A Visualization Pipeline for Large-Scale Tractography Data

James Kress*
University of Oregon
Erik Anderson
Electrical Geodesics, Inc.
Hank Childs
Univ. of Oregon & Lawrence Berkeley Nat’l Lab

Figure 1: Our binning visualization and level-of-detail technique on a volume of 25 clusters. The image on the left uses an isovalue of 0.5, the image in the center uses an isovalue of 50, and the image on the right uses an isovalue of 125.

\textbf{ABSTRACT}

We present a novel methodology for clustering and visualizing large-scale tractography data sets. Tractography data sets contain hundreds of millions of line segments, making visualizing and understanding this data very difficult. Our method reduces and simplifies this data to create coherent groupings and visualizations. Our input is a collection of tracts, from which we derive metrics and perform clustering. Using the clustered data, we create a three-dimensional histogram that contains the counts of the number of tracts that intersect each bin. With these new data sets, we can perform standard visualization techniques. Our contribution is the visualization pipeline itself, as well as a study and evaluation schema. Our study utilizes our evaluation schema to identify the best and most influential clustering metrics, and an optimal number of clusters under varying user requirements.

\textbf{Keywords:} Tractography, Neuroscience, Visualization, Clustering

\section{1 INTRODUCTION}

Researchers studying the function and structure of the brain face a difficult imaging and visualization problem due to the complex underlying data [9]. Non-invasive methods, such as Magnetic Resonance Imaging (MRI), have been developed in order to safely generate three-dimensional representations of structural components of the living human brain. Typically, MRI data is used to provide differentiation between various tissue types (grey matter, white matter, and Cerebral Spinal Fluid (CSF)) [12]. Diffusion MRI (dMRI) builds on MRI technology to measure the diffusion of water throughout tissue [20]. Since white matter neurons are myelinated, their diffusion characteristics differ substantially from the similar grey matter neurons. Groups of these white matter neurons, or fiber tracts, form the basic connections between distant brain regions. It is believed that studying white matter fiber tracts will enable researchers to better understand the fine structure of the brain leading to a more complete understanding of how it works [28].

While tractography data is clearly useful, the size of this data often makes analysis difficult. A typical tractography data set consists of hundreds of thousands of tracts, and they can sometimes contain much more, even hundreds of millions. Further, each advance in technology allows more and more tracts to be identified. Each individual tract contains multiple line segments, typically around 300.

In our study, we considered a data set with almost 500,000 tracts and 150 million line segments.

The problem with tractography data, then, is two-fold: (1) how to operate on these large data sets? and (2) how to create meaningful results that do not visually overwhelm a medical researcher? Plotting each of the tracts and their line segments on the screen leads to a very complex scene; in the data set described above, there would be 15 line segments for every pixel of a 10002 image. Instead, techniques are needed that make the scale of the data more manageable. Specifically, techniques are needed that make tractography data smaller to operate on while also creating scenes that are more comprehensible for viewers.

With this work, we develop a novel approach for visualizing tractography data. Previous approaches have utilized clustering based on derived metrics; we build on this approach by taking each cluster and creating a new data set that represents the cluster density. This extension provides significant benefits over previous work. First, the focus on density enables a level of detail approach for adaptively controlling the amount of data displayed. Second, the approach reduces the size of the data, making it easier to work with. Finally, our cluster density representation enables evaluations that were not possible when dealing with tracts. These evaluations help us in two ways: (1) creating a better understanding of the efficacy of derived metrics that was not previously possible, and (2) allowing our algorithm to choose the best representations of the data. Putting it all together, the contributions of this paper are: (1) a new technique for the visualization of tractography data that reduces its size and provides a level of detail capability and (2) a technique for understanding which derived metrics are most useful for performing clustering.

The remainder of this paper is organized as follows: Section 2 surveys related work. Our new technique is described in Section 3. The technique is defined as a pipeline with multiple parameter values to be tuned; Section 4 describes the metrics we use to evaluate which parameter settings are best. Section 5 provides an overview of our experiment, and Section 6 describes our study over the parameter values. This study feeds into Section 7, which describes our algorithm for picking the best parameter values. Section 8 describes our experiences in practice, both in terms of carrying out the study and in terms of applying the algorithm to create new visualizations. Section 9 discusses current limitations and areas for future extension of our work.

