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ABSTRACT

Triggers are an important mechanism for adapting visual-
ization, analysis, and storage actions. With this work, we
describe the Ascent in situ infrastructure’s system for triggers.
This system splits triggers into two components: when to per-
form an action and what actions to perform. The decision for
when to perform an action can be based on different types of
factors, such as mesh topology, scalar fields, or performance
data. The actions to perform are also varied, ranging from
the traditional action of saving simulation state to disk to
performing arbitrary visualizations and analyses. We also
include details on the implementation and short examples
demonstrating how the system can be used.
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1 INTRODUCTION

Computational simulations produce large amounts of data,
and managing this data is an important part of these simula-
tions’ workflow. Common actions available to simulations for
processing their data are to store the data to disk, to apply in
situ visualization and analysis techniques, or a combination
of the two (i.e., use in situ techniques to transform and/or
subset data and then store the result to disk). That said,
perhaps the most common action for processing simulation
data is to discard it — the data produced at a given cycle is
thrown away as the simulation advances.
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A simulation’s workflow for visualization, analysis, and/or
storage (VAS) can be either non-adaptive or adaptive. With
a non-adaptive workflow, the VAS actions occur based on
some fixed policy that is established before the simulation
begins. Examples of such fixed policies are to perform VAS
every N cycles, to perform VAS every time a simulation has
advanced T seconds of simulation time, or to perform VAS
every M minutes of time the simulation runs on a computer.
With these workflows, much of the simulation’s data is not
inspected for VAS purposes. For example, if the policy is
to save to disk every 100 cycles, then 99% of the data is
not subject to VAS, i.e., a temporal subsampling. Temporal
subsampling is often acceptable, as simulation data from
one cycle to the next is often very similar. However, if the
proportion of the data inspected gets too low, then temporal
subsamplings can be highly problematic, as key phenomena
may occur during the uninspected cycles. In such cases, the
phenomena may affect the data from subsequent cycles to a
degree that scientists determine important information was
lost, in which case the simulation could be re-run. Or, worse,
the phenomena may go undiscovered altogether.

Adaptive workflows behave differently. With adaptive work-
flows, the data produced by a simulation is regularly inspected
(often every cycle). The job of these inspections is to deter-
mine if interesting phenomena had occurred. If so, then the
inspection process should prompt VAS actions to occur. This
approach has the potential to prevent the loss of key phenom-
ena, provided the right VAS actions are taken at the right
time. This approach has been gaining momentum with many
recent results (see the Related Work section), and is termed
“in situ triggers,” since the inspection routines are applied
in situ to the simulation data and the routines can “trigger”
VAS actions to take place.

With this work, we describe the Ascent in situ library’s
mechanism for in situ triggers. Our focus with this work is
to provide a flexible system that enables a variety of trigger
approaches. Our system defines a trigger as two pieces: (1)
an inspection routine that determines when VAS should
occur and (2) the specific VAS actions to apply. We feel this
approach will encourage re-use, as Ascent developers can
focus on developing inspection routines and/or VAS actions,
and then pair them as appropriate. Further, while the two
pieces that make up a trigger can be completely orthogonal,
they also can have a dependency. Specifically, the inspection
routines can dynamically alter the VAS operations used.
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In the remainder of this paper, we describe Ascent’s trigger
system, as well as the inspection routines and VAS actions
we have developed to date. The inspection routines are based
on simulation field data, simulation mesh topology, and sim-
ulation state data, and our VAS actions involve all of the
capabilities within Ascent.

2 RELATED WORK

Recent research into triggers can be characterized into two
categories: triggers that are domain-agnostic and triggers
that are domain-specific, and the organization of this section
mirrors this current division in research. Conceptually, each
of the works surveyed below could be supported by our
system, although in some cases new inspection routines or
VAS actions would need to be added to Ascent.

2.1 Domain-Agnostic Triggers

Domain-agnostic triggers leverage algorithms that apply
broadly to arrays of values (e.g., simple aggregation, sum-
mary statistics, many machine learning techniques). These
can be used generically by any simulation application, so
there is value to sharing implementations.

Work by Ling et al. [10] implements an autonomous,
domain-agnostic trigger, but their method involves several
machine learning algorithms that are computationally sig-
nificant, which is likely a barrier for many in situ use cases.
Malakar et al. [11] take into account the computational strain
of in situ analysis and present a mathematical formula for
choosing the optimal process-to-node mapping given the sys-
tem’s constraints.

