation are similar to theirs. Dynamic time warp-
ing (DTW) [19] incorporates an information-theoretic approach
to find salient time slices. Finally, recent machine learning-based
approaches have also considered keyframe selection, as well as re-
constructing from those time slices [9, 10]. For each of these works,
our goals are different in that we are focused on in situ triggers and
on establishing a benchmark suite.

3 METHOD OVERVIEW

This section described our method, and is broken into three parts.
Section 3.1 formalizes a method for calculating reconstruction er-
ror. Section 3.2 then describes an algorithm for finding the time
slices that minimize this reconstruction error. Finally, Section 3.3
describes the workflow that we used to calculate our results. This
workflow depends on the reconstruction error from Section 3.1
and incorporates the algorithm for minimizing this error from Sec-
tion 3.2.

3.1 Evaluating Reconstruction Error

While there are many ways to reconstruct temporal data and evalu-
ate error, we consider a straightforward method with this work. In
particular, although triggers are useful for visualization, analysis,
and dumps, our evaluation focuses strictly on dumps. We assume
that K time slices are saved, and then reconstruct values at the
remaining time slices via linear interpolation. We then calculate the
error as the difference between our reconstruction and the original
field.

Formally, for a position x and a time t, let F(x, t) be the original
field from a simulation and let F’(x, t) be our reconstructed field.
Further, let Ty, Ta, ... Tk be the times for the cycles where the trigger
fired, causing these time slices to be saved to disk. For a specific
time t* and location x*, we calculate F’(x*,t*) by first finding
the i such that T; < t* and t* < Tj,1, i.e., the two time slices
surrounding ¢t*. We assume the trigger always fires for the first
and last cycle of the simulation, so such an i always exists. Then
we define F’ as:

1ok gk =T
Fi(x™, %) = F(x, Ti) + ———— X (F(x, Tis1) = F(x, Tp))
Tiv1 =T,

and we define the total error as:

Error://|F(x,t)—F'(x,t)|
tJx

In practice, the error is calculated for every mesh position and
every time — if a mesh has P points and there are N time slices,

Benchmarking In Situ Triggers Via Reconstruction Error

then we sum the difference at P x N locations, i.e.,

N P
Error = Z Z|F(xi, tj) = F/(xi, t)l

j=1i=1

3.2 Tractable Computation of Optimal Time
Slices

We refer to the K time slices that minimize reconstruction error.
as “optimal” time slices. Locating the optimal time slices is non-
trivial, as the set of possible choices is quite large. In general, if
there are N cycles in the simulation and the goal is to choose K
time slices, then the number of choices is (g) ie., “N choose K
#LK)' For N = 200 and K = 10, the number of choices
is over 22 quadrillion.

Our first approach for improving computation time is to consider
fewer cycles. Specifically, we consider only cycles that are multiples
of 5 or 10. Revisiting the previous (21000) example, considering only

which is

multiples of 10 reduces the number of combinations to (%)), which
is a much more tractable 184,756 combinations.

Our second approach for improving computation time is to in-
corporate dynamic programming. Dynamic programming depends
on the ability to break a problem into simpler sub-problems where
the optimal solution to the sub-problems can be used to form the op-
timal solution to the original problem. These sub-problems should
then be able to decomposed again, and so on.

Optimal time slice calculation can be cast as a dynamic program-
ming problem as follows. Let OPT(C;, Cj, K) return the optimal
solution that uses K time slices between C; and C;. Further, let
COST(Cy, Cj) represent the reconstruction error for all time slices t,
Ci <t £ Cj, when using only C; and C; to reconstruct ¢. Then, for
any C; and C;j with C; < Cj, OPT(C;, Cj, K) can be calculated as:

OPT(C;,Cj,K) = i OPT(C;,S,K —1) + COST(S,C;
(Ci j) Ci;nsf’slcj((Ci) (]))

3.3 Workflow and Experiment Description
Our workflow operates as follows:

e Obtain data set at full temporal resolution.

e Run Ascent [11] to generate trigger information. This utilized
Ascent’s “replay” feature, which enabled Ascent to load data
from disk and execute trigger code as if it was doing in situ
analysis. In particular, this was used to calculate the time
slices for trigger based on change in entropy [12].

e Run Python scripts that evaluated reconstruction error (3.1)
for various time slice selections, and also calculated the opti-
mal time slices (3.2).

