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ABSTRACT

This paper introduces ALPINE, a flyweight in situ infras-
tructure. The infrastructure is designed for leading-edge su-
percomputers, and has support for both distributed-memory
and shared-memory parallelism. It can take advantage of
computing power on both conventional CPU architectures
and on many-core architectures such as NVIDIA GPUs or
the Intel Xeon Phi. Further, it has a flexible design that
supports for integration of new visualization and analysis
routines and libraries. The paper describes ALPINE’s in-
terface choices and architecture, and also reports on initial
experiments performed using the infrastructure.

CCS CONCEPTS

• Computing methodologies → Massively parallel and
high-performance simulations; Scientific visualization;
Ray tracing; Massively parallel algorithms; Shared
memory algorithms;
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1 INTRODUCTION

ALPINE is a multi-institution effort funded by the U.S. De-
partment of Energy’s Exascale Computing Project (ECP) [15].
Its purpose is to deliver in situ infrastructure for visualization
and analysis to ECP application teams. ALPINE’s strategy
is to support two existing in situ runtimes: VisIt’s [7] Lib-
Sim [20] and ParaView’s [2] Catalyst [5]. However, ALPINE
has also developed a new in situ runtime, which is called
“ALPINE Ascent”.

We believe ALPINE advances the state of the art in three
distinct ways:

∙ Support for modern supercomputing architec-
tures.
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ALPINE was designed with modern supercomputing ar-
chitectures in mind. It follows a hybrid parallel strategy,
meaning it has support for both distributed-memory
parallelism across nodes and shared-memory paral-
lelism within a node. The shared-memory parallel sup-
port comes through usage of VTK-m [16], which encour-
ages algorithm development using hardware-agnostic
building blocks. These building blocks are replaced at
compile time with efficient hardware-specific implemen-
tations, enabling portable performance over multiple
architectures. ALPINE’s distributed-memory parallel
support can come from either DIY [17] or MPI [8].
ALPINE achieves this hybrid parallelism through use
of a new library, called VTK-h (‘h’ for hybrid paral-
lelism), that combines VTK-m and DIY/MPI. VTK-h
is introduced later in this paper.

∙ Flyweight infrastructure. For ALPINE, the flyweight
goal is realized in three ways: (1) an interface that
can easily be adopted by stakeholders, (2) minimal
dependencies on other software packages and small
encumbrance on the binary size of the simulation code,
and (3) minimal overheads incurred during processing,
specifically with respect to copying data and memory
usage.

∙ Interoperability with software. Although VTK-m
plays a special role in the ALPINE project, the new
Ascent runtime was designed to support additional
libraries. Specifically Ascent makes use of a data flow
library called “Flow” to organize execution. Flow is
agnostic to the data models and libraries used in filters,
and therefore can enable other libraries (such as R [19])
to be used within Ascent. Of course, it would be up to
those libraries to provide support for parallelism, and
additional work would be needed to bridge between
data models (for example, VTK-m to R or vice-versa).

The paper is organized as follows: Section 3 describes
ALPINE’s interface concepts, Section 4 describes the main
components of ALPINE’s infrastructure, and Section 5 de-
scribes some initial results.

2 RELATED WORK

In situ processing has become increasingly popular in recent
years. Bauer et al. surveyed key research and infrastructures
and we direct interested readers to their survey [6]. Many
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of the design decisions made by ALPINE are similar to Lib-
Sim [20] and Catalyst [5]: linking into the simulation binary,
alternating execution between simulation and visualization,
and sharing the same memory space. This contrasts with an
approach like ADIOS [13], which takes a more loosely-coupled
approach.

SENSEI [4] is a generic in situ interface that can be charac-
terized as a “write once, use everywhere” approach that sup-
ports Catalyst, Libsim, and ADIOS back-ends. The ALPINE
in situ infrastructure differs in that we have an execution
model and our own visualization routines. Additionally, our
execution model allows us to perform hybrid in situ, where
we can perform on-node visualization then send the results
off-node (e.g., ADIOS).

The ALPINE in situ infrastructure is heavily based on
Strawman [12], with Strawman effectively serving as an early
prototype for ALPINE. The key differences between ALPINE
and Strawman are (1) ALPINE is intended for end users
while Strawman was a mini-app, (2) ALPINE has extended
distributed-memory support, including usage of DIY [17], (3)
ALPINE uses VTK-m [16] where Strawman used EAVL [14],
and (4) ALPINE has extended support for using other pack-
ages and libraries.

