
Comparing Time-to-Solution for In Situ
Visualization Paradigms at Scale

James Kress*

Oak Ridge National Laboratory
University of Oregon

Matthew Larsen
Lawrence Livermore National Laboratory

Jong Choi
Oak Ridge National Laboratory

Mark Kim
Oak Ridge National Laboratory

Matthew Wolf
Oak Ridge National Laboratory

Norbert Podhorszki
Oak Ridge National Laboratory

Scott Klasky
Oak Ridge National Laboratory

Hank Childs
University of Oregon

David Pugmire
Oak Ridge National Laboratory

1 INTRODUCTION

This short paper considers time-to-solution for two in situ visualiza-
tion paradigms: in-line and in-transit. It is a follow-on work to two
previous studies. The first study [13] considered time-to-solution
(wall clock time) and total cost (total node seconds incurred) for a
single visualization algorithm (isosurfacing). The second study [14]
considered only total cost and added a second algorithm (volume
rendering). This short paper completes the evaluation, considering
time-to-solution for both algorithms. In particular, it extends the
first study by adding additional insights from including a second
algorithm at larger scale and by doing more extended and formal
analysis regarding time-to-solution. Further, it complements the
second study as the best in situ configuration to choose can vary
when considering time-to-solution over cost. It also makes use of
the same data corpus used in the second study, although that data
corpus has been refactored with time-to-solution in mind.

While total cost is often a computational scientist’s most impor-
tant goal when considering in situ paradigms, we believe that there
are multiple use cases in HPC that motivate time-to-solution. One
motivation for this problem includes “urgent HPC,” i.e., real-time
monitoring and fast turnaround. Examples include weather predic-
tion [18], wildfires [22], hurricanes [12], earthquakes [10], and other
catastrophic global events [5]. In these cases, fast in situ visualiza-
tion helps the overall goal of each simulation. Another motivation
is when domain scientists are actively studying the results (urgent
HPC or otherwise) and would like to get visualizations as quickly
as possible. One important use case within this latter motivation is
the combination of simulation, observation, and experiment [9, 27].
Overall, these motivations form the fundamental premise behind
this study: that in some cases domain scientists will want in situ
visualization results as quickly as possible.

To this end, we present a study comparing time-to-solution for
in-line and in-transit in situ visualization, measuring impact on the
ability of the simulation to progress quickly. Our contributions from
this study inform desirable in situ configurations across a variety of
simulation scales for both a computation-bound and communication-
bound visualization operation.

2 RELATED WORKS

There are many resources that consider motivation, challenges, and
solutions for in situ processing, for example [3,6,26], as well as many
others which are summarized in our two preceding studies [13, 14].

With respect to this current paper, there are several studies that
specifically consider time-to-solution from the perspective of in-

*e-mail: kressjm@ornl.gov

transit and in-line. Morozov et al. [24] describes a system for
launching in situ/in-transit analysis routines, and compares each
in situ technique based on time to solution for two different analysis
operations. Friesen et al. [8] describes a setup where in-line and
in-transit visualization are used in conjunction with a cosmological
code to run two different analysis routines. Bennett et al. [4] use
both in-line and in-transit techniques for analysis and visualization
of a turbulent combustion code. Ayachit et al. [2] performed a study
of the overheads associate with using the generic SENSEI data in-
terface to perform in situ analysis using both in-line and in-transit
methods. The common theme between these and other studies is that
they primarily consider analysis pipelines, which can have differ-
ent communication and computation overheads versus visualization
pipelines. As such, we expect visualization algorithms to exhibit
significantly different patterns than those observed in those works
that focused specifically on analysis pipelines.

There are four highly relevant works preciding this work:
• Oldfield et al. [25] consider in-transit and in-line times for

analysis tasks, but only see a small margin of cases where
in-transit is faster, due to the scaling characteristics of the
algorithms they studied.

• Malakar et al. did twin studies on cost models, one for in-
line [19] and one for in-transit [20]. These studies did not
consider optimizing the time-to-solution. Instead, they consid-
ered optimizing analysis frequencies and resource allocations,
which is complementary to our effort.

• The authors of this paper considered tradeoffs between in-
transit and in-line in two previous works [13, 14]. The first
previous study showed strong evidence for in-transit time sav-
ings for the simulation. However, the algorithm considered
was computation-heavy, so the extent of the effect was smaller.
The second study focused analysis exclusively on cost savings,
which is complementary to the current paper. Furthermore,
the current paper focuses exclusively on time savings of both
computation-heavy and communication-heavy visualization
algorithms, giving a broader range of insight than previous
work.

