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ABSTRACT

Triggers are an emerging strategy for optimizing execution time
for in situ analysis. However, their performance characteristics are
complex, making it difficult to decide if a particular trigger-based
approach is viable. With this study, we propose a cost model for
trigger-based in situ analysis that can assess viability, and we also
validate the model’s efficacy. Then, once the cost model is estab-
lished, we apply the model to inform the space of viable approaches,
considering variation in simulation code, trigger techniques, and
analyses, as well as trigger inspection and fire rates. Real-world
values are needed both to validate the model and to use the model to
inform the space of viable approaches. We obtain these values by
surveying science application teams and by performing runs as large
as 2,040 GPUs and 32 billion cells.

1 INTRODUCTION

There are two processing paradigms for analyzing the data from com-
putational simulations: in situ (processing data as it is generated)
and post hoc (processing data after it is generated). Until recently,
post hoc processing has been the dominant processing paradigm
for scientific visualization and analysis on supercomputers. With a
typical post hoc model, a computational simulation does temporal
subsampling, i.e., saves a subset of its cycles (time steps) to disk,
and then a domain scientist explores that data afterward with an anal-
ysis tool. However, over the last half decade, supercomputers have
seen a significant shift towards in situ processing [11,13,31]. The
primary driver behind changing processing paradigms is to address
/O constraints on leading-edge supercomputers. On these machines,
the ability to generate data is increasing much faster than the ability
to store data to persistent storage — compute power has gone up by
two orders of magnitude over the last decade, while I/O performance
typically has only increased by one order of magnitude. As a result
of these trends, post hoc processing is becoming increasingly prob-
lematic, as (1) the data takes too long for post hoc analysis programs
to load and (2) simulation codes cannot store sufficient temporal
resolution.

Compared to post hoc processing, in situ processing offers both
advantages and disadvantages. One major advantage is increased
access to temporal data, as in situ routines can potentially be invoked
during any cycle. That said, a major disadvantage is that in situ
routines are often limited in their time budgets. In particular, if
the simulation and in situ routines share resources, then in situ
routines that execute for too long will prevent the simulation from
advancing quickly enough. At first glance, this disadvantage (limited
execution time) would appear to negate the advantage (increased
temporal access) — increased temporal data is not useful if there is
not sufficient time budget to visualize or analyze this data. However,
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an emerging strategy, referred to as “triggers,” can help alleviate this
tension.

Triggers are lightweight analysis tasks that inspect simulation
data and return true when interesting phenomena occur (i.e., the
trigger “fires”) and false otherwise (i.e., the trigger does not “fire”).
Triggers augment the workflow for in situ processing. At the end of
a cycle, a computational simulation starts by calling a trigger. If the
trigger indicates analysis would be useful, then the computational
simulation would schedule heavyweight analyses.

A trigger-based approach has the potential to provide more insight
at reduced cost. Consider an example of a simulation running for
N cycles. A non-trigger approach may execute heavyweight in situ
routines every K cycles, for a total of % executions. A trigger-

based approach, however, may be able to perform fewer than %
heavyweight executions, but perform them during cycles that will
lead to more insight overall. Of course, the trigger-based approach
will only save on execution time if the lightweight executions are
sufficiently fast. In all, triggers are about saving resources — without
triggers, the same heavyweight analyses could still occur, but it
would require running them at a high frequency and incurring a
(potentially much) higher cost.

Despite the potential utility of triggers, domain scientists and
trigger practitioners currently have no framework for reasoning
about whether a given trigger-based approach is viable, i.e., whether
a given trigger inspection task applied at a given inspection rate
with a given fire rate will exceed their time budget. This gap is the
motivating challenge of this paper. In response, we consider two
fundamental research questions: RQ1 and RQ2.

* RQ1 is “can we predict whether a given trigger approach will
exceed a given time budget?” To address this question, we
propose a solution based on cost modeling, expanding previous
in situ cost models to include triggers. One term in the cost
model is data dependent, and we pay special attention to this
term to explore its effects.