3 INTERFACE

The ALPINE Interface is the API used to direct ALPINE
Ascent, ALPINE’s new flyweight in situ runtime.

The top-level interface mirrors the Strawman interface and
consists of four methods: “Open”, “Publish”, “Execute”, and
“Close”. All data and parameters are passed into ALPINE
using Conduit [10], a library that provides an intuitive model
for describing hierarchical scientific data. Since Conduit pro-
vides C++, C, Fortran, and Python APIs for data description,
exposing the ALPINE interface in these languages is trivial.

ALPINE is initialized by calling the “Open” method and
passing several parameters, including an MPI communicator.
Next, simulation mesh data structures are described using
Conduit’s Mesh Blueprint [11], a set of conventions for de-
scribing domain-decomposed mesh data ranging from uniform
meshes to topologies composed of higher order elements, and
the resulting Conduit Node is published through ALPINE’s
“Publish” method. ALPINE verifies that published data con-
forms to the Mesh Blueprint. If the data does not conform, a
detailed description of what is missing or invalid is provided.
Third, ALPINE executes sets of actions described and passed
to the “Execute” method. Finally, the “Close” call informs
ALPINE that no further execution is required.

Alpine alpine;

alpine.Open(options );

alpine.Publish(data);

alpine.Execute(actions );

alpine.Close ();

Listing 1: Top-level ALPINE interface in C++.
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Figure 1: The ALPINE Interface allows users to
declare Scenes, Extracts, and Pipelines for execution
by the ALPINE Ascent runtime.

3.1 Actions

In ALPINE, we replaced Strawman’s simple rendering focused
actions with a more expressive interface. The new interface
is organized around three main use cases: making pictures,
capturing data, and transforming data. Users invoke these use
cases by passing actions that declare sets of Scenes, Extracts,
and Pipelines:

∙ Scenes: make pictures
∙ Extracts: capture data
∙ Pipelines: transform data

At a high level, Scenes allow users to describe the images
they want to create. Extracts allows users to describe how
they want to capture data for use outside of ALPINE, and
Pipelines allow users to describe the ways they want ALPINE
to transform their data. Figure 1 outlines how three concepts
are supported.

3.1.1 Scenes: Make Pictures. A scene encapsulates the in-
formation required to generate one or more images. The user
specifies a collection of plots (e.g., volume or surface render-
ing) and associated parameters such as camera definitions,
light positions, and annotations.

To define a scene, a user describes one or more plots. The
simplest plot description requires only a plot type and scalar
field name. A scene defined in this way uses the default data
source, which is all of the data published by the simulation,
and default settings for camera position, image resolution,
lighting, and annotations. An example of a minimally defined
scene is shown at the beginning of Listing 2. The definition
of “scene1” indicates the user wants a volume plot of the
scalar field “noise” using the default parameters. In this case,
a single image of the volume rendering of the scalar field
“noise” will be saved to the file system.

conduit ::Node scenes;

// scene 1, a single volume plot

// w/ default camera and output res



The ALPINE In Situ Infrastructure:
Ascending from the Ashes of Strawman ISAV’17, November 12–17, 2017, Denver, CO, USA

scenes["scene1/plots/plot1/type"] = "volume";

scenes["scene1/plots/plot1/params/field"] = "noise";

// scene 2, a pc plot + mesh plot of pipeline ’pl1’

// w/ default camera and output res

scenes["scene2/plot1/type"] = "pseudocolor";

scenes["scene2/plot1/pipeline"] = "pl1";

scenes["scene2/plot1/params/field"] = "noise";

scenes["scene2/plot2/type"] = "mesh";

scenes["scene2/plot2/pipeline"] = "pl2";

Listing 2: Example Scene Descriptions in C++

The second scene definition. “scene2”, in Listing 2 indicates
that a single image should be created by combining the
output of two plots, a pseudocolor plot and a mesh plot.
Unlike the first example, the plots that form “scene2” do not
use the default data source. Instead, they use the result of
a pipeline (see Section 3.1.3), a series of transformations on
the published mesh data.

A single scene definition can create more than one image.
The rendering parameters are contained in a list, and one
image is created for each entry. Further, rendering param-
eters support camera definitions that output many images.
This allows us to target Cinema [3], by providing camera
parameters 𝑝ℎ𝑖 and 𝑡ℎ𝑒𝑡𝑎, that produce a total of 𝑝ℎ𝑖 * 𝑡ℎ𝑒𝑡𝑎
images.

