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ABSTRACT
We present Strawman, a system designed to explore the
in situ visualization and analysis needs of simulation code
teams planning for multi-physics calculations on exascale
architectures. Strawman’s design derives from key require-
ments from a diverse set of simulation code teams, includ-
ing lightweight usage of shared resources, batch process-
ing, ability to leverage modern architectures, and ease-of-
use both for software integration and for usage during sim-
ulation runs. We describe the Strawman system, the key
technologies it depends on, and our experiences integrating
Strawman into three proxy simulations. Our findings show
that Strawman’s design meets our target requirements, and
that some of its concepts may be worthy of integration into
our community in situ implementations.

1. INTRODUCTION
Like many other institutions, Lawrence Livermore National
Laboratory (LLNL) and the Atomic Weapons Establishment
(AWE) are moving towards in situ processing to handle the
growing divide between computational power and I/O capa-
bilities on modern supercomputers. At these laboratories,
the simulation codes are often very complex — meaning
multi-physics codes incorporating many libraries — and di-
verse — e.g., multiple programming languages, data models,
etc. With this short paper, we describe our experiences de-
signing, implementing, and evaluating a system to respond
to these simulation code teams’ requirements. We call this
system Strawman. We consider Strawman to be a mini-app,
i.e., it is designed to be lightweight and allow us to perform
research.

LLNL and AWE are home to more than fifty different sim-
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ulation code groups. While our requirements are not dis-
tilled from conversations with all of these groups, they do
represent commonalities from conversations across many of
them. Further, in this paper, we present results from inte-
grating Strawman with three prominent proxy simulations:
LLNL’s Lulesh [6, 16] and Kripke [17, 8] and AWE’s Clover-
Leaf3D [23, 4]. Our experiences have led us to believe the
system has promising elements for meeting their needs.

The remainder of the paper describes Strawman and our
experiences with it. Section 2 describes technologies that
we used within Strawman, and Section 3 describes the re-
quirements and design of Strawman. Then, in Section 4, we
describe the results of integrating Strawman into the three
proxy simulations.

2. BACKGROUND
Both Paraview Catalyst [15, 22] and VisIt’s LibSim [31] pro-
vide full-featured tightly-coupled in situ visualization and
analysis solutions for simulations running on current HPC
platforms. As they are both fully featured and have com-
plex designs, they are not well suited for quick evaluation
of new technologies. With Strawman, we have developed a
small system that enabled us to explore solutions that may
help us evolve the state of the art in tightly-coupled in situ
processing for batch use cases on modern and future HPC
architectures. We hope to test if solutions are viable enough
to be considered for use in larger production systems. To
build Strawman, we heavily leveraged three libraries: Con-
duit, EAVL, and IceT. This section provides background
information on these libraries and why they were selected.

2.1 Conduit
Conduit [5] is an open source development effort from LLNL
that provides an interface for in-core description of scientific
data that can be used across C++, C, Python, and For-
tran. It is used for data coupling between packages in-core,
serialization, and I/O tasks.

Conduit provides a hierarchical object model similar to JSON
[7], but differs from JSON and other message exchange for-
mats such as BSON [2], Protocol Buffers [10], and Apache



Thrift [1] in a few fundamental ways:

• Bit-width Style Leaf Types To describe scientific data
in-core, you must capture the specific details about your
data in memory, such as the bits used for numeric prim-
itives, offsets, endianness, etc. To address this Conduit
provides bit-width specified scalar and array leaf types.
Arrays can be contiguous or strided. The bit-width de-
scriptions follow the style of NumPy [30]. Leaf types are
always concretely specified in Conduit, however the API
also allows you to use native types. For example in C++,
when using native double data, Conduit will map this to
the concrete bit-width type for the current platform, usu-
ally Conduit’s float64 type.

• Separation of Description from Data To describe ex-
isting in-core data, you cannot use a solution that embeds
a description mechanism into the data. Because of this,
Conduit separates description metadata from data and
does not impose a packed data representation. This de-
sign supports zero-copy and allows a Conduit to bring
context to chunks of data allocated in different regions of
memory.