We approach the problem in a different way from the prior work.
First, we concentrate on in situ visualization pipelines. Second, we
focus specifically on two types of in situ processing (in-line and in-
transit) from the perspective of simulation cycle time, visualization
type, resource requirements, and how different combinations of these
factors impact the final time-to-solution of the simulation.

3 FACTORS AFFECTING TIME-TO-SOLUTION

When it comes to minimizing time-to-solution, the primary draw-
back of incorporating in situ visualization routines into a simulation
code are the negative effects on the simulation’s runtime. In-line vi-
sualization pauses the simulation while the visualization completes.

The impact of this pause varies, ranging from minimal for fast visu-
alization operations to prohibitive for slower, communication-heavy
ones. Conversely, in-transit pauses the simulation while the data
is being transferred from the simulation nodes to the visualization
nodes. This pause can be short or long, depending upon a number
of factors. The pause will be shorter if the visualization nodes are
ready to receive data as soon as the simulation completes a step and
is ready to transmit data. The pause will be longer if the simulation
completes a step and the visualization nodes are still busy finishing
operations on the previous time step. In this case, often referred to
as “blocking,” the simulation will have to wait for the visualization
nodes to finish, and then transfer the data, incurring a larger time
penalty. We note that “blocking” is not the only possible response to
simulation being faster than the visualization (they could be ignored
instead), but it is the choice we made in the context of this study.

Given that each in situ paradigm necessitates pausing the simula-
tion to some degree, the paradigm that pauses for the least amount
of time will minimize time-to-solution. In order for in-line to have
the smallest impact on overall runtime, the visualization needs to
scale well at the concurrency level of the simulation. In order for
in-transit to have the smallest impact on overall runtime, the data
transfer needs to be fast, and the visualization needs to scale well at
the concurrency level of the smaller in-transit allocation.

4 CORPUS OF DATA

This section provides a brief overview of the experiments that were
used to form our corpus of performance data. These experiments
were also used for previous studies [13, 14] (see Introduction for
more details), and these studies contain further details about experi-
mental configurations.

In terms of in situ setup, Figure 1 captures our in-transit and
in-line configurations. The computational simulation was of hy-
drodynamics, specifically compressible Euler equations, using the
CloverLeaf3D [1,21] proxy-application. In terms of visualization,
Ascent [15] and VTK-m [23] were used for both in-transit and in-
line, and the Adaptable I/O System (ADIOS) [17] was used to trans-
port data in the in-transit case, using its RDMA capabilities [7, 28].
We ran Cloverleaf3D with 1283 cells per process, meaning the total
number of cells ranged from 268 million to 68 billion cells. Finally,
our tests ran for 100 time steps, and visualization was performed
every time step.

Our experiments varied the following factors:

• Configuration. We ran five types of configurations:

– Sim only: Baseline simulation with no visualization.
– In-line: Simulation with in-line visualization.
– Alloc(12%): In-transit using an additional 12% re-

sources.
– Alloc(25%): In-transit using an additional 25% re-

sources.
– Alloc(50%): In-transit using an additional 50% re-

sources.

• Concurrency. The full concurrency details are in Table 1.
One important note however, is that isosurfacing was run up
to 16,384 cores, while volume rendering was run up to 32,768

(a) The in-transit visualization used
in this study. With this mode, the
simulation and visualization operate
asynchronously, and each have their
own dedicated resources.

(b) The in-line visualization used in
this study. With this mode, the simula-
tion and visualization alternate in ex-
ecution, sharing the same resources.

Figure 1: Comparison of the two types of in situ used in this study.

cores. This discrepancy is due to when the experiments were
performed, and that Titan was decommissioned before we
could run the larger isosurfacing case.

• Visualization algorithm. There were two options: isosur-
facing (which included parallel rendering of the isosurface
Radix-k [11]) and volume rendering (using a VTK-m variant
of work by Larsen et al. [16]).

• Simulation cycle time. This factor affects whether in-transit
is likely to block. We varied the cycle time artificially, by
adding a delay via sleep commands. There were three options:
“0 Delay” (which was about 5 seconds per cycle), “10 Delay”
(about 15 seconds total), and “20 Delay” (about 25 seconds).