Zhou and Chiang [18] and Myers et al. [12] utilized statisti-
cal methods to determine time steps of global and local signif-
icance, respectively, though the former work is not performed
in situ. Banesh et al. [1] expanded on this work by utilizing
change detection techniques for both time-based and specific
parameter-based eddy identification in simulated ocean data.
And while this research utilizes application-specific parame-
ters for their detection, the concept of change point detection
can be applied to other simulations [15].

2.2 Domain-Specific Triggers

Domain-specific triggers leverage algorithms that use special
knowledge of either a simulation method or its scientific
domain (e.g., triggering on a gradient calculated using specific
finite-element method, or enstrophy for as a measure of
dissipation). These are not as broadly applicable to any
simulation, so it is important for an in situ infrastructure
to support integrating custom algorithms to support these
types of triggers.

A number of works have developed domain-specific triggers.
Work by Bennett et al. [2] developed an application-specific
trigger for ignition during combustion simulations. This work
was then extended by Salloum et al. [13], who provided an
alternative trigger metric that increased the robustness of
the original work. Similarly, work by Zhao et al. [17] and

Ullrich et al. [14] created domain-specific triggers for tropical
cyclone trackers within climate simulations.

3 TRIGGER INFRASTRUCTURE
OVERVIEW

Our trigger infrastructure is implemented in Ascent [9], a
fly-weight in situ visualization and analysis infrastructure.
Ascent’s flexibility is underpinned by a generic data-flow
network. Filters in a data-flow network have arbitrary inputs
and outputs, and each component of Ascent is implemented
as a filter. The Ascent runtime translates data and actions
described in the high-level API into a graph that is executed
by the data-flow network. Using this modular architecture,
all of Ascent’s components can be connected together. The
trigger implementation in Ascent is simply another filter in
a larger data-flow network that can conditionally modify the
filters in the execution graph.

In this section, we discuss what types of simulation data
are used to make decisions, how decisions are made, and what
types of actions are supported.

3.1 Trigger Input

Ascent’s trigger filters process Conduit [7] data that conforms
to the Mesh Blueprint [8]. This is the same data represen-
tation used to publish data to Ascent. Since outputs from
Ascent operations can also be converted to Mesh Blueprint
data, this representation allows triggers to operate on As-
cent results as well. The triggers have access to all of the
mesh data, however it is useful to further categorize trig-
gers by the parts of simulation mesh required by inspection
routines. Categorizing triggers is useful for declaring a trig-
ger’s purpose (i.e., what data is used to make decisions) and
for sharing common parameter verification code that checks
pre-conditions for each category.

In Ascent, we define the following categories of triggers:

∙ Field: inspect a specific field on the mesh. Field trig-
gers have access to all the values of a named field on
the mesh. A simple example of a field trigger is one that
fires when the maximum value exceeds a user-defined
threshold.

∙ Topology: inspect a specific mesh topology. Topology
triggers are passed a named mesh topology. An example
topology trigger would inspect the mesh, firing when a
tangle is detected.

∙ Coordinate Set: inspect a specific coordinate set from
the mesh. Coordinate Set triggers are passed a named
coordinate set. An example coordinate set trigger would
inspect the coordinates, firing when a bounding box
grows to a given size.

∙ State: inspect state meta-data. State triggers consume
extra meta-data associated with the mesh. This in-
cludes both basic information such as the simulation
time and cycle, and custom data, such as simulation
performance metrics. Examples of state triggers are
fire every 𝑁 cycles or fire when a performance metric
rises above some critical threshold.
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3.2 Trigger Decisions

Triggers make a binary (yes/no) decision to execute a set
of actions. In simple cases, a trigger can inspect a single
value, e.g., firing every 𝑁 cycles. Trigger decisions occur
simultaneously on all MPI processes to determine a single
collective decision. However, when using problem size data
such as a mesh field, the data must usually be reduced before
making a final decision to fire.

3.2.1 Data Reduction. Data reduction may leverage a pipeline
of existing VAS actions, or it may be a simple data summa-
rization algorithm. While triggers can leverage expensive
algorithms, in practice they are often used to reduce overall
computation by screening data before applying more expen-
sive VAS actions. Because of this, inexpensive data reduction
techniques are important.