\section{2 RELATED WORK}

\subsection{2.1 Diffusion MRI}

Understanding how the various parts of the brain are interconnected by neurons in white matter is an active topic of research [9]. dMRI
produces a series of volumetric images in which each image represents the directional strength of water diffusion in vivo. Due to the fibrous nature of myelinated white matter neurons, water diffuses more rapidly along these fibers than it does in other directions [11]. Once the dMRI data is acquired, the various images of directional diffusion are coalesced into a single three-dimensional image of high-order elements. Generally, these reconstructed images are referred to as diffusivity images. While there exist many methods to create diffusivity images [15, 30, 33], each method requires different data acquisition protocols that may drastically change the time it takes to capture the overall dMRI scan. As this work focuses on the Diffusion Tensor Imaging (DTI) family of dMRI reconstructions, we restrict our discussion of fiber tractography methods to those that may use this representation. One of the simpler reconstruction techniques, DTL, uses symmetric, rank two diffusion tensors as basic elements in the diffusivity image. Scans to be used with DTI reconstructions are considered fast to acquire (approximately fifteen minutes), enabling their use with at risk populations, children, and patients that may not tolerate long scanning times [26].

2.2 White Matter Fiber Tractography

In order to study the connectivity of the brain, white matter fiber tracts must be estimated from the diffusivity image. Tractography reconstruction algorithms may be divided into two large classes: probabilistic strategies, and deterministic ones [10]. Probabilistic tractography algorithms, such as Yendiki et al.’s TRACULA [33], use Bayesian frameworks to generate volumetric distributions of pathway likelihoods. A more complete discussion of probabilistic tractography is given by the work of Jbabdi et al. [19]. Deterministic approaches to tractography, such as the FACT method [23], integrate the diffusion tensor field to generate streamlines representing recovered fiber paths.

Both probabilistic and deterministic methods for tractography reconstruction may be local or global in nature. Local reconstructions seed positions at a small region of the brain in order to discover how a single cortical region is connected. Global methods, on the other hand, densely seed the white matter volume in order to capture a more holistic view of white matter fiber paths.

Unfortunately, global tractography methods may take hours to complete and produce large amounts of data. Only through the use of data reduction techniques can these data be analyzed to learn more about the brain’s connectivity. In this work, we rely on the global tractography methods and acquisition parameters proposed by Scherrer et al. in order to generate the large tractography data sets required to best understand the interconnectivity of the brain [29].

2.3 Visualization of Tractography

The visualization of whole brain tractography can generally be separated into two groups: (1) visualization of clustered tractography and (2) visualization of non-clustered tractography. We explore closely related works in sections 2.3.1 and 2.3.2 respectively.

2.3.1 Clustered Tractography

Partitioning tracts into groupings is an important step in analyzing and understanding a tractography data set. Often, this partitioning is done by clustering. Tractography clustering breaks down to two components: (1) the tract similarity metrics used to perform the clustering and (2) the clustering method.

Clustering methods can generally be broken down into two different general themes: (1) Cartesian clustering and (2) anatomical clustering. Each of these clustering approaches attempts to provide answers to the same general questions. Anatomical clusterings use existing knowledge of the brains structure to make assumptions about how a given data set should be partitioned. Cartesian clusterings on the other hand, solely use information that can be derived from individual tracts or the data set as a whole, to create metrics and a final clustering.

There has been substantial work on clustering methods and metrics in the past, especially in Cartesian clustering. Visser et al. [31] and Moberts et al. [22] both employ the use of hierarchical clustering using variations of the pairwise distance between tracts as their tract similarity metrics. This work is important in that it does not use anatomical knowledge to perform the clustering, but relies solely on the characteristics of the data set at hand. The drawback of this implementation however, is that it does not consider multiple aspects of the tract or the data set. There are other metrics that can be calculated on a per tract basis that could lead to a more comprehensive clustering.

Brun et al. [5] and Batchelor et al. [3] address this issue of low order clustering metrics, by each using multiple metrics. Brun et al. creates a feature vector representing each tract using the mean of coordinates of all points on the tract, as well as the covariance of the coordinates in a 3D space. Using this feature vector, pairwise tract comparisons are performed to create a weighted undirected graph, and partitions this space using normalized cuts. Whereas, Batchelor et al. takes it a step further, and defines more metrics, by using curvatures, torsions, and Fourier descriptors.

O’Donnel et al. [24] and Voineskos et al. [32] take a slightly divergent path, and use derived clustering metrics, but do so only for selected regions of interest where they perform their clusterings. They employ a spectral clustering technique that uses a similarity metric that is a modification of the Hausdorff distance (the upper bound of the minimal point-to-point distance between tracts), using high distances as low similarity and low distances as high similarity. This approach is taken primarily to increase clustering speed, while potentially sacrificing the insights that can be gained from whole brain clustering and visualization.

Often, Cartesian clustering is extended through the use of anatomical maps. One such example comes from Guevara et al. [17]. They defined a robust clustering system for tractography data composed of a five step process, two steps of which are partitioning and Cartesian clustering. The partitioning is used to break the brain down into anatomical regions, and hierarchical clustering is performed separately in each region. The preprocess step of partitioning does allow for faster clustering, but may hide more natural clusterings of the data, i.e., where tracts from neighboring subsets intersect.