Finally, the experiments were performed on the Titan supercom-
puter at the Oak Ridge Leadership Compute Facility (OLCF). Since
CloverLeaf3D only runs on CPUs, visualization was also performed
on the CPUs.

5 RESULTS

The objective of our study is to understand time-to-solution for
both in-transit and in-line in situ for a computation-bound and a
communication-bound visualization algorithm. Our results are orga-
nized into two parts. First, Section 5.1 analyzes the factors behind
performance for both algorithms under both paradigms. Second,
Section 5.2 synthesizes the findings by cross comparing the results
from our isosurfacing and volume rendering experiments. Lastly,
Section 5.3 examines the pitfalls for each in situ paradigm, in partic-
ular scalabilibity for in-line and the conditions that cause blocking
for in-transit.

Table 1: Resource utilization for each experiment.

Sim Cores 128 256 512 1024 2048 4096 8192 16384 32768
Study

Configurations Sim Cells 6483 8163 10243 12963 16323 20483 25923 32643 40963

In-line Total Nodes 8 16 32 64 128 256 512 1024 2048
In-transit Alloc(12%) Vis Nodes 1 2 4 8 16 32 54 128 256
In-transit Alloc(25%) Vis Nodes 2 4 8 16 32 64 128 256 512
In-transit Alloc(50%) Vis Nodes 4 8 16 32 64 128 256 512 1024

Allocation Sizes/Types
Allo

c(1
2%

)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

128
Producers

256
Producers

512
Producers

1,024
Producers

2,048
Producers

4,096
Producers

8,192
Producers

16,384
Producers

Solver Tim
e + 0 D

elay
Solver Tim

e + 10 D
elay

Solver Tim
e + 20 D

elay

0
5

10
15
20
25
30
35

0
5

10
15
20
25
30
35

0
5

10
15
20
25
30
35

Ti
m

e
(S

ec
on

ds
)

Vis Time
Transfer Time
App Idle Time
App Time

(a) Per time step breakdown for isosurfacing and surface rendering.

Allocation Sizes/Types
Allo

c(1
2%

)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

128
Producers

256
Producers

512
Producers

1,024
Producers

2,048
Producers

4,096
Producers

8,192
Producers

16,384
Producers

32,768
Producers

Solver Tim
e + 0 D

elay
Solver Tim

e + 10 D
elay

Solver Tim
e + 20 D

elay

0
5

10
15
20
25
30
35

0
5

10
15
20
25
30
35

0
5

10
15
20
25
30
35

Ti
m

e
(S

ec
on

ds
)

Vis Time
Transfer Time
App Idle Time
App Time

(b) Per time step breakdown for volume rendering.

Figure 2: Comparing the total time per step for using in-transit and in-line methods. This chart looks at time from the applications perspective,
meaning that the time for in-transit visualization is only how long it takes to transfer the data from the application, unless the in-transit resources
block, in which case the application becomes idle. In-transit visualization is broken down into the time it takes to receive data from the
application and how long the application is blocked by the in-transit resources being too slow. A second column is present for each in-transit
case that shows how long the in-transit resources were active during a single time step, giving a better sense of where blocking and idle time
occurs. In-line has a single time, how long it took to perform visualization. In terms of colors, orange bars represent the time the application
was active, purple bars the time the application was idle, green bars the time to transfer data to the in-transit resources, and red and blue bars
represent the time to perform in-transit visualization and in-line visualization, respectively.

5.1 Analyzing Time-to-Solution

This section analyzes where each algorithm spent their time in the
experiments, and draws conclusions about performance under in situ
paradigm and system constraints.

All the analyses in this section are based on Figure 2, which
shows the total time per time step for our experiments. This figure
is divided into two sub-figures, with Figure 2a focusing on the
isosurfacing plus rendering experiments and Figure 2b focusing on
the volume rendering experiments.