• Runtime Focus Many existing message exchange for-
mats utilize code generation to implement an object model.
Conduit provides a runtime API for describing and ac-
cessing data and introspection features that allow you to
query and discover the structure of described data. Con-
duit does not use compile time code generation. This
avoids complex build system requirements and makes it
easer for components across the simulation ecosystem to
share data. This design does have runtime costs and shifts
some errors to runtime. These tradeoffs are similar to
properties of weakly typed languages like Python. The
runtime costs are acceptable for simulation applications
where descriptions of the data will be small compared to
the large arrays that hold the simulation state.

These features make Conduit a suitable multi-language solu-
tion for passing mesh data and commands from a simulation
to a visualization pipeline.

2.2 EAVL
Scientific visualization libraries often contain hundreds of
algorithms. As a result, achieving portable performance
across varied supercomputing architectures is difficult. To
address this problem, a number of visualization infrastruc-
tures (e.g., DAX[26], EAVL[24], and PISTON [20]), were
created that leverage data parallel primitives [13]. By us-
ing an abstraction that encapsulates data-parallel concepts,
these visualization infrastructures provide node level par-
allelism for CPU, GPU, and MIC architectures. Further,
the libraries have shown that the architecture agnostic ap-
proach can achieve performance of within roughly a factor of
two when compared to highly optimized, architecture spe-
cific implementations [19]. These three projects have merged
their efforts into a single library called VTK-m. For Straw-
man, we chose to use EAVL, since VTK-m is in the initial
stages of development and lacks a rendering infrastructure.

For building an in situ visualization application, EAVL is
an ideal building block for hybrid parallelism, since it de-
couples architecturally specific node level parallelism and

distributed-memory parallelism. EAVL’s data model, as de-
scribed in [24], is expected to consume 70 to 75 percent less
memory because of its use of an underlying array class that
can do in-place memory writes. The flexibility of the data
model also opens up more memory layouts for zero-copy.
Further, EAVL has a rendering infrastructure that includes
OpenGL, ray tracing, and volume rendering options [18].
These features make EAVL a natural choice for rendering
the subset of a distributed mesh on each MPI task in a
distributed-memory simulation.

2.3 IceT
Producing a coherent image from a distributed render re-
quires parallel compositing. IceT [25, 27] provides a scalable
solution for compositing using MPI on distributed-memory
parallel systems. It implements a sort-last compositing with
a suite of efficient parallel partitioning and reduction strate-
gies [28]. We selected IceT as our compositing solution for
this effort since it has been used at large scales for years
in production visualization tools including Paraview, VisIt,
and their in situ offerings.

3. SYSTEM OVERVIEW
This section provides details on the requirements and design
of Strawman.

3.1 System Requirements
To guide the development of our mini-app, we selected a
set of important batch in situ visualization and analysis re-
quirements extracted from our interactions and experiences
with simulation code teams. Here are our 11 requirements
broken out into three broader categories:

• Support a diverse set of simulations on many-core
architectures.

– R1: Support execution on many-core architectures.

– R2: Support usage within a batch environment (i.e.,
no simulation user involvement once the simulation has
begun running).

– R3: Support the four most common languages used by
simulation code teams: C, C++, Python, and Fortran.

– R4: Support for multiple data models, including uni-
form, rectilinear, and unstructured grids.

• Provide a streamlined interface to improve usabil-
ity.

– R5: Provide straight forward data ownership seman-
tics between simulation routines and visualization and
analysis routines

– R6: Provide a low-barrier to entry with respect to de-
veloper time for integration.

– R7: Ease-of-use in terms of directing visualization and
analysis actions to occur during runtime.

– R8: Ease-of-use in terms of consuming visualization
results, including delivery mechanisms both for images
on a file system and for streaming to a web browser.

• Minimize the resource impacts on host simula-
tions.

– R9: Synchronous in situ processing, meaning that vi-
sualization and analysis routines can directly access the
memory of a simulation code.
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Figure 1: A diagram of the Strawman system ar-
chitecture showing the simulation interface and how
Conduit, EAVL, and IceT are used to render simu-
lation data.

– R10: Efficient execution times that do not significantly
slow down overall simulation time.

– R11: Minimal memory usage, including zero-copy us-
age when bringing data from simulation routines to vi-
sualization and analysis routines.

In the following sections, we describe how Strawman’s design
and our integration experiences with three proxy simulations
demonstrate how Strawman addresses these requirements.