3.1.2 Extracts: Capture Data. Extracts are an abstraction
that enables the user to specify how they want to capture
their data. In terms of ALPINE, data capture sends data
outside the ALPINE infrastructure. Examples include writing
out the raw simulation data to the file system, creating HDF5
files, or sending the data off node (e.g., ADIOS [13]).

conduit ::Node extracts;

// use default pipeline (original mesh)

extracts["ex1/type"] = "hdf5";

// use the result of a pipeline

extracts["ex2/type"] = "hdf5";

extracts["ex2/pipeline"] = "pl2";

Listing 3: Example Extract Descriptions in C++.

Extracts, like scenes, can either consume the default data
source, all published simulation data, or the result of a
pipeline (see Section 3.1.3). Listing 3 shows the declaration of
two extracts. The first extract saves the default data source
into an HDF5 file, and the second extract saves the result of
a pipeline, referenced by pipeline name, into an HDF5 file.

3.1.3 Pipelines: Transform Data. Pipelines allow users to
compose filters that transform the published input data into
new meshes. This is where users specify typical geometric
transforms (e.g., clipping and slicing), field based transforms
(e.g., threshold and contour), etc. The resulting data from
each Pipeline can be used as input to Scenes or Extracts.

conduit ::Node pipelines;

// pipeline 1

pipelines["pl1/f1/type"] = "contour";

// filter parameters

conduit ::Node contour_params;

contour_params["field"] = "noise";

contour_params["iso_values"] = {0.0, 0.5};

pipelines["pl1/f1/params"] = contour_params;

// pipeline 2

pipelines["pl2/f1/type"] = "threshold";

// filter parameters

conduit ::Node thresh_params;

thresh_params["field"] = "noise";

thresh_params["min_value"] = 0.0;

thresh_params["max_value"] = 0.5;

pipelines["pl2/f1/params"] = thresh_params;

pipelines["pl2/f2/type"] = "clip";

// filter parameters

conduit ::Node clip_params;

clip_params["topology"] = "mesh";

clip_params["sphere/center/x"] = 0.0;

clip_params["sphere/center/y"] = 0.0;

clip_params["sphere/center/z"] = 0.0;

clip_params["sphere/radius"] = .1;

pipelines["pl2/f2/params/"] = clip_params;

Listing 4: Example Pipeline Descriptions in C++.

Listing 4 shows the declaration of two pipelines. The first
applies a contour filter to extract two isosurfaces of the scalar
field “noise”. The second pipeline applies a threshold filter
to screen the “noise” field, and then a clip filter to extract
the intersection of what remains from the threshold with a
sphere.

4 INFRASTRUCTURE

VTK-h, Flow, and Ascent are the three main ALPINE in
situ infrastructure software components. VTK-h is a library
that will enable development of in situ algorithms that can
be deployed in VisIt, ParaView, and Ascent. Flow is a simple
data flow library that orchestrates the setup and execution of
filter graphs. ALPINE Ascent is a new flyweight in situ run-
time that implements the actions supported by the ALPINE
Interface. Ascent leverages VTK-h and Flow. This section
describes the roles of VTK-h, Flow, and Ascent.

4.1 VTK-h

VTK-h is a stand alone library that implements a distributed-
memory layer on top of the VTK-m library [16], which focuses
on shared-memory parallelism. The VTK-h library is a col-
lection of distributed-memory algorithms, and VTK-h does
not contain an execution model, such as the demand-driven
data flow in VTK. The design of VTK-h is intended to facil-
itate the wrapping of VTK-m algorithms so that they can
be included in the execution models of other visualization
tools including ALPINE Ascent, ParaView, and VisIt. Con-
sequently, VTK-h serves as a single point of development in
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which algorithms can be easily deployed into any toolkit that
includes the VTK-h library.

VTK-h heavily leverages VTK-m, and the basic building
block of the VTK-h data model is the VTK-m data set.
Strawman uses EAVL for its shared-memory parallelism,
and just as ALPINE Ascent is the successor to Strawman,
VTK-m is the successor to EAVL. A VTK-h data set is a
collection of VTK-m data sets along with supporting methods
that handle distributed-memory queries (e.g., global scalar
ranges). Within VTK-h, most code will directly invoke VTK-
m methods to implement algorithms, and while it is possible
to directly implement new VTK-m functionality within VTK-
h, that functionality is limited to distributed-memory features.
For distributed-memory parallelism, VTK-h uses MPI and
also includes the DIY [18] toolkit which encapsulates block-
based abstractions that are common in distributed-memory
problems, and VTK-h uses DIY to implement distributed-
memory image compositing.