5.1.1 Isosurfacing

With respect to the isosurface algorithm (Figure 2a), in-transit in situ
suffered from poor performance in the Alloc(12%) and Alloc(25%)
experiments at Delay(0). All of these experiments have large por-
tions of time where the simulation is blocked because the in-transit
visualization was unable to keep up with the simulation. This block-
ing effect made it so that in-line in situ was the most performant
choice for all scales but the largest (16,384 processes). Another
observation from this chart is the absence of simulation blocking
in all of the Delay(20) cases. In each of those cases, the only time
delay for the simulation was the time to transfer data to the in-transit
resources. However, these cases also showcase the other negative
of in-transit visualization: idle in-transit resources. In every case,
the in-transit resources were idle for some percentage of the simu-
lation cycle, the worst being Alloc(50%), which was idle for up to
80% of each simulation cycle. This level of idle time means that
resources were severely over allocated, and either the resources need
to be reduced, or the visualization pipeline needs to be adaptive,
i.e., dynamically add new visualization operations in order to make
productive use of the resources.

5.1.2 Volume Rendering

With respect to the volume rendering algorithm (Figure 2b), in most
cases in-transit volume rendering was faster than the simulation
cycle time. Delay(0) caused the simulation to block with only the
two largest cases (16,384 and 32,768 processes). This change from
isosurfacing is because volume rendering is communication bound,
and is more efficient at smaller scale. This led in-transit volume
rendering to be faster than in-line in every single experiment we
performed. This characteristic (not blocking the simulation) also had
a pitfall, however, which was idle in-transit resources. As evidenced
by the large idle times (up to 88% of the total runtime), some of the
allocations were too large. Similar time-to-solution could have been
achieved by using fewer resources, which would have reduced the
resource idle time.

5.2 Synthesis Across Algorithms

This section synthesizes findings from Sections 5.1.1 and 5.1.2.
It also analyzes the differences between algorithms and in situ
paradigms to provide general guidelines for which in situ method
will perform the best with a given workload and concurrency. The
main finding is that there are very few cases where in-line is faster.
This is especially apparent in the volume rendering tests, where
in-transit was faster in every case. That said, there are cases for
isosurfacing where in-line was the fastest choice, namely the cases
with fast simulation cycle time.

Looking more in depth at the time charts (Figure 2), there are
marked differences between the performance of the isosurfacing and
volume rendering runs. The isosurfacing tests have large periods
of blocking in the Delay(0) cases, seen in the figure as App Idle
Cost, whereas the volume rendering runs have very little. This
observation further highlights the need to understand performance
of visualization algorithms at different levels of concurrency, as the
blocking time was cut by more than 50% in almost all cases when the
in-transit resources were doubled from Alloc(12%) to Alloc(25%).

● ● ● ●
●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

128 256 512 1024 2048 4096 8192 16384 32768
Number of Simulation Processes

T
im

e
(S

ec
on

ds
) Visualization Operation

●
In−line Isosurfacing
In−line Volume Rendering
In−transit Data Transfer

Test Case

●

●

●

In−line Isosurfacing
In−line Volume Rendering
In−transit Data Transfer

Figure 3: Total time per step for in-transit in situ to transfer data off
of the simulation nodes compared against the time that in-line takes
to perform either the isosurfacing or volume rendering operations.
In essence, this chart shows how long the simulation had to pause
each simulation step for visualization to take place, either in-line, or
in-transit by moving the data to a separate allocation and performing
the visualization asynchronously to the simulation.

Figure 3 highlights the differences in time to perform an in-transit
data transfer vs. the time it takes to perform in-line visualization for
both isosurfacing and volume rendering. In this figure there are no
instances where the data transfer takes more time than the associated
in-line visualization operation. This means that, for the algorithms
tested, in-transit visualization always has a chance to be faster than
in-line visualization. Another interesting trend in this figure is the
widening gap between data transfer time and the comparable in-line
visualization times as scale increases. This indicates that in-transit
will have even more advantages as scale increases.

5.3 Pitfalls for Each In Situ Paradigm
This section highlights important pitfalls that exist for both in-line
(5.3.1) and in-transit (5.3.2) in situ. These pitfalls vary in intensity
based on visualization algorithm and computational scale.

5.3.1 Poor In-line Scalability

The primary pitfall with in-line in situ is the poor scaling perfor-
mance of visualization algorithms. This behavior is highlighted
in Figure 4 which gives the cumulative rendering and compositing

● ●
●

●
●

●

●
●

●

● ● ● ●
●

●

●

●

●

● ● ●
●

●

●
● ●

●

● ● ●
●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

128 256 512 1024 2048 4096 8192 16384 32768
Number of Simulation Processes

T
im

e
(S

ec
on

ds
) Visualization Operation

●
Isosurfacing
Volume Rendering

Test Case

●

●

●

●

Alloc(12%)
Alloc(25%)
Alloc(50%)
In−line

Figure 4: Total time per step to render and composite an image, both
in-transit and in-line. The results from isosurfacing (triangles) and
volume rendering (circles) are shown. Experiments are grouped by
color (configuration) and connected by lines (concurrency sequence).