3.2 System Design
Figure 1 shows how Strawman interfaces with a simulation
and uses Conduit, EAVL, and IceT to produce in situ vi-
sualizations. Starting from the top, simulation mesh data
and the desired in situ actions are described using Conduit
and passed into the Strawman API. (Details about the API
and how Conduit is used are described in 3.2.1.) The visual-
ization actions are then realized in a simple in situ pipeline
that leverages EAVL for rendering and IceT for composit-
ing. This process is described in 3.2.2. Finally, the results
are saved to image files on disk or streamed to a web browser
via a WebSocket as detailed in 3.2.3.

3.2.1 Strawman Interface
The Strawman API consists of only a few function calls. The
complexity of describing options, mesh data, and actions is
handled by dynamic and hierarchal features of Conduit’s
Node class. Conduit supports all of the languages in R3,
so the function calls in Strawman can easily be exposed in
these languages.

Strawman is first initialized with a small set of parameters:
a MPI communicator for the parallel case and optional set-
tings for WebSocket streaming.

Second, mesh data structures are described using Conduit
Node instances following a set of mesh description conven-
tions. For Strawman, we are not creating a new mesh data

model. Instead we provide a set of conventions to describe
mesh data using Conduit that can be easily used with a wide
set of existing concrete data models. The conventions we de-
veloped to describe meshes for our interface were informed
by a survey of several mesh-related APIs, including: ADIOS
[21], Damaris [14], EAVL, MFEM [9], Silo [11], VTK[29],
and Xdmf[12] to support R4. The simulation owns the Con-
duit Nodes describing mesh data and the Nodes hold infor-
mation on if the data is externally owned (zero-copied) or
allocated by Conduit. These ownership semantics support
R5. After description, the mesh data is published to Straw-
man via Publish. In cases where simulation mesh data struc-
tures are not reallocated and match EAVL’s data model, the
mesh data only needs to be published once during a simula-
tion run, supporting R11.

Next, the set of desired in situ actions are specified using
Conduit Node instances and passed to Strawman via Exe-
cute. The simplicity of the actions interface supports R7.
These actions are then translated into a simple pipeline and
executed as described in 3.2.2.

3.2.2 In Situ Pipeline
The in situ pipeline converts the mesh data described using
Conduit and passed via Publish into concrete EAVL data
sets and then uses the action descriptions passed via Exe-
cute to construct a simple rendering pipeline. The pipeline
uses EAVL’s filters and rendering infrastructure, including
surface, volume, and ray-casting rendering techniques, to
render the subsets of the data owned by each MPI task.
As discussed in 2.2, algorithms in EAVL are designed to
run on many-core architectures, supporting R1 and EAVL’s
data model has zero-copy features supporting R9 and R11.
We made enhancements to EAVL to support rendering in a
distributed-memory parallel setting. For example, we added
visibility ordering calculations to support volume rendering
image compositing and data extent reductions in order to
apply consistent color tables across MPI tasks. IceT is then
used to composite these renders using MPI to create a final
image.

3.2.3 Presentation of Results
To satisfy R8, Strawman saves rendered images to PNG
files, and includes a lightweight embedded web server [3]
that can be used to optionally stream results over a Web-
Socket. To allow a simulation user to view the rendered im-
ages via a web browser, it also provides a WebSocket client
that displays images as they are streamed from the Web-
Socket connection.

4. RESULTS
To test in situ integration with a range of simulations and
mesh types, we selected three proxies for larger production
multi-physics simulations: LULESH, Kripke, and Clover-
Leaf3D. LULESH is written in C++ and uses a Lagrangian
approach on a 3D unstructured hex mesh to simulate shock
hydrodynamics. Kripke is written in C++ and uses a de-
terministic discrete ordinates solver on a 3D uniform mesh
to simulate particle transport. CloverLeaf3D is written in
Fortran and solves the compressible Euler equations on a
3D rectilinear mesh to simulate hydrodynamics. Figure 2
shows images produced from the integrations with each of
the simulations.



4.1 Integration Experiences
To evaluate the barrier of entry R6 and ease-of-use R7 re-
quirements, we present the lines of code required to integrate
Strawman into each of these proxy simulations to produce
the simplest and most common visualization result, a Pseu-
docolor rendering.

As outlined in 3.2.1, integrating Strawman into a simulation
can be broken down into three steps: describing simulation
mesh data, describing the set of in situ actions for Straw-
man to perform, and calling the Strawman API to Publish
the mesh data and Execute the specified actions. To demon-
strate these three steps, we show code fragments for each
step from our LULESH Strawman integration.