For our experiments, we considered two data sets:

e Results from a Nyx [2] cosmology simulation, which pro-
duced 515 time slices on a rectilinear grid of size 69 X 69 X 69.
For this data set, we considered cycles that were multiples
of 10.

e Results from a Cloverleaf [8] hydrodynamics simulation,
which produced 200 time slices on a rectilinear grid of size
69X 69 X 69. For this data set, we considered cycles that were
multiples of 5.

ISAV’20, November 12, 2020, Atlanta, GA, USA

Trend of Total L1 norm error Trend of Total L1 norm error

35

1010

Total L1 norm error
Total L1 norm error

2

101

0 10 20 30 40 50 5 10 15 20 25 30 35 40
Number of time slices Number of time slices

Figure 1: Reconstruction error as a function of budget for
Nyx (left) and Cloverleaf (right) using optimal time slice
choices. For example, when the budget allows for saving 20
time slices, we use the technique from Section 3.2 to calcu-
late the 20 time slices that minimize reconstruction error,
and the Y-value for X=20 corresponds to this error. Finally,
note that the Y-axes in these two plots are very different be-
cause the error is proportional to the values in the scalar
field, and the Nyx field has much higher values.

Our experiments can be calculated on a desktop computer, and
take several hours to run. That said, our current implementation
stores all time slices in memory (1.29GB for Nyx data), potentially
limiting some computers from operating on larger data sets.

4 RESULTS

4.1 Understanding Reconstruction Error

4.1.1 How the Number of Time Slices Affects Reconstruction Error.
This section explores how reconstruction error changes as the
simulation code is able to dump more and more time slices. Clearly,
when a simulation is able to dump more time slices, these additional
time slices will reduce the total reconstruction error. That said, the
magnitude of decrease is less clear. In all, we feel this analysis
informs questions such as “how many time slices should I save?”
and “will saving more time slices aid my analysis?”

Figure 1 plots the total reconstruction error as a function of
budget (i.e., the allotted number of time slices to save) for Nyx
and Cloverleaf. As the budget changes, the data reflects the error
incurred when choosing the optimal time slices (via the technique
described in Section 3.2). The figure shows clear diminishing returns
as the budget increases for Nyx, with the error plateauing after
15 time slices. For Cloverleaf, the effect is not as severe. Of note,
the actual time slices saved likely vary as the budget changes. For
example, if a simulation can save two time slices, then the optimal
choices may be to save cycles 115 and 260, but if it can save three
time slices, then the optimal choices may be cycles 180, 220, and
240. Further, we assume the first and last cycle are always saved, so
this example should be interpreted as saving additional time slices.

While Figure 1 shows behavior in the aggregate, it is not useful
for understanding individual behavior. Figure 2 addresses this point,
via four error histograms corresponding to four time slice budgets
with Nyx data. As the budget increases, error becomes smaller
and smaller. While this is consistent with the aggregate trend, we
feel the persistence of high error regions is interesting, as is the
widespread errors found in small budgets that become much less
frequent in higher budgets.

ISAV’20, November 12, 2020, Atlanta, GA, USA

Kawakami, et al.

61¢7 61¢7 64¢7 6e7
5 5 5 5
4 4 4 4
€ € € €
33 33 33 33
o o o o
2 2 2 2
1 1 1 1

0
—1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00
Relative error

0
—1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00
Relative error

0
—1.00-0.75-0.56-0.250.00 0.25 0.50 0.75 1.00

0
—1.00-0.75-0.56-0.250.00 0.25 0.50 0.75 1.00

Relative error Relative error

Figure 2: Four histograms of error for time slice budgets of (left-to-right) 3, 5, 7, and 10 time slices for Nyx data. Each histogram
represents a range of errors, and the count for that bin is the number of cells (over all time slices and spatial location) that

have error within that range. Finally, error is calculated in a relative sense, i.e., —

Reconstructed - Actual
x |Reconstructed|, |Actual | *

Using relative error

for these histograms emphasizes significant errors with small-magnitude values and de-emphasizes insignificant errors with

large-magnitude values.