* RQ2is “can we inform the space of viable approaches for trig-
ger tasks, inspection rates, fire rates, and analysis tasks?” To
address this question, we analyze a variety of trigger scenarios
using our cost model. This research question is in particular
helpful for visualization and analysis experts designing new
triggers, as it can inform limits for execution time as well as
tradeoffs.

Overall, the contribution of this paper is improved understanding
about how to approach the usage of triggers with respect to staying
within a time bound. That said, this topic is quite large. In order
to make progress, our work limits scope via three key assumptions:
(1) that the in situ model is “tightly coupled,” i.e., that visualiza-
tion/analysis routines execute on the simulation’s compute resources,
(2) that an analyst will have intuition about the consequences of run-
ning visualization/analysis too infrequently, and that they will use
this intuition in combination with our approach to reason about trade-
offs between execution time and accuracy, and (3) that estimates for
costs for various operations are useful surrogates for real runtimes.



Each of these three key assumptions is revisited in our future work
section.

2 RELATED WORK

In situ approaches have rapidly gained traction since Bauer et al.’s
in situ survey in 2016 [9]. In situ functionality can be implemented
via APIs such as ParaView’s Catalyst [2, 6], VisIt’s LibSim [12,33],
or Ascent [21]. In transit APIs include ADIOS [24] and SENSEI [8].
With the availability and acceptability of robust approaches to per-
form in situ processing, in addition to development and deployment,
research has been extended to include understanding in situ usage
via a cost performance analysis.

2.1 Cost Models

A cost analysis requires a performance model with appropriate pa-
rameters to describe the in situ analysis and visualization workflow.
In order to make a simulation workflow adaptive and able to meet
the I/0O bandwidth challenges, we need to consider the various costs
involved in a simulation run. These may include any inline analysis
tasks (e.g., calculating a basic set of statistics for each time step),
costs associated with trigger mechanisms, and any heavyweight data
analysis and visualization tasks (DAV) or I/O tasks based on the
triggers.

The most related to our work is the seminal work by Malakar
et al. [26]. This paper identified the basic parameters needed to
create an in situ cost analysis model: the types and frequencies of
analyses, whether to perform tightly (in situ) or loosely coupled (in
transit), and output frequencies. Their work included an evaluation
of compute and memory constraints, assuming multiple analyses
with associated weights based on importance. The goal was to
optimize the scheduling of the in situ analyses within user constraints.
A follow-up paper by Malakar et al. [25] extended these ideas to
co-analysis (in transit) studies, for both local and remote off-loading
of the data. Although scaling to exascale architectures with multiple
cores per node and greater concurrency has rapidly changed the
underlying problem, these two works provide a solid foundation for
in situ cost analyses. That said, they do not consider trigger-based
workflows.

Contemporaneous work by Ayachit et al. [7, 8] surveyed and
presented in situ and in transit approaches, and studied performance
characteristics to understand impacts on simulation codes. Kress et
al. [19,20] looked at execution time and cost, directly comparing in
situ and in transit approaches and developing cost models for each
method. Aupy et al. [5] also considered this topic, with an emphasis
on memory constraints and their impacts on scheduling algorithms.
Finally, work on developing performance cost models for in situ
power and energy usage can be found in studies by Adhinarayanan
et al. [1] and Haldeman et al. [16].

In this paper, we explore a cost model for the use of triggers
during in situ processing. Although prior work has explored cost
models for various aspects of in situ analysis, none of these efforts
explicitly addressed the high frequency use of triggers in situ. We
believe a cost model for the use of triggers in situ is novel, and par-
ticularly valuable given the increased interest for future in situ DAV.
Specifically, our contribution enables scientists to make informed
decisions regarding inspection frequencies, feasibility of types of
triggers, and the corresponding analyses.