Listing 1: Describing the simulation data.
conduit::Node data;
data["state/time"].set_external(&time);
data["state/cycle"].set_external(&cycle);
data["state/domain"] = my_mpi_rank;
data["coords/type"] = "explicit";
data["coords/x"].set_external(x);
data["coords/y"].set_external(y);
data["coords/z"].set_external(z);
data["topology/type"] = "unstructured";
data["topology/coordset"] = "coords";
data["topology/elements/shape"] = "hexs";
data["topology/elements/connectivity"].set_external(nodelist);
data["fields/e/association"] = "element";
data["fields/e/type"] = "scalar";
data["fields/e/values"].set_external(e);

Listing 2: Describing the actions to perform.
conduit::Node actions;
conduit::Node &add = actions.append();
add["action"] = "AddPlot";
add["var"] = "p";
conduit::Node &draw = actions.append();
draw["action"] = "DrawPlots";
conduit::Node &save = actions.append();
char output_filename[30];
sprintf(output_filename,"image%04d",cycle);
save["action"] = "SaveImage";
save["fileName"] = output_filename;
save["format"] = "png";
save["width"] = 1024;
save["height"] = 1024;

Listing 3: Calling the Strawman API to publish data
and execute the specified actions.
Strawman strawman;
Node options;
options["mpi_comm"] = mpi_comm_handle(MPI_COMM_WORLD);
strawman.Open(options);
strawman.Publish(data);
strawman.Execute(actions);
strawman.Close();

In the case of LULESH, the simulation data model exactly
matches EAVL’s data model and all the data can be passed
zero-copy to Strawman. Because of this, LULESH requires
the least amount of Strawman integration code. In the case
of Kripke, it was necessary to copy the field data since the
array ordering did not match EAVL’s data model. In the
case of CloverLeaf3D, it was necessary to copy the coordi-
nate and field data to remove the embedded ghost zones,

LULESH Kripke CloverLeaf3D
Data Description 15 loc 21 loc 39 loc
Action Descriptions 14 loc 14 loc 14 loc
Strawman API Calls 7 loc 7 loc 9 loc

Table 1: Lines of code needed to instrument the
three selected proxy apps to produce a PNG file
with a Pseudocolor rendering of a scalar variable.

Vis Sim
CloverLeaf3D 4B Cells (Ray Tracing) 1.68 5.77
Kripke 4B Cells (OSMesa) 3.80 16.55
LULESH 8B Cells (Vol. Ren.) 30.85 12.62

Table 2: Simulation burden from visualization for
large runs using 4096 cores on 256 nodes of LLNL’s
Cab machine using various renderers. Times are
listed in average seconds per cycle for both the visu-
alization and simulation. All images were generated
at a resolution of 10242.

which Strawman currently does not support. The differ-
ence in lines of code required between the proxy simulations
is due entirely to code related to modifying the simulation
data to match EAVL’s data model.

Looking at the complexity of listings 2 and 3 we assert it
is straight forward to instruct Strawman on the actions to
perform. Listing 1 demonstrates the most complex step, de-
scribing simulation mesh data. This resembles conventional
transformations simulation developers are already familiar
with from supporting post processed visualization and anal-
ysis tools.

Based on the lines of code to instrument the three simulation
codes and the complexity of the code fragments we believe
we have satisfied R6 and R7.

4.2 Performance
To evaluate the performance of our infrastructure, we ran
Strawman with batch jobs using all three proxy simulations
on 4096 cores with mesh sizes ranging between 4 billion and
8 billion cells, satisfying R2. Table 2 shows the average
time per cycle of both visualization and simulation. We
will explore the performance characteristics in more depth
in future work to understand how Strawman addresses R10.

5. CONCLUSION
We described our mini-app for in situ, Strawman, which
enabled us to explore a system meeting our stakeholders
requirements: modern architectures, streamlined user inter-
face, and minimal burden on the simulation. The results
were promising, especially in terms of streamlined user in-
terface, although we believe more effort is needed to reduce
the time to carry out visualization operations.



Figure 2: Images produced using Strawman from the three integrations. From left to right, a volume rendered
image from CloverLeaf3D, a ray traced image of Kripke, and rasterized image (OSMesa) from LULESH.
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