Towards Scalable Visualization Plugins for Data
Staging Workflows

David Pugmire James Kress
Oak Ridge National Laboratory University of Oregon
Oak Ridge, Tennessee Eugene, Oregon

Abstract—The scientific data that are being generated today,
and in the near future, will quickly outpace our ability to process
and understand it. The data generated are growing in multiple
ways, including the size of the data, the rate at which it arrives,
and the varying types of data. Additionally, data are available
from multiple sources, including for example, computational
simulations and sensor data extracted from experiments. In
such situations, workflows for the movement and management
of data, as well as the analysis and visualization while the
data are in transit, become even more critical, and increasingly
challenging. In this paper we discuss some early work focused
on the development of in-transit visualization techniques that are
deployed within a large data management system.

I. INTRODUCTION

The cost of data movement is quickly becoming a bottle-
neck to computation [2]. Recently deployed super computers,
and those planned for the future provide far more computa-
tional capacity than I/O bandwidth. Traditionally, visualization
is performed as a post-processing task, where simulation
outputs are read from disk, into the memory of a parallel tool
where analysis and visualization are performed. Visualization
is generally I/O bound [3], and as the relative /O band-
width continues to decrease, the challenges of visualization
of increasingly larger data will become more problematic.
In the case of traditional visualization, the I/O bottleneck is
exacerbated as data is first written to disk by the simulation,
and then read back from disk by the visualization routine.

Additionally, the parallelism on compute nodes is dra-
matically increasing, especially with the growing trend to
heterogenous systems. At the same time, the memory is not
increasing at the same rate as the computational capability [2].
These pressures place further constraints on analysis and vi-
sualization algorithms to operate in a variety of computational
environments and memory footprints.

Managing these complexities requires careful handling of
data movement and operations on data that can be performed
while the data are being transfered through the system. To
better understand these complexities, we have designed and
tested a system which reads and performs visualization op-
erations on simulation data as it is being moved within the
workflow. This system is built on top of two different research
projects, ADIOS [7], which is a middleware layer designed to
efficiently handle the movement of large amounts of data, and
EAVL [9] which is a library for efficiently representing and
operating on large data in heterogeneous environments.

In this paper, we describe and explore a workflow system
we have designed, built and tested which explores light-

Jeremy Meredith, Norbert Podhorszki, Jong Choi, Scott Klasky

Oak Ridge National Laboratory
Oak Ridge, Tennessee

weight EAVL visualization operations that have been deployed
as plugins in the ADIOS data staging framework. We are
particularly interested in the usability, performance and scaling
of these operations in a production environment, and how this
system can scale up to larger and larger workflows.

II. CONTRIBUTIONS

The major contribution of this work is the integration and
use of light-weight visualization plugins implemented in EAVL
within the ADIOS middleware framework, and the initial ex-
ploration of using this in a workflow for a production scientific
application. We also experiment with using the advanced data
model of EAVL to more efficiently and compactly represent
scientific data, and compute the results. We also experiment
with using the execution environment of EAVL and compare
two different methods for optimization of the parallel rendering
pipeline.

As the I/0O bottleneck has increased over time, a number
of strategies have been proposed to address the I/O bottle-
neck. Two such examples are clever and more efficient I/O
strategies, and the reduction of the size of data to write to
disk (e.g. through compression). These strategies will help,
but ultimately will not suffice in preventing the widening gap
between computational throughput and 1/0 [2].

One active area of research in addressing the I/O bottleneck
is to process the data while it is in memory and only write
a subset of the simulation data, or derived data, to disk.
These techniques, known as in situ processing, are typically
either tightly-coupled or loosely-coupled. In a tightly-coupled
scenario, the visualization is performed in the memory space
of the running application. Additional work has been done
in integrating in situ visualization into parallel visualization
tools [14] [6]. In tightly-coupled in situ, the processing is
done on the same data being used by the simulation, and the
simulation must often pause while the processing is taking
place.