Distribution of error over 5000 random time slice selections
400

—— Minimum
—— Evenly Spaced
—— Entropy

350
300

0
3 4

Total L1 norm error lelo

Figure 3: Histogram of errors for 5000 random selections of 5
time slices. Each bin cover a range of errors and counts how
many of the 5000 random selections had that much error.
Further, the error associated with the optimal choice (from
Section 3.2) is indicated in red, with evenly spaced time slices
in blue, and with an entropy trigger (that leads to five time
slices) in green.

4.1.2 How Reconstruction Error Varies with Choice of Time Slice.
This section explores the importance of time slice selection. In
other words, is the “best” choice much better than other choices?
Is seeking out “good” time slices worthwhile?

To provide insight into this topic, we generated 5000 random
time slice selections for Nyx data. Each of these selections had
exactly five time slices, i.e., a budget of size five. We then calculated
total error for each of the selections. Figure 3 shows the results,
plotted as a histogram. The minimum total error was 1.52¢1?, while
the maximum total error was over 6el?, meaning that the worst
choice was 4X worse than the best. That said, most random choices
led to errors between 2e!? and 3e??, i.e., ranging from 1.33X to 2X
error.

4.2 Evaluating a Current Trigger Approach

Figure 4 shows an evaluation of entropy triggers compared to evenly
spaced time slices and the optimal selection from Section 3.2. Sur-
prisingly, entropy has worse reconstruction error than either ap-
proach. While our benchmarking system does not illuminate the
cause, its relatively poor behavior in this setting provides additional
understanding of the trigger, and also reveals that additional re-
search on efficacy would be useful. Of course, this finding does not
mean that entropy is not an effective trigger, as it has been shown
to capture certain phenomena well.

Further, we find the difference between evenly spaced and opti-
mal to be noteworthy. For Nyx, the optimal selection is considerably
better, while for Cloverleaf they are the same. In fact, evenly space
outperforms “optimal” for some budgets, which reveals a limitation
in our approach — our “optimal” approach considers only cycles
that are multiples of five, while the evenly spaced selection accesses
different cycles. Since evenly spaced is so suitable for this data set,
its different choices occasionally are better.

5 CONCLUSION AND FUTURE WORK

The contribution of this work is in establishing a benchmarking
system for evaluating in situ triggers. We feel it provides an impor-
tant complement to the only current method of evaluating triggers,
which is incorporating domain scientist feedback. In particular,
this benchmarking can provide evidence as to whether one trigger
scheme is better than another, which we feel fills a gap for our
community. Finally, we feel the (non-trigger) results that focus on
reconstruction error also inform important questions about neces-
sary temporal resolution, and add to the value of our benchmarking
system.

There are many areas of improvement for our system. Our
choices in how to reconstruct the field, how to evaluate error, the
data set we choose to evaluate, and how we analyze results can
all be revisited and improved. In particular, many time-varying
data sets have phenomena that sweep through a volume, making
linear interpolation between time slices like a poor choice. Fur-
ther, our current implementation assumes that all time slices can fit
into memory, which could create prohibitive memory requirements
for larger data sets. Therefore, our system could benefit from a

Benchmarking In Situ Triggers Via Reconstruction Error

Comparing Total L1 error of three methods

Selection method
—— Entropy
—— Least Error
—— Evenly Spaced
.
2
5
£ 101
£
o
2
—
-
3
e
1015 4
0 10 20 30 40 50
Length of selected time slices
Comparing Total L1 error of three methods
Selection method
—— Entropy
—— Least Error
—— Evenly Spaced
107 4
.
2
5
€
£
o
2
—
-
g
o
°
106 4

5 10 15 20 25 30 35 40
Length of selected time slices

Figure 4: Total reconstruction error as a function of time
slice budget for Nyx (top) and Cloverleaf (bottom). Both fig-
ures consider the optimal choices using the method from
Section 3.2 (red), evenly-spaced time slices (green), and en-
tropy triggers (blue). The entropy trigger for Nyx stops after
abudget of 22 time slices due to details with its execution. In
particular, entropy triggers fire when the change in entropy
is greater than some threshold. For this simulation, it was
possible to choose a threshold that dumped 22 time slices,
but any smaller threshold caused hundreds of time slices to
be saved. Finally, note that the Y-axes in these two plots are
very different because the error is proportional to the values
in the scalar field, and the Nyx field has much higher values.

new approach for data processing, whether it be out-of-core or
parallelism.