2.2 Triggers

Efforts by Larsen et al. [22] demonstrated trigger technology in
Ascent [21], a flyweight, exascale-capable infrastructure. Recent
work in trigger design and development spans from domain and code-
specific approaches to generic approaches that could be adapted
across domains. Bennett et al. [10] introduced the general concept
of an indicator that can be frequently calculated and an associated
trigger as a Boolean function to test the indicator properties against

a predefined condition, thereby triggering DAV or I/O tasks. Bennett
et al. [10] and Salloum et al. [32] apply this methodology to detect
precursors to heat release in turbulent combustion simulations. They
demonstrate an overhead of approximately 1% of the simulation
time when computing the trigger every 10™ cycle.

Multiple works have focused on using triggers to save important
time steps. Nouanesengsy et al. [30] proposed an algorithm that
constructs a prioritization tree to enable saving highest priority in-
formation as a simulation runs. The algorithm measured temporal
entropy of every simulation time step to form a collection of high
entropy time steps that together capture phases of maximum simula-
tion change. With a similar objective to reduce 1/O costs, Myers et
al. [29] computed a piecewise linear model to capture the simulation.
Thus, triggers have been employed at varying frequencies, i.e., every
cycle and periodically, and for varying purposes, i.e., DAV or I/O
tasks at important time steps.

3 TRIGGER COST MODEL AND AN APPROACH FOR RIGHT-
SIZING IN SITU ANALYSIS

In this section, we introduce our cost model for trigger-based in situ
analysis (3.1). To demonstrate how the cost model can be used, we
then introduce an approach for “rightsizing” in situ analysis (3.2).

3.1 Cost Model

Our model is in the context of “tightly-coupled” in situ, i.e., the anal-
ysis routines run on the same compute resources as the simulation
and can directly access the simulation’s memory (and thus its data).
In this model, the simulation and analysis alternate — the simulation
advances, then the analysis occurs, then the simulation again, etc.
We also assume a model where the transition from simulation to
analysis (and vice-versa) happens at the same time. That is, every
compute node will stop doing simulation and start doing analysis at
the same time. If one compute node finishes its task (simulation or
analysis) before the other compute nodes, then the node sits idle, and
its cost is considered part of the current activity. This assumption
fits common practices today.
Consider the following terms:

* C;: The time to complete cycle i of a simulation.

e P;: The time for a simulation to publish data, i.e., format or
relocate data so it can be consumed by analysis routines. If no
data is published at cycle i, then P, is 0.

e T;: The time to perform a trigger task at cycle i. If no trigger
task is performed at cycle i, then T; is 0.

e A;: The time to perform an analysis task at cycle i. If no
analysis task is performed at cycle i, then 4; is 0.

Then the total time, T, for N cycles is:
N N N N
Lo =Y. Ci+ Y P+ Y Ti+ Y A M
1 1 1 1

Equation 1 is not practical to use as a cost model, since it requires
knowing the values C;, P;, T;, and A; for all cycles. In some cases,
these terms could be replaced by averages. For example, many
simulations perform the same number of computations each cycle,
and so the only variance in execution time is due to hardware factors
(e.g., network contention, memory caching). In these cases, C; = C;
for all i and j, and so an average is appropriate. In other cases, the
variance is much higher. For example, some analysis tasks become
more expensive as a simulation advances and its state becomes more
complex. In these cases, an average may not be appropriate.

To deal with variation, we introduce four terms: Cy, Py, Ty,
and Ay;. The symbol “u” is chosen because of its association with
the mean behavior in statistics. In our model, (t can be chosen as
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Figure 1: A flow chart describing our iterative process for rightsizing
in situ analysis tasks before a simulation begins. The goal of this
process is to make a configuration, (i), for carrying out analysis
tasks within time constraints.

Cu= m]\ellx(Ci). The choice of average represents a typical behavior,

while the choice of maximum represents a worst case behavior.