The work here is done in a loosely-coupled framework,
where the simulation data is de-coupled and staged to a sec-
ondary memory location where processing can take place. In a
loosely-coupled in situ environment, the application performs
a data write (to the staged secondary memory location), and
then can continue computation. Once the data have arrived at
the secondary memory location, the data processing can be
performed. This de-coupling from the simulation code has the
advantage of being more portable and modular, not interfering
with the simulation code or compute resources, and the ability

Application

| 1 |
Staging 1 — Reader
\—'_'_ S

Fig. 1: Data staging in ADIOS. A simulation is launched with
an allocation that is divided into three groups, application,
staging, and the reader. The application writes data to the
staging nodes, and the reader reads data from the staging
nodes.

to move the data to a different set of appropriate visualization
and analysis nodes. Such nodes might, for example, contain
more main memory.

Recently, there has been research into visualization frame-
works for next generation hardware. The current de facto stan-
dard (VTK) has made a significant impact on the visualization
community over the past decade, but it is ill-equipped to run
on nodes with massive parallelism (including heterogeneous
nodes), or to represent certain types of scientific data. The
EAVL [10], DAX [12] and PISTON [8] frameworks have
been developed to address these shortcomings. PISTON has
focused on efficient algorithms for GPUs, while DAX has
focused on an execution engine for heterogenous compute
nodes. We have used EAVL, which has an advanced data
model for efficiently using memory to represent scientific
data, and an execution engine which operates on the data
model on hetereogenous compute nodes. We explore the use
of EAVL to model a production scientific simulation and
peform visualization operations in a data staging workflow
environment.

Finally, as in-situ and in-transit methods lessen the impact
of the I/O bottleneck, analysis and visualization operations be-
come increasingly compute- and memory-bound. Additionally,
as the amount and frequency of data increase, it will become
important for analysis and visualization operations to be able
to quickly perform their work, and then be prepared to process
the next simulation step.

III. SYSTEM
A. Overview

The system we are developing is architected as shown in
Figure 1. The application, in this case is the plasma fusion
simulation code XGCl1, is running on a larger allocation
within the compute cluster. A smaller allocation of nodes are
dedicated to data staging where the application transmits data
over the high speed network. A visualization service is running
on another set of allocations which reads the data directly
from the staging server, performs visualization operations, and
then saves an image for each simulation time step. The only
data that are written to disk are the images of visualization
operations, which are orders of magnitude smaller than the
original simulation data.

Our system is designed to utilize ADIOS and EAVL to
perform the data staging and visualization operations. We
briefly give an overview of these two technologies here,
then describe in detail how these are used in our system in
Section IV.

B. ADIOS

The Adaptable I/O System (ADIOS) [7], is a componen-
tization of the I/O layer used by high end simulations and/or
for high end scientific data management, providing an easy-to-
use programming interface, which can be as simple as Fortran
file I/O statements. ADIOS abstracts the API away from
implementation, allowing users to compose their applications
without detailed knowledge of the underlying software and
hardware stack. ADIOS framework has been designed with
a dual purpose: to increase the I/O throughput of simulations
using well known optimization techniques, and also to serve as
the platform for introducing novel data management solutions
for production use without extensive modifications of the target
applications.

ADIOS is used by a variety of mission critical applications
running at DOE and NSF facilities, including combustion,
materials science, fusion, seismology, and others. At the same
time, ADIOS offers the community a framework for develop-
ing next generation I/O and data analytics techniques [15][4].

To address the growing imbalance between computational
capability and I/O performance, ADIOS introduced the concept
of data staging, where rather than writing data directly to
shared backend storage devices, a staging pipeline moves data
to a transient location, on separate physical nodes and/or on
memory resources on the same node where data is generated.
Once on the staging nodes, data can be aggregated, processed,
indexed, filtered, and eventually written out to persistent stor-
age. A key outcome of staging has been dramatic reductions
in the total volume of data to be stored through the use of
in-situ and in-transit data analytics. There are several staging
transports in ADIOS, one of them being Dataspaces [5], which
provides methods for dynamic interaction patterns between
distributed scientific application processes. Providing a se-
mantically specialized shared-space abstraction to distributed
processes using staging nodes, ADIOS/DataSpaces has been
deployed with about 50 recent downloads, and is currently be-
ing used by production coupled scientific simulation workflow
on large-scale NSF and DOE resources.