●●● ●
●

● ●
●

●

●●●
●

●

● ●

● ●

●●●

●

● ●

●
●

●

●● ● ● ●
●

●
● ●

●● ●
●

● ● ● ● ●

●● ●
● ●

● ● ● ●
●●● ● ●

● ● ● ●

●●● ● ● ● ●
● ●

●●● ●
● ● ● ● ●

Solver Time + 0 Delay Solver Time + 10 Delay Solver Time + 20 Delay

5 10 15 5 10 15 5 10 15
−350%

−300%

−250%

−200%

−150%

−100%

−50%

0%

50%

100%

In−line Vis Time (log10)

In
−

tr
an

si
t I

dl
e

(N
eg

at
iv

e
In

di
ca

te
s

B
lo

ck
in

g)

Visualization Operation

●
Isosurfacing
Volume Rendering

Test Case

●

●

●

Alloc(12%)
Alloc(25%)
Alloc(50%)

Simulation Nodes

●

●

●

●

●

●

●

●
●

8
16

32

64
128

256

512
1024

2048

Figure 5: An analysis of whether in-transit resources are idle or blocking during the course of the simulation. The y-axis shows how idle the
in-transit resources were during each simulation cycle. An idle time of 0% indicates perfect harmony — in-transit resources were always busy
and never blocked. 100% idle means the in-transit resources were always idle, while -100% idle means that the in-transit resources blocked the
simulation from proceeding for an entire simulation cycle. The results from in-transit isosurfacing (triangles) and volume rendering (circles)
are shown. Each glyph is scaled by the concurrency of the experiment (isosurfacing: 8-1024; volume rendering: 8-2048). Experiments are
grouped by color (configuration) and connected by lines (concurrency sequence).

times for both in-line and in-transit in situ. Rendering scales very
well for both in-line and in-transit up through 4,096 processes. Be-
yond that, the communication at higher levels of concurrency leads
to a drop in scalability for in-line isosurfacing and volume rendering.
Isosurfacing for example, has the compositing and rendering time
rise from 1 second per step at 4,096 processes up to 9 seconds at
16,384 processes, an increase of 9x. Volume rendering has a much
smaller rise in compositing and rendering time, from 2.5 seconds at
4,096 processes, up to 5.5 seconds at 16,384 processes, an increase
of about 2.5x. Overall, these trends show how in-line suffers from
scalability problems. Further, since in-transit can quickly transfer
data at large concurrencies (See Figure 3), the cumulative time of
data transfer and rendering is much less than the comparable in-line
runs.

5.3.2 Can In-transit Visualization Keep Up?
The primary pitfall of in-transit in situ is whether or not it is able
to keep up with the cycle time of the simulation, while at the same
time not wasting compute resources. This pitfall is affected by many
factors: algorithmic intensity, inter-process communication, scale of
the in-transit resources, and the cycle time of the simulation. This
complex mix shows why in-transit can be hard to optimize, as slight
misconfigurations can lead to drastic changes in performance.

Figure 5 highlights this feature of in-transit visualization, showing
that it is difficult to keep the in-transit resources busy for an entire
simulation cycle while not blocking the simulation. This figure
shows how long the in-transit resources were idle each simulation
cycle in relation to the length of a simulation cycle. For example,
in order for the in-transit idle percentage to be 0%, the simulation
and visualization cycle time would need to be the same. If the in-
transit idle percentage is −100% idle, the visualization time would
be double the simulation cycle time, leading to significant delays.

Looking at the Delay(0) column of Figure 5, there is a large
variation in the idle times for in-transit. In the worst case (from

the simulations perspective) in-transit blocks the simulation from
proceeding for 3.5 (−350%) simulation cycles. While the best cases
have in-transit being neither idle, nor blocking the simulation. This
trend highlights the effects of simulation cycle time on the size of the
in-transit resources necessary to complete a task in time. Looking at
the Delay(10) and Delay(20) columns, almost every case was able
to complete without blocking the simulation. Overall, the volume
rendering runs were less adversely affected by simulation cycle time,
further highlighting the performance differences between compute
and communication bound visualization algorithms.