Further, additional choices of u are possible, such as a distribution

of outcomes, although this direction is not explored in this paper.
Using these new terms, we define our cost model as:

Tiotat =N X (Cy +Ry x (Pu+Ty) +Rp x Ap) 2)

where R; is the rate at which triggers inspect (i.e., Ry = 0.1 means
trigger inspections are performed every ten cycles), and Rf is the
rate at which triggers fire and call analysis tasks. Note that the value
of R; provides an upper bound for Rr, i.e., fire rate cannot exceed
the inspection rate. Further, inspecting data requires publishing data,
so the Ry term is used to cover both inspection and publishing (as
opposed to introducing an Rp term).

Data analysis and visualization (DAV) overhead, i.e., how much
overhead the simulation incurs from doing in situ analysis, is a
related concept. We define this as a percentage relative to the simu-
lation time itself:

YA+ I T+ A
YVe

DAVoyerhead = x 100% 3)

With respect to our model, DAV,,,0;heqd 1S:

Ry * (PIJ +T/,1)+RF *A“
Cu

DAVoverhead = x 100% “4)

While we include publishing costs in our model and also consider
them in the next section, we treat P; as O for the remainder of the
paper. In practice, the publishing cost can approach zero if the
analysis routines can adapt to the memory layout of the simulation
and if there is no movement of the data. These conditions are
commonplace for custom analysis routines and for newer in situ
libraries. However, if data has to be copied to new forms, then P;
can significantly affect tradeoffs.

3.2 An Approach for Rightsizing Trigger-Based In Situ
Analysis

This subsection describes our approach for deciding how to perform
trigger-based in situ analysis. This approach is one of many possible
instantiations; this instantiation is useful for motivating the value
of a cost model, but we recognize that other variations may also be
useful.

The focus for our approach is “rightsizing,” i.e., making choices
to efficiently meet overall campaign goals for a simulation. The
workflow for our approach is displayed in Figure 1. We intend for
this workflow to take place before the simulation begins, and the
outcome of the approach is a configuration of decisions for how to
carry out the simulation and analysis. We assume decisions specific
to the simulation are fixed: what computational problem is being
simulated, physics approaches, mesh resolution, etc. These decisions
in turn fix the time per cycle (each C; and thus Cy, however it is
determined) and the number of cycles (), making them terms we

cannot affect. We also assume the publishing cost (P; or Py) is fixed,
although possibly this process could be optimized if its cost was
significant. For the remainder of the choices, we assume we can
make changes. That is, we assume that the trigger inspection and fire
rates (R; and Rr) can be modified, as can the lightweight trigger task
and the heavyweight analysis task(s) being performed, which would
affect Ty, and Ay, respectively. The final part of a configuration is
the desired time to carry out the simulation campaign, sometimes
referred to as the “makespan,” which we denote as Ty,;q. In all, a
configuration is made up of five choices: inspection rate, fire rate,
trigger task, analysis task, and desired total time.

Our suggested approach is iterative. It begins with assessing
values for the terms of the model — Cy,, Py, Ty, Ay. This process is
the subject of Section 4.1, and is discussed further there. The next
step is for a domain scientist to specify their desired configuration,
which we denote as o(0). In Figure 1, this step is labeled “Obtain
a(0).” With Cy; and N already fixed, the choices behind c(0) inform
the rest of the values from Equation 2: Ry, Ty, Rr, and Ay. The
next step in our approach is to consult the cost model to calculate
the predicted total time, T;,;,;. We then compare the predicted time
to the desired time, Tyegireq- If Tiorqr s larger than Tyegireq, then the
configuration is not viable, i.e., it cannot complete in the desired
amount of time. In this case, our approach would again consult with
the domain scientist to make a new configuration, ¢ (1), with the aim
to reduce the T;,,,; value to the point that it is less than Ty,;,.q (0r for
Tesirea to be raised so that it is bigger than T;,,;). In Figure 1, this
step is labeled “Generate a(i+ 1).” Our iterative approach would
then return to the cost model with ¢¢(1), again checking for viability.
Assuming (1) is not viable, then we would repeat the “Generate
o(i+1)” step, and then check the cost model again. This process
would continue until it produces a configuration (i) which is viable,
meaning that its 7;,,,; predicted by our cost model is less than the
Tyesired- Once this occurs, we would stop, and use the decisions
for that configuration for inspection rate, fire rate, trigger task, and
analysis task. Another outcome is that no viable configuration is
obtainable, in which case the domain scientist would restart the
process with different trigger and analysis tasks. Finally, one of the
assumptions of our work is that the domain scientist would have
intuition about how frequently analysis would need to occur, and we
assume that the domain scientist would incorporate this knowledge
during “Generate @ (i + 1)” — the value of our approach is enabling
the domain scientist to reason about execution time when making
tradeofts.