C. EAVL

The Extreme-scale Analysis and Visualization Library
(EAVL) [9] [10] was developed to address three primary
objectives: update the traditional data model to handle modern
simulation codes; investigate the effiency of I/O, computation
and memory on an updated data and execution model; and
explore visualization algorithms on next-generation architec-
tures.

EAVL defines more flexible mesh, and data structures
which more efficiently supports the traditional types of data
supported by de-facto standards like VTK, but also allows for
efficient representations of non-traditional data. Examples of
non-traditional data includes graphs, mixed data types (e.g.

molecular data, high order field data, unique mesh topologies
(e.g. unstructured adaptive mesh refinement and quad-trees)).

EAVL uses a functor concept in the execution model to
allow users to write operations that are applied to data. The
functor concept in EAVL has been abstracted to allow for
execution on either the CPU or GPU, and the execution model
manages the movement of data to the particular execution
hardware.

IV. EVALUATION
A. Experiments

The goal of these experiments was to begin studying the
performance of light-weight visualization plugins in a staging
environment with an HPC application. We are interested in
both performance, scalability, and ease-of-use of these plugins.

One of the configuration parameters for XGCl1 is the
number planes in the mesh in the torrodial direction. This
parameter defines how the large the mesh, and the associated
field data are. For this experiment, we ran XGC1 with 32,
64, and 128 planes. The visualization plugin uses a spatial
decomposition of the mesh for parallelization. This spatial
decomposition is defined by the number of planes, and the
maximum number spatial domains is equal to the number of
planes in the XGC1 mesh.

For this experiment, we focused on using a single datas-
paces server and large number of visualization plugin options.
For the visualization plugin, we ran them at different con-
curency levels and node layouts to study the performance
and scalability, and we evaluate whether the visualization
operations are efficient enough for in situ analysis scenarios
where the data is changing very quickly.

The experiments were run on sith, an OLCF 40 node cluster
where each node has four 2.3 GHz 8 core AMD Opteron 6134
processors, and 64 GB of memory. We also ran the 128 plane
simulations on rhea, an OLCF 512 node cluster where each
node has dual 8 core Intel Xeon E5-2650 CPUs and 64 GB
of memory.

B. Data staging in ADIOS

Since the computational mesh in XGC1 doesn’t change
throughout the simulation, it is written once at start up. XGCl1
uses an ADIOS configuration file to specify which variables
are written, and where they are written, either to disk or to
a dataspaces server. In our test configuration, we specify that
the common field variables used for monitoring and analysis
are written to the dataspaces server after every simulation time
step of the application code. XGC1 was run with 32 planes
and 384 cores, with 64 planes and 768 cores, and finally with
128 planes and 1536 cores.

C. Visualization operations in EAVL

The visualization plugin was developed in EAVL, and
consists of a parallel data reader and a visualization pipeline
engine, and is shown in Figure 2. For this particular ex-
periment, we used a visualization pipeline consisting of an
isosurface operation, rendering in parallel using the Mesa
3D graphics library [1], and parallel image compositing. For

Visualization Plugin Visualization Plugin

ADIOS Read

ADIOS Read

Dataspaces

Server(s) Operation

Operation

Render Render

Parallel Image Composite
| J C

Final Image

Fig. 2: Overview of visualization plugins. Each plugin per-
forms a read operation, operates on the data followed by
rendering, and then a parallel image composite to produce the
final image.

parallel image compositing we experimented with two different
techniques. The first was a basic depth-based compositor
that uses MPI to perform the reduction operations, and the
second was with IceT [11]. We configured IceT to composite
a single tile using the ICET_STRATEGY_SEQUENTIAL as
the compositing strategy. This strategy results in the fastest
composite possible when rendering a single tile, as it avoids
certain MPI overhead associated with other IceT strategies.

We ran the plugin at a variety of concurrencies, from 1
process up to 128. In these experiments the visualization plugin
will read each simulation step from the dataspaces server,
perform the operation, and then write an image to disk.