Another example comes from Ros et al. [27]. They proposed a clustering method using a hybrid of hierarchical clustering and an atlas-based classification. Their clustering classification is unique in that they develop a method called CASTOR (Cluster Analysis Through Smartly Extracted Representatives), which reduces the clustering space overhead. This allows for faster clusterings, but relies on the soundness of the representatives in creating coherent and meaningful clusters.

Finally, Flandin et al. [14] utilized a K-means clustering based on a geodesic distance to partition functional Magnetic Resonance Image data. Their work was unique in that they utilized K-means as a method for partitioning brain region activation data, which is data that indicates regions of activity in a brain during a given task. This data is much more localized than tractography data, which can span the entire length of the brain, but does show promising results for the applicability of K-means clustering with medical data.

Summarizing the previous related work, all previous efforts use metrics derived from the input data set as input to their clustering algorithms. However, many of the works do not describe their metrics, used metrics not suitable for whole brain clustering, or, alternatively, describe metrics that are not suitable for large data (for example, the work of [22, 31] considers pairwise metrics between all tracts). For our study, our focus is on the methodology that transform tractography data into a smaller form for interactive
cluster visualization. Our methodology is conceptually capable of dealing with any per-tract metric, and we consider six such metrics in our own experiments.

2.3.2 Non-Clustered Tractography

Very little work has been done in the area of whole brain tractography visualization. Most often, simple line or tube representations are used to portray the data. These techniques have drawbacks however, the most prominent of which are a lack of depth and locality information.

One recent work by Petrovic et al. [25] extends the tube representation to not only include enhanced depth information, but also add an intricate in-image tract labeling system. This work does provide a well defined sense of locality of the tracts within the data set, and is implemented as a GPU-based renderer. One important contribution of this work is a level of detail management system that occludes low level tracts when the user is too far away to meaningfully view them. This enhances the speed and performance of the system, but lacks a fine tuning ability for a user to directly dial in the exact level of detail they need.

Two other works [13, 16] follow the same general pattern of Petrovic et al., and provide new and different ways of emphasizing tracts within the view plane. However, one item missing from each of these methods is that they do not focus on data reduction or gaining insight into the structural qualities of the brain. Instead, they focus on the beautification of the very dense data they display.

With our study, we present a new visualization technique that incorporates important aspects from each of these works. We extend those works by enhancing the level of detail abilities of the rendering, and enabling interactive rendering of individual clusters. This ability combined with the space saving size of the visualization files, combine to form an intuitive visualization method for large-scale tractography data sets.

3 Methodology

Our method transforms tractography data into a set of three-dimensional histograms through a series of transformations. These histograms can then be visualized with traditional techniques. The transform has free parameters that affect how the transform is carried out. As the output of the transform varies greatly based on parameter choices, a key part of our methodology is to locate the parameter values that optimize the output.

In the following sections, we describe the details of the transform and the parameters that affect it (Section 3.1), how we evaluate whether one set of parameters is better than another (Section 3.2), and, lastly, we discuss the visualization options for our histograms (Section 3.3).

3.1 Transform

The transform occurs over three distinct phases: (1) calculating metrics on individual tracts, (2) clustering the tracts using these metrics, and (3) binning the tractography data for each cluster into a three-dimensional histogram. The first transformation takes raw tracts (sets of line segments) and creates derived values through the use of different metrics (discussed in Section 3.1.1). The second transformation uses the metrics to cluster the tracts, with individual clusters of tracts being saved for later use (discussed in Section 3.1.2). The third transformation takes the clustered tracts and creates a set of three-dimensional histograms, with one histogram created and saved per cluster (discussed in Section 3.1.3). The resulting data can then be visualized using traditional scientific visualization techniques. Figure 2 illustrates the individual stages of our transform.

The following subsections describe each of the phases in the transform.

3.1.1 Tractography Metrics: Phase I

The purpose of this phase is to augment each tract in the data set with descriptive values. We do this by calculating metrics on a per-tract basis, and we considered six metrics in this study. In order to prevent some metrics from overwhelming others, all metrics were normalized to values between 0 and 1.

The motivation for choosing these six metrics was based on several constraints and goals we had for this study. Metrics should be calculated on a per tract basis, and not by comparing two or more tracts. Additionally, we wanted to create clusterings of tracts that were similarly sized and in similar positions within the brain. Other metrics can easily be added to our system at any time, and should be added when the goals of the clusterings change. For example, if we wanted to cluster similarly shaped tracts together, we could add metrics such as torsion and Fourier-descriptors. In this study however, we were specifically trying to prevent shape characteristics from overwhelming our location characteristics, so they were not included in this analysis.