4.2 Flow

Recall from the prior section that VTK-h does not provide
its own execution model. This choice simplifies the VTK-h
API and makes it easy to leverage VTK-h within ParaView
and VisIt‘s existing full featured execution models.

Since ALPINE Ascent does not leverage ParaView or
VisIt’s infrastructure, it needs a basic execution model to
support using VTK-h algorithms to carry out the user’s
requested actions.

Ascent uses a simple data flow library named Flow to
efficiently compose and execute VTK-h filters. ALPINE’s
Flow library is a C++ evolution of the Python data flow
network infrastructure used in [9]. It supports declaration
and execution of directed acyclic graphs (DAGs) of filters
created from a menu of filter types that are registered at
runtime. Filters declare a minimal interface, which includes
the number of expected inputs and outputs, and a set of
default parameters. Flow uses a topological sort to ensure
proper filter execution order, tracks all intermediate results,
and provides basic memory management capabilities.

The VTK-h algorithms needed by Ascent are wrapped
as Flow Filters so they can be executed as part of DAGs
composed by Ascent.

Like its Python predecessor, Flow provides support for
generic inputs and outputs. Flow provides a mechanism for
filters to check input data types at runtime if necessary.
Because of this data-type agnostic design, the Flow library
does not depend on VTK-h. This provides the flexibility to
create filters which can process data in other data models and
APIs. This design supports important future use cases, such
as creating a filter to refine high-order MFEM [1] meshes
into VTK-h data sets for rendering.

4.3 Ascent Runtime

The Ascent Runtime is the layer that sits on top of Flow and
beneath the ALPINE In Situ Interface. Ascent’s responsibility
is to translate a set of actions (e.g., Listings 2, 3, and 4) passed

Figure 2: A Flow graph created from the actions
described by Listings 2, 3, and 4.

Sim Vis Percentage Vis
CPU 32.5 s 1.5 s 4.4%
GPU 32.0 s 1.3 s 3.7%

Table 1: Average time in seconds spent running a
simulation and executing visualization per cycle as
described in Section 5.

to the ALPINE “Execute” method into a Flow graph. Ascent
loops through hierarchy of actions contained in a Conduit
Node, and creates a series of Flow filters (i.e., graph nodes)
and connects the Flow filters together (i.e., edges). Figure 2
shows the graph representation Ascent creates given the
actions described by Listings 2, 3, and 4. When the ‘execute’
action is processed, Ascent executes the graph.

5 RESULTS

We evaluated the performance of the ALPINE infrastructure
using the included Kripke physics proxy-application that
models deterministic neutron transport. Running on 48 nodes
equipped with 16-core Intel Xeon CPUs and NVIDIA K40m
GPUs, we ran Kripke with a total problem size of 100M
zones. Each cycle, we clipped the mesh in half, created a
pseudocolor plot of the clipped mesh, and combined the
result with a volume rendering of the mesh. It is worth
noting that this rendering is not be possible in Strawman,
since Strawman does not support multiple plots and does
not contain any filters. The average time per cycle spent
performing simulation and visualization is shown in Table 1,
and the resulting image is shown in Figure 3. Visualization
results in less than 5% of total runtime.

6 CONCLUSION

This paper introduced the ALPINE in situ interface and
ALPINE’s infrastructure components VTK-h, Flow, and As-
cent. The new interface and these components enable simula-
tion users to easily execute in situ visualization and analysis
algorithms on modern supercomputing architectures. The
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Figure 3: Image produced using the operations de-
scribed in Section 5.

ALPINE interface and Ascent runtime are evolutions of the
Strawman in situ visualization mini-app. ALPINE is aimed
at production, and it includes significant additions to support
a wider range of use cases than Strawman. We demonstrated
this with a basic example of transforming data and rendering
multiple plots within a Kripke simulation. For future work,
we will continue to develop VTK-h and ALPINE capabilities,
and we will work with ECP application teams to deploy in
situ visualization and analysis algorithms to simulation users
via ALPINE.
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