V. RESULTS

Our experiments demonstrate the viability of running light-
weight visualization plugins with a production run of XGClI.
The ease of use of this system is highlighted with the fact
that no changes to the application were required, as the
modificatons to data movement are accomplished by only a
change to the ADIOS configuration file. All that is required
is then to launch the dataspaces servers and the visualization
plugins. The data management and movent is handled by the
dataspaces servers and read and processed by the visualization
plug-ins as the data become available. At each simulation step
read by the visualization plugin, an isosurface is extracted
and rendered in parallel, and the resulting image is saved to
disk. These images can easily be used for monitoring of the
simulation, and for post run analysis.

While visualization done in situ or with data staging does
not always eliminate the need for post-processing of simulation
data, it is able to automatically perform simulation monitoring
and perform a priori visualization and analysis operations. This
eliminates the ever-increasing 1/O bottleneck for these types of
very common operations.

With the reduction of the I/O bottleneck, visualization
operations become compute- and memory-bound. In these
environments, efficient representations of data in memory, and
efficient computation become a limiting factor.

We have implemented the representation of the XGClI
mesh using the advanced data model capabilities in EAVL. The

64 Plane Composite Times

32 Plane Composite Times 55

50

Seconds
Seconds

45

B .

128 Plane Composite Times

Seconds

3

m =

1024 x 1024 2048 x 2048 1024 x 1024

B IceT E3 MPI

ES IceT E3MPI

2048 x 2048

Bl IceT EMPI

2048 x 2048 1024 x 1024

Fig. 3: Composite times for concurrency and node layouts that were performed on the 32, 64, and 128 plane data sets.

flexibility in the data model allows us to represent the XGCl1
mesh between 32X and 128X more efficently than traditional
models like VTK. The unstructured mesh in XGCl is such that
a single set of nodes in the plane are rotated around the torus to
produce the entire mesh. In VTK, these nodes and cells must
be explicitly enumerated, whereas in EAVL a single plane is
fully represented, and a sequence of angles specifies where
each subsequent plane should be positioned. The particular
nodes and cells are then algorithmically determined on the fly.
Additionally, since each cell in an XGC1 mesh is a wedge,
instead of enumerating each cell type (as required in VTK),
a specialized unstructured cell type is used. This reduces the
memory requirement for the cell type information from linear
in the number of cells to a single constant.

The advanced computational model in EAVL provides the
flexibility to run on both CPUs or GPUs. While we did
not study the performance of GPUs in this experiment, they
are well documented in previous work [10]. In this set of
experiments we focused on the parallel rendering aspect of
visualization plugins. In our preliminary studies, the parallel
depth-compositing step was a signficant cost in rendering. We
experimented with an MPI-only implementation which used a
global reduction to perform Z-buffer based depth compositing
of images, and the IceT library. We experimented with a variety
of data configurations (32, 64, and 128 planes), different levels
of concurrency and layouts of visualization plugins, and image
size (1024x1024 and 2048x2048 pixels).

The plots in Figure 3 show a summarization for all the
concurrency and node layouts tests that were performed on
the 32, 64, and 128 plane data sets. The box plots show the
first to third quartile of the data, the whiskers represent data
within the 1.5 IQR of the upper and lower quartiles. The dots
above and below the whiskers identify any outliers. These plots
provide a convenient way to capture the entire essence of the
runs across each of the three data sets. While the performance
advantages of IceT are fairly small for the small image size,
it becomes more significant for the larger image size. Overall,
for the smaller 1024x1024 images, IceT out performed the
basic MPI implementation by 5%, and by 14% for the larger
2048x2048 images.

In Figure 4 we show a representative scaling study of the

1024 x 1024
—MPI ——IceT

2048 x 2048
——MPl ——Icel

5.75

Seconds

—

3.75

8 Cores 16 Cores 32 Cores 64 Cores

Fig. 4: Scalability of parallel rendering of the 64 plane data
set run on 8 nodes with varying levels of concurrency.

64 plane data set running on 8 nodes with varying levels of
concurrency. The advantages of IceT as concurrency grows is
clearly seen, especially for larger image sizes.

VI. CONCLUSIONS AND FUTURE WORK

Light-weight plugins developed in EAVL provide a viable
method for the analysis and visualization of large scientific
data within the ADIOS data staging framework. As the I/O
bottleneck is significantly reduced by data staging techniques,
visualization and analysis operations become compute- and
memory-bound. It is critical that careful attention is paid to
the efficiency of each step in a visualization pipeline. This
need will only increase as the volume and velocity of data
increases in the future.