The six metrics were:
- Tract Area (A), computed by taking the area of the bounding box around a tract.
- Tract Length (L), computed by summing the individual line segment lengths between each pair of points that compose a tract.
- Tract Curvature (C), computed by evaluating the maximum curvature along a tract. Specifically, we considered each pair of connected line segments within a tract, calculated its curvature, and then assigned the maximum value as the curvature of the tract.
- Tract Linear Distance (LD), computed by calculating the linear distance between the starting and ending points of a tract.
- Tract Start Position (SP), computed by calculating the linear distance from the starting point in a tract to a reference point. This was actually a family of metrics, measuring distance from three different reference points. Each of the reference points coincided with the bounding box of the overall data set.
- Tract End Position (EP), computed similarly to Tract Start Position, but using the last point in a tract.

While it is possible to use all six of these metrics, it is not clear that they are all useful, i.e., that they lead to better clusterings. So we treat the metrics as one of our free parameters, i.e., which metrics should be used to cluster? We allow for all combinations except for the choice where none of the six metrics are used, meaning there were 2^6 - 1 or 63 parameter choices.

3.1.2 Tractography Clustering: Phase II

The purpose of this phase is to cluster tracts, and this is done using the metrics from Phase I. The output of Phase II is k clusters, with the clusters forming a partition over the original tractography data.

To perform the clustering, we opted to use the K-means++ algorithm [2]. The goal of K-means++ is to partition n observations (tracts) into k clusters which minimize intra-cluster variance. K-means++ operates similarly to the K-means algorithm, only differing in the selection of initial seed locations. Tracts are represented by their metric values. That is, when a combination of metrics is used for clustering, they combine to form a point in the Cartesian frame and intra-cluster variance is minimized using these points. The intra-cluster variance is calculated based on the clustering domain in this Cartesian space. The algorithm starts by distributing k centroid points in the clustering domain. The points are placed according to the updated initialization algorithm developed by Arthur and Vassilvitskii [2]. The algorithm then iterates through a series of steps that update the positions of the k centroid points, attempting to minimize the intra-cluster sum of squares.
Let \(k \) be as low as one (meaning one cluster total) and as high as \(N_{\text{tracts}} \) (meaning one cluster per tract), both of these extremes are likely sub-optimal in terms of maximizing user insight. We leave \(k \) as a free parameter for our subsequent optimization phase and note that this means there is a total of \(N_{\text{tracts}} \) options for the value of \(k \).

3.1.3 Tractography Binning: Phase III

The purpose of this phase is to create bins of the tractography data, i.e., a three-dimensional histogram. These three-dimensional histograms provide density information for a cluster by indicating the number of tracts running through that region, allowing visualizations to focus on regions with higher densities in the binned volumes. We use the clusters created in the previous step to create and save one three-dimensional binned volume per cluster. The binning of the tracts is accomplished in two steps:

1. A binning volume is created to store a count of the number of tracts that cross any given bin in the volume. This volume is sized to be large enough to encompass the minimum and maximum extents of the entire input tractography data set.
2. Counts for each bin are calculated. This is done by considering each segment of each tract, determining the bins that each segment overlaps, and increasing the counts in those bins accordingly.

The Tract Binning step in Figure 2 demonstrates the binning concept in two dimensions.

One control in this process is the granularity of the histogram, i.e., the total number of bins in the volume. If the total number of bins is high, then the storage costs are higher, but the subsequent visualizations are at a finer resolution. On the other hand, if the total number of bins is low, then the storage costs are lower, but the subsequent visualizations are coarser.

For our tests, we fixed the grid resolution to be \(420 \times 420 \times 420 \). This resolution was chosen as it fine enough to capture features of the underlying tractography data set. With a lower resolution, we would have lost many of the finer structures within the data. This resolution was chosen as it fine enough to capture features of the underlying tractography data set. With a lower resolution, we would have lost many of the finer structures within the data set. Additionally, this resolution was small enough to allow for interactive visualization of individual clusters. We feel that this resolution is representative of the detail needed for representing this data, and thus, did not treat grid size as a free parameter during the optimization phase.

3.2 Choices for Free Parameters

Let \((m,k)\) be a choice in the parameter space, such that:

- \(m \) is a Boolean tuple. In our study, the tuple had six elements, since we considered six metrics. The value of \(m[i] \) was true if the \(i^{th} \) metric was used as an input to the clustering and false otherwise. This was the free parameter associated with Phase 1 (Section 3.1.1).
- \(k \) is an integer denoting the total number of clusters. This was the free parameter associated with Phase 2 (Section 3.1.2).

We then chose an \((m,k)\) configuration and ran the clustering and evaluation steps based on those inputs.

Discussion of our approach for evaluating the optimum set of free parameters can be found in Section 4.

3.3 Interactive Cluster Exploration

The cluster histograms from our three-phase process enable interactive exploration either of the entire tractography data set or of individual clusters. There are multiple end user tools for large-scale visualization that can be used to accomplish this task. Examples include VisIt [7], ParaView [1], EnSight [8], and FieldView [21]. These tools provide interactivity through parallelization: parallel I/O requests, parallel processing, and parallel rendering [6]. As an additional benefit, these tools provide rich sets of algorithms. One particularly useful algorithm for our study was the ability to identify connected components on large data sets [18], and to then discard small components.