The most basic technique is a simple aggregation of a
field or a topological feature (minimum, maximum, mean,
variance, integral, etc). These are inexpensive because they
do not require much intermediate memory, are typically sim-
ple linear loops over values and their distributed-memory
implementations are straightforward. In Ascent, we provide a
small set of methods that serve as building blocks for trigger
development and encourage code re-use. Current methods
include retrieving the minimum and maximum values of a
field, along with the element or vertex it originated from, and
the element’s location. As we continue to develop Ascent, the
set of available methods will increase.

A more sophisticated way to reduce data is to calculate
a coarse distribution of a field or a topological feature. This
can be calculated inexpensively with a counting or weight-
based histogram. Calculating exact cumulative distributions
requires an expensive global sort, so we do not plan to im-
plement these. Multi-dimensional binning can also be used
to calculate coarse averages which can be overlaid back onto
the mesh topology as input to create more complex derived
quantities for summarization [4]. For distributions, you can
further reduce them using another summary metric, such as
identifying percentiles or calculating the shannon entropy.

3.2.2 Decision to fire. After data reduction, triggers apply a
final test to determine if the trigger should fire.

The Ascent trigger infrastructure allows two trigger varia-
tions:

∙ Stateless: trigger execution is independent of any pre-
vious invocations

∙ Stateful: the trigger that maintains state information
about previous invocations

Stateless decisions are made using only the simulation’s
current published data, and stateful decisions can use the
time history of the aggregate values from previously published
data. In the stateless case, the standard menu of numeric
comparison operations (e.g. greater-than, less-than, equal,
etc) are useful building blocks for deciding to fire using a
single value. For the stateful case, trigger firing can be based
on critical points of the curve (minimum, maximum, saddle
points), or leverage a more complex property, such as the

value changing more than some percentage of the current
peak. In Ascent we provide methods for storing and retrieving
arbitrary state data, and state data can range from a single
value, a series of values from all previous time steps, or to
the entire published data from a previous time step.

3.3 Trigger Actions

Ascent’s interface supports execution of a set of actions de-
scribed by the user. These actions direct Ascent to create
pipelines (i.e., transform data), extracts (i.e., capture data),
and scenes (i.e., make pictures). The new trigger system
extends Ascent’s interface to accept trigger declarations.

The declaration accepts a trigger name, any input param-
eters needed for the inspection routine, and a set of actions
to execute if the trigger fires. The set of actions is declared
using Ascent’s existing action interface, thus exposing all of
Ascent’s capabilities including declaration of new triggers.

Examples of trigger actions are saving the entire mesh to
disk, creating a pipeline to transform the data and saving the
resulting extract, or rendering images. Additionally, trigger
actions can include other triggers that create a set of con-
ditions (contained in multiple triggers), which all must be
satisfied before the final set of actions is performed. Since
triggers have access to the input actions, it is possible for trig-
gers to themselves modify the actions, creating dynamically
adaptive visualization workflows.

3.4 Trigger API

Triggers are described using Conduit nodes, following As-
cent’s existing actions interface. Listing 1 shows an example
of specifying a stateless threshold trigger of the field pressure
that fires when the condition is true.

conduit::Node actions;
// trigger actions not shown

conduit::Node trigger;
trigger["type"] = "threshold";
trigger["params/field"] = "pressure";
trigger["params/actions"] = actions;
trigger["params/reduction"] = "max";
trigger["params/compare/type"] = "gte";
trigger["params/compare/value"] = 3.14;

Listing 1: An example of the user-facing trigger API.
This trigger executes the actions when the maximum
value of the pressure field is greater than or equal to
3.14.

The threshold trigger supports several reductions including
“min”, “max”, and “average.” As we continue to develop the
infrastructure, the menu of available reduction operations
will increase. After the reduction, the trigger evaluates the
condition “gte” (greater-than-or-equal-to) against the “value”
and the result of the reduction.

3.5 Developing New Triggers in Ascent

Our goal in Ascent is making trigger development as easy as
possible. To that end, we provide a trigger base class that
includes methods to verify parameters, to provide easy access
to input data (e.g., state, field, coordinate sets, and topology
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(a) (b)

(c) (d)

Figure 1: (a) a plot of the maximum energy value over time in CloverLeaf3D, (b) an image created by a
threshold trigger in CloverLeaf3D, (c) an image created by a max radial distance trigger at cycle 3120 in
Lulesh, and (d) an image created by a simulation state trigger in Kripke.

data), and to execute the trigger. The only methods a trigger
must implement are the “trigger” function that returns true
or false and the verification function of any trigger specific
parameters. A trigger implementer only needs to manipulate
data contained in Conduit nodes and does not need any
knowledge about the internals of Ascent. Additionally, we are
building a set of data reductions, such as the ones mentioned
in Section 3.4 for trigger developers.