Finally, this research relied on two key premises: (1) that a
domain-agnostic, quantitative evaluation method would be use-
ful and (2) that the time slices that minimize reconstruction error
when dumping data are worthy time slices for triggers to “fire”
when doing visualization and analysis. We feel our results section
supports the first premise. We did not attempt to support the second
premise, but we feel that this could make interesting future work,
i.e., seeking domain scientist feedback that confirms or denies that
the time slices that minimize reconstruction error are useful time
slices for visualization and analysis.

ISAV’20, November 12, 2020, Atlanta, GA, USA

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

REFERENCES

[1] Konduri Aditya, Hemanth Kolla, W Philip Kegelmeyer, Timothy M Shead, Julia
Ling, and Warren L Davis IV. 2019. Anomaly detection in scientific data using
joint statistical moments. J. Comput. Phys. 387 (2019), 522-538.

Ann S. Almgren, John B. Bell, Mike J. Lijewski, Zarija Luki¢, and Ethan Van Andel.

2013. Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL

COSMOLOGY. The Astrophysical Journal 765, 1 (feb 2013), 39. https://doi.org/

10.1088/0004-637x/765/1/39

Divya Banesh, Joanne Wendelberger, Mark Petersen, James Ahrens, and Bernd

Hamann. 2018. Change Point Detection for Ocean Eddy Analysis. In Workshop

on Visualisation in Environmental Sciences (EnvirVis), Karsten Rink, Dirk Zeckzer,

Roxana Bujack, and Stefan Janicke (Eds.). The Eurographics Association. https:

//doi.org/10.2312/envirvis.20181134

Andrew C Bauer, Hasan Abbasi, James Ahrens, Hank Childs, Berk Geveci, Scott

Klasky, Kenneth Moreland, Patrick O’Leary, Venkatram Vishwanath, Brad Whit-

lock, and E. Wes Bethel. 2016. In Situ Methods, Infrastructures, and Applications

on High Performance Computing Platforms. Computer Graphics Forum (CGF) 35,

3 (June 2016), 577-597.

[5] J. Bennett, A. Bhagatwala, J. Chen, A. Pinar, M. Salloum, and C. Seshadhri. 2016.
Trigger Detection for Adaptive Scientific Workflows Using Percentile Sampling.
SIAM Journal on Scientific Computing 38, 5 (2016), S240-S263. https://doi.org/10.
1137/15M1027942

[6] Hank Childs et al. 2020. A Terminology for In Situ Visualization and Analysis
Systems. International Journal of High Performance Computing Applications
(IJHPCA) 34, 6 (Nov. 2020), 676-691.

[7] Hank Childs, Janine Bennett, Christoph Garth, and Bernd Hentschel. 2019. In
Situ Visualization for Computational Science. IEEE Computer Graphics and
Applications (CG&A) 39, 6 (Nov./Dec. 2019), 76-85.

[8] UK Mini-App Consortium. 2018. CloverLeaf3D: A 3D Lagrangian-Eulerian hydro-
dynamics benchmark. http://uk-mac.github.io/CloverLeaf3D/

[9] Jun Han and Chaoli Wang. 2019. TSR-TVD: Temporal super-resolution for time-
varying data analysis and visualization. IEEE Transactions on Visualization and
Computer Graphics 26, 1 (2019), 205-215.

[10] Wenbin He, Junpeng Wang, Hanqi Guo, Ko-Chih Wang, Han-Wei Shen, Mukund

Raj, Youssef SG Nashed, and Tom Peterka. 2019. InSituNet: Deep image synthesis

for parameter space exploration of ensemble simulations. IEEE transactions on

visualization and computer graphics 26, 1 (2019), 23-33.

Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brugger, Hank Childs,

Berk Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure:

Ascending from the Ashes of Strawman. In Proceedings of the Workshop of In

Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV).

Denver, CO, 42-46.