For our study we utilized VisIt. Using the VisIt isosurfacing filter on cluster histograms readily shows the areas that have high concentrations of tracts, and hides areas with low concentrations. Visualizing the data like this provides an intuitive level of detail approach for setting the amount of displayed detail needed for accomplishing exploration tasks.

4 Selecting Free Parameters

Our goal is to select a tuple of free parameters \((m,k)\) such that the resulting histograms from the transform process are optimized for the user.

4.1 Evaluation Metrics

We considered two metrics to evaluate this optimization:

1. **The depth complexity:** This metric captures, on average, the number of cluster components stacked up in depth along a pixel. If the depth complexity is low, then the scene is likely comprehensible for the viewer. However, a low choice may force unrelated things to be grouped together into the same cluster.
2. **The average number of connected components per cluster:** See Figure 3, which shows a single cluster that contains multiple components, i.e., distinct regions that do not touch. Ideally, each cluster would have exactly one component, meaning the clustering algorithm grouped only very similar things together. However, in practice, each cluster contains multiple components; achieving one component per cluster requires increasing the total number of clusters \(k \) to a point that increases the depth complexity.

Our two metrics, then, are in tension. Minimal depth complexity is achieved by setting \(k \) to one (and thus having many connected components per cluster) and minimal connected components per cluster is achieved by setting \(k \) to be the same as the number of tracts (and thus having very high depth complexity). Our approach
was to allow the user to set a cutoff for acceptable depth complexity. Our thinking was that the user would want the most information that they could comprehend, and that the depth complexity should be fixed to be at that point.

We therefore define optimal to mean the choice of (m,k) that produces the combination with the lowest depth complexity and lowest average number of connected components.

4.2 Search Space
Optimizing the selection of the free parameters required many different data runs to be conducted in a search space that contains up to $N_{\text{tracts}} \times 63$ possible configurations. We evaluated which values for the free parameters, (m,k), produced optimized clusterings, and present our findings in Section 6.

5 Experimental Overview
5.1 Clustering Software
Three distinct pieces of software were used in this work. We developed the first and third and utilized existing software for the second piece.

The first piece of software creates the derived clustering metrics. This code reads through the entire tractography data set, and creates metrics for each tract. These metrics are then given to the clustering software to perform clustering.

The second piece of software is the clustering software; the ALGLIB Free Edition package [4]. ALGLIB is a cross-platform numerical analysis and data processing library. Specifically, we used the ALGLIB k-means++ clustering implementation for all clustering tests.

The third piece of software is the binning code. This code creates a 3D grid space with a given resolution, and then bins an input tractography data set. This binning is performed by calculating which bin faces the tract intersects by tracking which bin faces the tract intersects.

5.2 Data Set
We used one data set in our evaluation. The data set that we worked with was generated by Electrical Geodesics Inc. The data set contained a total of 496,646 tracts, each of which was composed of approximately 300 individual line segments, for a total of 3.6 Gigabytes.

5.3 Experimental Machines
Two different machines were used during the development and evaluation stages of our work:

- A desktop computer containing two 2.60 GHz Intel Xeon(R) E5-2650 v2 8 core CPUs and a total of 64 GB of memory.
- The parallel Oak Ridge National Laboratory Sith machine, containing 39 nodes. Each node contains four 2.3 GHz 8 core AMD Opteron processors and 64 GB of memory, configured with an 86 TB Lustre file system for scratch space.

We ran more than 15,000 different test configurations during the course of our study, and used more than 50,000 node hours.

6 Exploring Relationships over (m,k)
Our analysis of (m,k) consisted of two distinct experiments. In the first, we explored the relationships and patterns in our tractography metrics (m) from Section 3.1.1. In the second, we explore the effects of varying the value for (k). The analysis of these two experiments are in Sections 6.1 and 6.2, respectively.

6.1 Selecting Optimal Values for (m)
As the target value for (k) varies, the best set of metrics (m) may also vary. That is, for some clusters, one set of metrics may be best, and, for other clusters, another set of metrics may be best. With this first part of our analysis, we wanted to understand how the various configurations of (m) affected clustering quality for varying values of (k).

To determine this relationship, we set up a series of tests using every possible combination of (m), with eight different values for (k). From these runs we then plotted and evaluated the clustering performance at each value of (k), using the metrics we defined in Section 3.1.1. The plots show a persistent pattern in the quality of the clusterings produced, as shown in Figure 4. There are six distinct groups that form for every value of (k) studied. These groups demonstrate that the quality of the clusterings produced by different values of (m) are fairly persistent across different values for (k).

We demonstrate this persistence with the colored values in each of the plots that show three of the best values for (m), and how they track across various (k).