4 TRIGGER EXAMPLES

In this section, we demonstrate a few examples of using As-
cent triggers that inspect different combinations of trigger
inputs. These examples use Ascent’s built-in proxy applica-
tions because they provide a simple path to motivate and
show common use cases.
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4.1 Threshold Trigger

The maximum value of a field value over time is basic quantity
of interest for many physics simulations.

We developed threshold triggers to help examine maximum
energy field values in CloverLeaf3D [3], a hydrodynamics
proxy-application included with Ascent.

To track the maximum value, stateless triggers should fire
whenever the maximum field value exceeds a predefined value
as described in Listing 1. The image in Figure 1a plots the
maximum energy value through 1000 cycles of a CloverLeaf3D
simulation. The maximum value spikes as waves of energy
reflect off the boundary and collide in the center of the data
set, indicated by a 400% increase in the maximum value.

We used a stateless threshold trigger to capture the colli-
sion by setting the threshold at an energy value of 10, and
image captured by this trigger is shown in Figure 1b. Addi-
tionally, we developed a stateful trigger that identified that
peak of the energy spike by tracking the maximum over all
timesteps. With the stateful trigger, the entire field is stored
in memory each time a higher value is encountered, and at
the end of the simulation the data from timestep identified
as maximum is saved to disk for further analysis.

4.2 Maximum Radial Distance Example

There are several cases where expensive processing is only
necessary after a simulation model has evolved to a certain
regime that cannot easily be identified a priori based on
simulation time.

To demonstrate this type of use case, we developed a trigger
for Lulesh [5], a shock-hydrodynamics proxy-application that
models the evolution of a shock-wave as it propagates from
the origin of the simulation. The trigger executes actions after
the main shock-wave has reached a specified radial distance
from the origin of the simulation.

Knowing exactly when the shock-wave passes a point is
problem dependent since it changes both with the input deck
and problem size. In Ascent, the maximum radial distance
trigger combines field, topology, and coordinate set infor-
mation to track the distance of the element containing the
maximum pressure value. When this distance exceeds the
threshold, the trigger fires. Figure 1c shows an image of the
first time the trigger fires.

4.3 Simulation State Trigger

Kripke [6] is a physics proxy-application included with Ascent
that implements a parallel sweep used to solve equations for
deterministic neutron transport.

Each sweep consists of wavefronts for each quadrature
direction that propagate through the MPI tasks. The As-
cent integration captures sweep solver performance metrics,
including the maximum backlog of incoming requests from
different quadrature directions.

In order to show an overall view of the maximum backlog
for each MPI task, we created a performance trigger that
fires when the maximum backlog exceeds four unanswered
requests. Using a volume plot shown in Figure 1d, MPI tasks

with higher backlogs appear more opaque than tasks with
lower backlogs, similar to the visualizations in [16]. Using
performance visualization techniques can both highlight per-
formance bottlenecks and provide useful visual debugging
information for simulation developers.

5 CONCLUSION

In this paper, we described a flexible system for in situ
triggers inside of Ascent. Supporting trigger use cases with
traditional visualization tools requires control flow logic be
written outside of the tool to coordinate trigger decisions
and VAS actions. In contrast, our work directly integrates
trigger capabilities into an in situ visualization and analysis
infrastructure to simplify these use cases. The trigger sys-
tem uses modular components that provide different options
for VAS actions, comparisons, and reduction methods (if
needed). For trigger developers, we provide re-usable and
interchangeable components that lower barriers to trigger
development. We also demonstrated how different categories
of triggers can be used to identify features of interest (e.g.,
threshold), filter out un-needed data (e.g., maximum radial
distance). and highlight simulation performance bottlenecks
(e.g., simulation state).

For future work, we intend to continue to refine Ascent’s
in situ trigger system and provide additional reduction and
summarization building blocks. Additionally, we would like
to explore more dynamic triggers workflows where trigger
modify the input actions.
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