Matthew Larsen, Amy Woods, Nicole Marsaglia, Ayan Biswas, Soumya Dutta,

Cyrus Harrison, and Hank Childs. 2018. A Flexible System for In Situ Triggers. In

Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale

Analysis and Visualization (ISAV). Dallas, TX, 1-6.

[13] J.Ling, W. P. Kegelmeyer, K. Aditya, H. Kolla, K. A. Reed, T. M. Shead, and W. L.

Davis. 2017. Using feature importance metrics to detect events of interest in

scientific computing applications. In 2017 IEEE 7th Symposium on Large Data

Analysis and Visualization (LDAV). 55-63. https://doi.org/10.1109/LDAV.2017.

8231851

Yingjie Liu, Ge Chen, Miao Sun, Shuai Liu, and Fenglin Tian. 2016. A parallel SLA-

based algorithm for global mesoscale eddy identification. Journal of Atmospheric

and Oceanic Technology 33, 12 (2016), 2743-2754.

[15] Kary Myers, Earl Lawrence, Michael Fugate, Claire McKay Bowen, Lawrence

Ticknor, Jon Woodring, Joanne Wendelberger, and Jim Ahrens. 2016. Partitioning

a large simulation as it runs. Technometrics 58, 3 (2016), 329-340.

Tom Peterka, Deborah Bard, Janine C Bennett, E Wes Bethel, Ron A Oldfield,

Line Pouchard, Christine Sweeney, and Matthew Wolf. 2020. Priority research

directions for in situ data management: Enabling scientific discovery from di-

verse data sources. The International Journal of High Performance Computing

Applications 4, 3 (March 2020), 409-427.

[17] Mabher Salloum, Janine C. Bennett, Ali Pinar, Ankit Bhagatwala, and Jacqueline H.
Chen. 2015. Enabling Adaptive Scientific Workflows Via Trigger Detection. In
Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization (Austin, TX, USA) (ISAV2015). ACM, New York,
NY, USA, 41-45. https://doi.org/10.1145/2828612.2828619

[18] Miao Sun, Fenglin Tian, Yingjie Liu, and Ge Chen. 2017. An Improved Automatic
Algorithm for Global Eddy Tracking Using Satellite Altimeter Data. Remote
Sensing 9, 3 (Feb 2017), 206. https://doi.org/10.3390/rs9030206

[2

B3

[4

[11

[12

[14

[16

https://doi.org/10.1088/0004-637x/765/1/39
https://doi.org/10.1088/0004-637x/765/1/39
https://doi.org/10.2312/envirvis.20181134
https://doi.org/10.2312/envirvis.20181134
https://doi.org/10.1137/15M1027942
https://doi.org/10.1137/15M1027942
http://uk-mac.github.io/CloverLeaf3D/
https://doi.org/10.1109/LDAV.2017.8231851
https://doi.org/10.1109/LDAV.2017.8231851
https://doi.org/10.1145/2828612.2828619
https://doi.org/10.3390/rs9030206

ISAV’20, November 12, 2020, Atlanta, GA, USA

[19] Xin Tong, Teng-Yok Lee, and Han-Wei Shen. 2012. Salient time steps selection
from large scale time-varying data sets with dynamic time warping. In IEEE
Symposium on Large Data Analysis and Visualization (LDAV). 49-56.

[20] P. A. Ullrich and C. M. Zarzycki. 2017. TempestExtremes: a framework for scale-

insensitive pointwise feature tracking on unstructured grids. Geoscientific Model

Development 10, 3 (2017), 1069-1090. https://doi.org/10.5194/gmd-10-1069-2017

J. Wendelberger, D. Banesh, and J. Ahrens. 2017. Detecting Changes in Simula-

tions. Joint Statistical Meetings (2017).