From this data we can say which metrics (discussed in Section 3.1) are more useful than others, and which combinations of metrics produce the best clusterings under our evaluation schema. The absolute worst clusterings are featured in the upper four groupings in each of the graphs. Consistently, the worst metric was curvature used by itself. In every test, this produced the number one worst result. In fact, when Area, Length, Curvature, and Linear Distance are used alone, their performance is worse than when any combination of metrics is used, and significantly worse, than when Start Position and End Position are used on their own. Table 1 demonstrates the performance of each of the clustering metrics used singularly. This table is representative of the results seen at other values of (k).

We were able to conclude that to have a clustering that performed well under our evaluation, it had to include Start Position, End Position, or both. Used singularly with other metrics, they performed well, but not as well when used together. Further, when both are used in conjunction with Length, Area, or both Length and Area, we saw the best performing clusterings.

A further clear trend in this analysis is that we are generally able to pick metrics that reduce both the number of connected components and the total surface area of our clusterings. That is, our optimal metrics generally had both the lowest number of connected components and surface areas of all the metric combinations studied. Occasionally, depending on the (k) used, one or more of our chosen metrics would not have the lowest number of connected components when compared against all of the other metrics (e.g. 4(d)), but they would have a substantially lower surface area. This performance remained consistent throughout our tests, meaning that the target value for (k) varied, the best set of metrics (m) may also vary. That is, for some clusters, one set of metrics may be best, and, for other clusters, another set of metrics may be best. With this first part of our analysis, we wanted to understand how the various configurations of (m) affected clustering quality for varying values of (k).

To determine this relationship, we set up a series of tests using every possible combination of (m), with eight different values for (k). From these runs we then plotted and evaluated the clustering performance at each value of (k), using the metrics we defined in Section 3.1.1. The plots show a persistent pattern in the quality of the clusterings produced, as shown in Figure 4. There are six distinct groups that form for every value of (k) studied. These groups demonstrate that the quality of the clusterings produced by different values of (m) are fairly persistent across different values for (k).

We demonstrate this persistence with the colored values in each of the plots that show three of the best values for (m), and how they track across various (k).

From this data we can say which metrics (discussed in Section 3.1) are more useful than others, and which combinations of metrics produce the best clusterings under our evaluation schema. The absolute worst clusterings are featured in the upper four groupings in each of the graphs. Consistently, the worst metric was curvature used by itself. In every test, this produced the number one worst result. In fact, when Area, Length, Curvature, and Linear Distance are used alone, their performance is worse than when any combination of metrics is used, and significantly worse, than when Start Position and End Position are used on their own. Table 1 demonstrates the performance of each of the clustering metrics used singularly. This table is representative of the results seen at other values of (k).

We were able to conclude that to have a clustering that performed well under our evaluation, it had to include Start Position, End Position, or both. Used singularly with other metrics, they performed well, but not as well when used together. Further, when both are used in conjunction with Length, Area, or both Length and Area, we saw the best performing clusterings.

A further clear trend in this analysis is that we are generally able to pick metrics that reduce both the number of connected components and the total surface area of our clusterings. That is, our optimal metrics generally had both the lowest number of connected components and surface areas of all the metric combinations studied. Occasionally, depending on the (k) used, one or more of our chosen metrics would not have the lowest number of connected components when compared against all of the other metrics (e.g. 4(d)), but they would have a substantially lower surface area. This performance remained consistent throughout our tests, meaning that the target value for (k) varied, the best set of metrics (m) may also vary. That is, for some clusters, one set of metrics may be best, and, for other clusters, another set of metrics may be best. With this first part of our analysis, we wanted to understand how the various configurations of (m) affected clustering quality for varying values of (k).

To determine this relationship, we set up a series of tests using every possible combination of (m), with eight different values for (k). From these runs we then plotted and evaluated the clustering performance at each value of (k), using the metrics we defined in Section 3.1.1. The plots show a persistent pattern in the quality of the clusterings produced, as shown in Figure 4. There are six distinct groups that form for every value of (k) studied. These groups demonstrate that the quality of the clusterings produced by different values of (m) are fairly persistent across different values for (k).

We demonstrate this persistence with the colored values in each of the plots that show three of the best values for (m), and how they track across various (k).

From this data we can say which metrics (discussed in Section 3.1) are more useful than others, and which combinations of metrics produce the best clusterings under our evaluation schema. The absolute worst clusterings are featured in the upper four groupings in each of the graphs. Consistently, the worst metric was curvature used by itself. In every test, this produced the number one worst result. In fact, when Area, Length, Curvature, and Linear Distance are used alone, their performance is worse than when any combination of metrics is used, and significantly worse, than when Start Position and End Position are used on their own. Table 1 demonstrates the performance of each of the clustering metrics used singularly. This table is representative of the results seen at other values of (k).