6 CONCLUSION

This short paper presents a study that compares the time-to-solution
for in-line and in-transit in situ visualization, and provide an anal-
ysis of when and why one paradigm is faster than another. Our
hypotheses entering this work was that there should be clear dis-
tinctions between scenarios in which an algorithm performs well
in-line or in-transit, and the major contribution of this work is con-
firmation of that hypothesis. From these experiments we found that
our communication-bound workload ran faster in-transit versus in-
line, in all cases. In addition, we found that our computation-bound
workload was faster in-line in many cases with a short simulation
cycle time; however, as simulation cycle time increased, in-transit
became faster. These findings inform desirable in situ configurations
that can help create performant workflows. Further contributions
of this work include additional analysis of when to choose in-line
or in-transit in situ by comparing algorithm performance across a
variety of simulation cycle times and in-line and in-transit allocation
sizes.

We feel there are three interesting areas of future work. First,
this study explored two different types of algorithms. We intend to
study additional classes of algorithms to understand their behavior
and performance at scale using different in situ paradigms. Second,
while trends at higher concurrencies are clear, additional runs at

even larger scale could be beneficial. Timings started to change
significantly for in-line at the largest scales. Examination of these
trends at higher scales will provide additional insight into in situ
visualization. Finally, the Alloc sizes chosen in this study were much
too large for some of our experiments. Studying lower percentages
of in-transit allocations will help to reduce resource requirements for
future in situ integrations, while also ensuring a fast time-to-solution.

REFERENCES

[1] Cloverleaf3d. http://uk-mac.github.io/CloverLeaf3D/. Ac-
cessed: 2018-12-19.

[2] U. Ayachit et al. Performance Analysis, Design Considerations, and
Applications of Extreme-scale In Situ Infrastructures. In ACM/IEEE
Conference for High Performance Computing, Networking, Storage
and Analysis (SC16), Nov. 2016.

[3] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, et al. In situ
methods, infrastructures, and applications on high performance com-
puting platforms. In Computer Graphics Forum, vol. 35, pp. 577–597.
Wiley Online Library, 2016.

[4] J. C. Bennett et al. Combining in-situ and in-transit processing to enable
extreme-scale scientific analysis. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage
and Analysis, pp. 49:1–49:9, 2012.

[5] N. Brown, R. Nash, G. Gibb, B. Prodan, M. Kontak, V. Olshevsky,
and W. Der Chien. The role of interactive super-computing in using
hpc for urgent decision making. In International Conference on High
Performance Computing, pp. 528–540. Springer, 2019.

[6] H. Childs et al. In Situ Visualization for Computational Science. IEEE
Computer Graphics and Applications (CG&A), 39(6):76–85, Nov./Dec.
2019.

[7] C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction and
coordination framework for coupled simulation workflows. Cluster
Computing, 15(2):163–181, 2012.

[8] B. Friesen et al. In situ and in-transit analysis of cosmological simula-
tions. Computational Astrophysics and Cosmology, 3(1):4, 2016.

[9] G. Gibb, R. Nash, N. Brown, and B. Prodan. The technologies required
for fusing hpc and real-time data to support urgent computing. In 2019
IEEE/ACM HPC for Urgent Decision Making (UrgentHPC), pp. 24–34,
Nov 2019. doi: 10.1109/UrgentHPC49580.2019.00009

[10] S. Habata, M. Yokokawa, S. Kitawaki, et al. The earth simulator system.
NEC Research and Development, 44(1):21–26, 2003.

[11] W. Kendall, T. Peterka, J. Huang, H.-W. Shen, and R. Ross. Acceler-
ating and benchmarking radix-k image compositing at large scale. In
Proceedings of the 10th Eurographics conference on Parallel Graphics
and Visualization, pp. 101–110. Eurographics Association, 2010.

[12] M. Kontak, J. Vidal, and J. Tierny. Statistical parameter selection
for clustering persistence diagrams. In 2019 IEEE/ACM HPC for
Urgent Decision Making (UrgentHPC), pp. 7–12, Nov 2019. doi: 10.
1109/UrgentHPC49580.2019.00007

[13] J. Kress et al. Comparing the Efficiency of In Situ Visualization
Paradigms at Scale. In ISC High Performance, pp. 99–117. Frankfurt,
Germany, June 2019.