[22] Ming Zhao, Isaac M. Held, Shian-Jiann Lin, and Gabriel A. Vecchi. 2009. Simu-
lations of Global Hurricane Climatology, Interannual Variability, and Response
to Global Warming Using a 50-km Resolution GCM. Journal of Climate 22, 24
(2009), 6653-6678. https://doi.org/10.1175/2009JCLI3049.1

[23] Bo Zhou and Yi-Jen Chiang. 2018. Key Time Steps Selection for Large-Scale Time-
Varying Volume Datasets Using an Information-Theoretic Storyboard. Computer
Graphics Forum (2018). https://doi.org/10.1111/cgf.13399

[21

A ARTIFACTS DESCRIPTION
We divide our description into two parts:

e How to reproduce our results (Section A.1)
e How to extend our system (Section A.2)

A.1 Reproducing Our Results

The following files are needed to reproduce the Cloverleaf portion
of our experiments:

o Cloverleaf data: http://cdux.cs.uoregon.edu/cloverleaf.tar
e Python scripts: http://cdux.cs.uoregon.edu/trigger benchmark.
tar

One of the Python scripts in trigger_benchmark. tar is
get_best_errors.py. It calculates the optimal time slices with
respect to reconstruction error. Depending on which data set is
used, lines 16 and 18 should be adjusted.

Changing the error function is accomplished by changing the
variables after the if __name__ == __main__: statement. The set
of time slices that the optimal approaches considers can be changed
in the same location. (For example, we only consider time slices
multiples of 10 for the Nyx data, but obviously, we can change this
to consider multiples of 5 instead.) As it stands, this script will out-
put the least error selection of time slices and the respective costs
to a CSV file. The script get_entropy_trigger_time_slices.py
can be used to retrieve results of entropy-based triggers. Ascent’s
“replay” feature outputs a ascent_sessions.yaml containing en-
tropy values at each time slice. We use this output when invoking
the script, in order to return the results for entropy-based triggers.
This script takes in one command line argument: the threshold
value to use. As output, it prints the time slice selection based on
that threshold.

A note on the readability of code: when the code was first written,
we considered the problem from the perspective of graphs. As a
result, many variables are named in the language of graphs.

A.2 Extending Our System

Given our goal of establishing a benchmark system, we believe
it is important that the system be extensible in four ways: data
set, trigger type, interpolation scheme, and error evaluation. In its
current form, our benchmarking system makes it fairly easy to
evaluate new data sets and error evaluation schemes. In particular,
we considered two data sets and three error evaluation schemes
(L1-norm, L2-norm, and sum of squared errors). Evaluating new
interpolation schemes is a bigger effort, and we envision extending

Kawakami, et al.

our system to abstract out the interpolation scheme in the future.
Finally, triggers were arranged manually, i.e., selecting the time
slices where a trigger would fire and adding that to the error evalu-
ation. We would like for the triggers to be included automatically
(i.e., no human intervention needed), and hope to add this soon.
How to change data sets:

Currently the parse_hdf5 function takes care of handling the data,
storing the data in a dictionary where the keys are the time slices
and the value is the data at the given time slice. In the future, we
plan to adapt this function to accommodate different data sets to
enable support for more data sets.

How to change error evaluation scheme:

Currently, evaluation schemes are saved as a function. This func-
tion is passed to the make_adjacency_matrix function. Changing
or adding evaluation schemes requires adding the new scheme as a
function and passing this function to the make_adjacency_matrix
function.

How to incorporate decisions from a trigger:

Entropy-based trigger decisions are found using Ascent’s replay
feature to retrieve the entropy value and by then parsing the
ascent_sessions.yaml as described before. We hope to include
this feature in our system by automating this process in the future.

https://doi.org/10.5194/gmd-10-1069-2017
https://doi.org/10.1175/2009JCLI3049.1
https://doi.org/10.1111/cgf.13399
http://cdux.cs.uoregon.edu/cloverleaf.tar
http://cdux.cs.uoregon.edu/trigger_benchmark.tar
http://cdux.cs.uoregon.edu/trigger_benchmark.tar

	Abstract
	1 Introduction
	2 Related Work
	2.1 Domain-Specific Triggers
	2.2 Domain-Agnostic Triggers
	2.3 Time Slice Selection

	3 Method Overview
	3.1 Evaluating Reconstruction Error
	3.2 Tractable Computation of Optimal Time Slices
	3.3 Workflow and Experiment Description

	4 Results
	4.1 Understanding Reconstruction Error
	4.2 Evaluating a Current Trigger Approach

	5 Conclusion and Future Work
	Acknowledgments
	References
	A Artifacts Description
	A.1 Reproducing Our Results
	A.2 Extending Our System