The parallelization and general scalability of the plugins
we have experimented with give us confidence that these
methods will be effective as a tools for scientists to understand
and analyze data. We plan to continue working with larger
simulation runs, including runs of XGCI1 on the Oak Ridge

Leadership Computing Facility’s Titan supercomputer. We also
plan on working with the particle data in XGC1, which is
significantly larger than the field data on the mesh.

We also plan on making use of the ADIOS visualization
schema [13] in the plugins. The ADIOS visualization schema
makes the data streams much more self-describing and allows
for automatic data format detection, aids in feature detec-
tion, and assists in the generation of specific analyses and
visualizations. We also plan to handle more complex, multi-
stage workflows, including code coupling, and comparative
visualization.

VII. ACKNOWLEDGEMENTS

This work was supported by the SciDAC Institute of Scal-
able Data Management, Analysis and Visualization (SDAV)
funded by the DOE Office of Science through the Office of
Advanced Scientific Computing Research (Contract No. 12-
015215). Computational resources were made available by the
Oak Ridge Leadership Computing Facility.

REFERENCES

[11 The Mesa 3D Graphics Library. http://www.mesa3d.org.

[2] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow,
S. Klasky, V. Pascucci, J. Ahrens, E. Bethel, H. Childs, et al. Scientific
discovery at the exascale. report from the doe ascr 2011 workshop on
exascale data management. Analysis, and Visualization, 2, 2011.

[3] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat,
G. H. Weber, and E. W. Bethel. Extreme scaling of production
visualization software on diverse architectures. IEEE Comput. Graph.
Appl., 30(3):22-31, May 2010.

[4] 1. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki. Flexpath: Type-based
publish/subscribe system for large-scale science analytics. In I4th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting(CCGRID ’14), 2014.

[5] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction
and coordination framework for coupled simulation workflows. Cluster
Computing, 15(2):163-181, 2012.

[6] N. D. Fabian, A. C. Bauer, N. Podhorszki, R. A. Oldfield, and
U. Ayachit. In-situ visualization with catalyst. 01 2012.

[71 Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Sam-
atova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu. Hello
adios: the challenges and lessons of developing leadership class i/o
frameworks. Concurrency and Computation: Practice and Experience,
26(7):1453-1473, 2014.

[8] L.-t. Lo, C. Sewell, and J. P. Ahrens. Piston: A portable cross-platform
framework for data-parallel visualization operators. In EGPGV, pages
11-20, 2012.

[91 J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros. EAVL:
the extreme-scale analysis and visualization library. In Eurographics
Symposium on Parallel Graphics and Visualization, pages 21-30. The
Eurographics Association, 2012.

[10] J. S. Meredith, R. Sisneros, D. Pugmire, and S. Ahern. A distributed
data-parallel framework for analysis and visualization algorithm de-
velopment. In Proceedings of the 5th Annual Workshop on General
Purpose Processing with Graphics Processing Units, GPGPU-5, pages
11-19, New York, NY, USA, 2012. ACM.

[11] K. Moreland. Icet users’ guide and reference. Technical Report 2011-
5011, Sandia National Laboratory, 2011.

[12] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma. Dax toolkit:
A proposed framework for data analysis and visualization at extreme
scale. In Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on, pages 97-104, Oct 2011.

[13]

[14]

[15]

R. Tchoua, J. Choi, S. Klasky, Q. Liu, J. Logan, K. Moreland, J. Mu,
M. Parashar, N. Podhorszki, D. Pugmire, et al. Adios visualization
schema: A first step towards improving interdisciplinary collaboration
in high performance computing. In eScience (eScience), 2013 IEEE 9th
International Conference on, pages 27-34. IEEE, 2013.

B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel in situ coupling
of simulation with a fully featured visualization system. In Proceed-
ings of the 11th Eurographics Conference on Parallel Graphics and
Visualization, EG PGV’11, pages 101-109, Aire-la-Ville, Switzerland,
Switzerland, 2011. Eurographics Association.

F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi. Enabling in-situ execution of coupled scientific workflows.
In Proceedings for the 26th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2012), Shanghai, China, 2012.