We were able to conclude that to have a clustering that performed well under our evaluation, it had to include Start Position, End Position, or both. Used singularly with other metrics, they performed well, but not as well when used together. Further, when both are used in conjunction with Length, Area, or both Length and Area, we saw the best performing clusterings.

A further clear trend in this analysis is that we are generally able to pick metrics that reduce both the number of connected components and the total surface area of our clusterings. That is, our optimal metrics generally had both the lowest number of connected components and surface areas of all the metric combinations studied. Occasionally, depending on the (k) used, one or more of our chosen metrics would not have the lowest number of connected components when compared against all of the other metrics (e.g. 4(d)), but they would have a substantially lower surface area. This performance remained consistent throughout our tests, meaning
that we are able to eliminate the majority of \((m)\) from consideration when optimizing \((k)\).

Three of the top performing metrics were:

- L/SP/EP: Length, Start Position, End Position
- SP/EP/A: Start Position, End Position, Area
- L/SP/EP/A: Length, Start Position, End Position, Area

We treated these three metrics as optimal configurations for the remaining tests in our study. We could have also chosen SP/EP, L/C/SP/EP, or L/C/A/SP/EP, but they were less persistent across tests, and showed more variation.

6.2 Studying the Effects of \((k)\)

As the value for \((k)\) varies, the performance of our clusterings, based on the metrics from Section 4, will vary. In order to understand the trends in performance, we ran tests on 200 values for \((k)\), using the top three optimal metrics as determined in Section 6.1. From these runs we then plotted and evaluated the clustering performance at each value of \((k)\).

The plot in Figure 5 shows the two trends for our evaluation criteria. The lower the value of \((k)\), the more connected components per cluster. While the higher the value of \((k)\), the fewer connected components. The initial decreases in average number of connected components as the values for \((k)\) vary from \((k = 1)\) to \((k = 25)\) are substantial, dropping from 66 to approximately 7.7.

Another trend in Figure 5 is that surface area increases as \((k)\) increases. As each new cluster is introduced, the surface area rises, giving us a constantly increasing surface area for larger and larger values of \((k)\). This is opposite the trend seen with average number of connected components, which constantly decreases with higher values of \((k)\).

An important observation from Figure 5 is that the benefits of increasing the number of clusters diminishes quickly. The average number of connected components for \((k = 30)\) using the L/SP/EP/A metric is 6.3. Whereas, using the same metric at \((k = 200)\), the average number of connected components only drops to 2.75, while surface area rises from 1.08 million to 1.98 million. The drop in average connected components is quite small when compared to the large rise in total surface area, and the added visual complexity of 170 more clusters.

7 Algorithm for Selecting \((m.k)\)

Given the optimum set of clustering metrics from Section 6.1, and the clustering performance curves from Section 6.2, we can now describe an algorithm for selecting \((m.k)\) pairs.

Given a depth complexity requirement, we can select a value for \((m,k)\) that produces the optimal configuration. In our study, we use total surface area of all clusters to analogously represent depth complexity. We do this by making the following assumptions:

- The tracts were binned on a \(420^2\) grid;
- An orthographic projection (any projection will do, but this simplifies calculations);
- The data set projects to cover the whole image;
- The user sets a depth complexity requirement per pixel (e.g., 6.5 triangles per pixel in depth on average).

Figure 6 demonstrates the depth complexity of the scene for eight different values, from \((k = 25)\) to \((k = 200)\), in increments of 25. An important point to note in this image is that all of the clusters are being displayed, meaning that the depth complexity is at its highest. During an exploration task many clusters can and should be turned off in the visualization, and since they are all binned and stored separately this is quick and easy to accomplish. By turning off many of the clusters during exploration, only the data and areas of interest will be displayed, making the exploration more meaningful.

![Figure 6](image_url)

Figure 5: Average number of connected components per cluster \((o)\) versus the total surface area of all clusters \((+\)\) using the three optimum clustering metrics.
Using our assumptions, we can then start by selecting a value for \(k \). Assuming the user asks for a depth complexity of 6.5, we start by multiplying 6.5 by the number of grid cells in a single plane of the data, \(420^2 \), which gives us our analogous surface area value 1,146,600. Using the surface area value, we then search for a \((k) \) that creates clusters as close to this surface area value as possible. Visually, this process corresponds to drawing a horizontal line across the total surface area curve from our chart at the total surface area value of 1,146,600, as in Figure 7. We then draw a vertical line down to the x-axis, to get the values for \((m) \) and \((k) \). This line gives a value of \((k = 36) \), and the \((m) \) at that point produces the fewest number of connected components, \((m = L/SP/EP/A) \).

8 Method in Practice

Our software pipeline consists of three distinct phases: (1) Creating Derived Metrics; (2) Clustering; and (3) Binning. Each stage of this pipeline is constrained by different time and size bounds. In Table 2, we present the time and size complexity of each stage in Big O notation.