[14] J. Kress et al. Opportunities for cost savings with in-transit visual-
ization. In ISC High Performance 2020. ISC, Frankfurt, Germany,
2020.

[15] M. Larsen et al. The ALPINE In Situ Infrastructure: Ascending from
the Ashes of Strawman. In Workshop on In Situ Infrastructures on
Enabling Extreme-Scale Analysis and Visualization (ISAV), pp. 42–46,
2017.

[16] M. Larsen, S. Labasan, P. Navrátil, J. Meredith, and H. Childs. Volume
Rendering Via Data-Parallel Primitives. In Proceedings of EuroGraph-
ics Symposium on Parallel Graphics and Visualization (EGPGV), pp.
53–62. Cagliari, Italy, May 2015.

[17] Q. Liu et al. Hello ADIOS: the challenges and lessons of develop-
ing leadership class I/O frameworks. Concurrency and Computation:
Practice and Experience, 26(7):1453–1473, 2014.

[18] F. Lvholt, S. Lorito, J. Macias, M. Volpe, J. Selva, and S. Gibbons.
Urgent tsunami computing. In 2019 IEEE/ACM HPC for Urgent

Decision Making (UrgentHPC), pp. 45–50, Nov 2019. doi: 10.1109/
UrgentHPC49580.2019.00011

[19] P. Malakar et al. Optimal scheduling of in-situ analysis for large-scale
scientific simulations. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
p. 52. ACM, 2015.

[20] P. Malakar et al. Optimal execution of co-analysis for large-scale
molecular dynamics simulations. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis, p. 60. IEEE Press, 2016.

[21] A. Mallinson et al. Cloverleaf: Preparing hydrodynamics codes for
exascale. The Cray User Group, 2013, 2013.

[22] J. Mandel, M. Vejmelka, A. Kochanski, A. Farguell, J. Haley, D. Mallia,
and K. Hilburn. An interactive data-driven hpc system for forecasting
weather, wildland fire, and smoke. In 2019 IEEE/ACM HPC for Urgent
Decision Making (UrgentHPC), pp. 35–44, Nov 2019. doi: 10.1109/
UrgentHPC49580.2019.00010

[23] K. Moreland et al. VTK-m: Accelerating the Visualization ToolKit for
Massively Threaded Architectures. Computer Graphics & Applications,
36(3):48–58, 2016.

[24] D. Morozov and Z. Lukic. Master of puppets: cooperative multitasking
for in situ processing. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing,
pp. 285–288. ACM, 2016.

[25] R. A. Oldfield, K. Moreland, N. Fabian, and D. Rogers. Evaluation of
methods to integrate analysis into a large-scale shock shock physics
code. In Proceedings of the 28th ACM international conference on
Supercomputing, pp. 83–92. ACM, 2014.

[26] T. Peterka, D. Bard, J. C. Bennett, E. W. Bethel, R. A. Oldfield,
L. Pouchard, C. Sweeney, and M. Wolf. Priority research directions
for in situ data management: Enabling scientific discovery from di-
verse data sources. The International Journal of High Performance
Computing Applications, Mar. 2020. https://doi.org/10.1177/
1094342020913628. doi: 10.1177/1094342020913628

[27] G. Shipman, S. Campbell, D. Dillow, M. Doucet, J. Kohl, G. Granroth,
R. Miller, D. Stansberry, T. Proffen, and R. Taylor. Accelerating data
acquisition, reduction, and analysis at the spallation neutron source.
In 2014 IEEE 10th International Conference on e-Science, vol. 1, pp.
223–230, Oct 2014. doi: 10.1109/eScience.2014.31

[28] F. Zhang et al. In-memory staging and data-centric task placement for
coupled scientific simulation workflows. Concurrency and Computa-
tion: Practice and Experience, 29(12), 2017.

http://uk-mac.github.io/CloverLeaf3D/
https://doi.org/10.1177/1094342020913628
https://doi.org/10.1177/1094342020913628

	Introduction
	Related Works
	Factors Affecting Time-to-Solution
	Corpus of Data
	Results
	Analyzing Time-to-Solution
	Isosurfacing
	Volume Rendering

	Synthesis Across Algorithms
	Pitfalls for Each In Situ Paradigm
	Poor In-line Scalability
	Can In-transit Visualization Keep Up?

	Conclusion