Clustering is the most time intensive phase in our pipeline, as it is dependent on the number of clusters, the number of input tracts, and the dimensionality of the derived clustering metrics. As more clusters, tracts, or dimensions are introduced, the clustering time will likewise increase. The current clustering implementation will likely present a bottleneck for tractography data sets that contain hundreds of millions of tracts. However, this can be addressed through the use of parallel clustering such as the method described by Zhao et al. [34]. We did not address parallel clustering in the scope of this work as our studies did not require it.

The phase in our pipeline that generates the most data is binning. A new file is created for each cluster generated, at a fixed size per file dependent on the grid size. These files represent regular grids, and due to the data locality introduced by clustering, these files end up with large very sparse regions. Using compression, we are able to compress these files at a minimum ratio of 370 to 1, using our current input data set. This compression leaves us with clustered binary files that are much smaller than the input data set, reducing the storage overhead associated with the raw tract files. Table 3 shows the total visualization file sizes and run times for the clustering section of the pipeline for eight varied values of \((k) \).

As demonstrated in Table 3, file sizes for the binary clustered files become quite large as the number of clusters grows beyond 50. Large enough, in fact, that visualizing this data on a single commodity node becomes prohibitive due to RAM limitations. This obstacle can be overcome by utilizing a visualization tool that operates on sparse data in compressed form, however, we did not investigate this path. Instead, we accomplished the visualization for large numbers of clusters using a distributed memory version of VisIt, running across multiple nodes on Sith.

One effective visualization technique that emphasizes areas of high tract concentration is isosurfacing. In Figure 1 you can see the areas of very high tract density emphasized as higher isovalue areas of very high tract concentration is isosurfacing. In Figure 1 you can see the areas of very high tract density emphasized as higher isovalue areas.

8.1 Example Workflow

Each stage in our pipeline is presented below, along with a representative amount of time spent in that section using a value of \((k = 50) \).

- Creating Derived Metrics (82 seconds)
 - This stage calculates the derived metrics for each tract so that clustering can be performed. For the data we

<table>
<thead>
<tr>
<th>Derived Metrics</th>
<th>Clustering</th>
<th>Binning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time: (O(\max(n \times d) \times k) \times \log(n))</td>
<td>(O(n \times s \times k \times g^3))</td>
<td>(O(n \times d))</td>
</tr>
<tr>
<td>Size: (O(n \times d))</td>
<td>(O(n))</td>
<td>(O(k \times g^3))</td>
</tr>
</tbody>
</table>

(* Represents size for uncompressed sparse grid)
from the experiments we did perform: based on the data and user input. Our experiments were not ex-
clustering and visualization of large scale tractography data, as well

The aim of our study was to create a pipeline that would enable the
data.

Overall, the total time to generate 50 clusters and perform an initial
visualization tool that operates on sparse data. The major-
ity of this time is spent in I/O; new isosurfaces can be
calculated in approximately 10 seconds, and rendering
occurs at approximately 10 frames per second.

Overall, the total time to generate 50 clusters and perform an initial
visualization with the current input data size is approximately 13.6
minutes. This time can still be reduced by exploring parallel clus-
tering and a visualization tool that operates on compressed sparse
data.

dematics. This space savings will likely be even larger on data sets
with 10’s of millions of tracts, and when the number of clusters is
increased.

ACKNOWLEDGMENTS

The authors wish to acknowledge the computational resources that
were generously made available by the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, Oak Ridge
TN.

10 CONCLUSIONS AND FUTURE WORK

We have described a methodology for the interactive visualization of
individual clusters of tractography data. We have shown the cre-
ation of whole brain tractography clusters based on the creation of
derived metrics and K-means++ clustering. We have shown a
process under which the set of optimal clustering metrics chosen
from the initial set of clustering metrics can be found, as well as a
method for evaluating and determining the optimal number of clus-
ters. Our clusterings, combined with our binning visualization tech-
nique, provide a unique visualization and space saving solution.

Using compression, we are able to drastically reduce the size of
our binned data sets, below that of the size of the original input
data set. This space savings will likely be even larger on data sets
with 10’s of millions of tracts, and when the number of clusters is
increased.

REFERENCES

work. In C. Hansen and C. Johnson, editors, The Visualization Hand-
seeding. In Proceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 1027–1035. Society for Industrial
A. Connelly. Quantification of the shape of fiber tracts. Magnetic
Clustering fiber tracers using normalized cuts. In Medical Image Com-
Visualization—Enabling Extreme-Scale Scientific Insight, pages 9–24,
mire, K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan,
T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel,
M. Durant, J. M. Favre, and P. Navrátíl. VisIt: An End-User Tool For
Visualizing and Analyzing Very Large Data. In High Performance
Visualization—Enabling Extreme-Scale Scientific Insight, pages 357–

10.1007/978-3-642-32220-0_10