A critical consideration for this workflow is the accuracy of the
cost models. There are two ways that the model can be inaccurate.
The first potential inaccuracy comes from the choice of Ty, or Ay
(and to a lesser extent Cy; and Py ). For example, if the analysis task
is modeled as the average cost (i.e., Ay = Agye) and if the actual
execution takes more than average, then the workflow may use more
cycles than allotted. The second potential inaccuracy is in estimating
fire rate (Rr), which can be unpredictable (see Section 4.2.2 for more
detail). For either type of inaccuracy, the mitigation approaches
would be to expand the model for different y functions (i.e., go from
Tave t0 Tpy4x) o1 to “pad” the desired time such that underestimates
in cost will still fit within overall campaign goals. Further, we think
that a framework for reasoning about cost is useful, even if it leads
to estimates that are off by large amounts (for example 30%).

4 RESULTS

Our results are organized into three parts:

* Section 4.1 establishes a corpus of real-world values for cycle
time (Cy), trigger time (7)), DAV time (A, ), and acceptable
overhead (DAVpyerhead)s i-€., the terms in the cost model relat-
ing to the simulation or DAV routines. These values are then
used in the remaining two parts.

» Section 4.2 validates the cost model through two steps, first



considering artificial triggers that enable validation of the entire
model and then exploring the effects of fire rate in real-world
scenarios (since fire rate is data dependent). This validation,
when combined with the cost model introduced in Section 3.1,
answers RQ1.

Section 4.3 applies the cost model to inform the space of viable
trigger approaches. This analysis answers RQ2.

Most of the results in this section choose the u function for the
cost model to be the average, which we denote Cgye, Tyve, and Agye.
That said, some of the validation tests in Section 4.2 also consider
maximums for u. Finally, all evaluations of the cost model treat P;
as 0, for reasons discussed in Section 3.1.

4.1 Data Corpus

There is a broad spectrum of possible values for our model, and to our
knowledge, there are no attempts to explore this space holistically.
To define a set of reasonable values for this space, we use a two-
pronged approach:

* Survey of Science Application Teams: This prong allows us
to establish a set of constraints for our model parameters by di-
rectly asking simulation code teams what maximum total anal-
ysis overhead they are willing to accept, average cycle times,
and at what rate applications currently perform analysis. It in-
forms cycle time (Cy,) and acceptable overhead (DAVpyerhead)-

» Experiments: This prong directly measures analysis cost and
average cycle times with three simulation codes. It informs
trigger time (7,) and data analysis and visualization time (Ay).

4.1.1  Survey of Science Application Teams

We reached out to computational scientists across a range of simula-
tion codes to survey their in situ usage. The goal was to establish
sets of constraints for model parameters and total analysis cost that
simulations are willing to pay. While we asked a wide variety of
questions including target architectures, mesh types, and current
analysis approaches, Table 1 summarizes the responses most rele-
vant to this paper. Overall, total analysis overhead constraints ranged
from 5%-20% of total runtime. Average cycle time ranged from
0.05 seconds to 180 seconds, and analysis frequency ranged from
every cycle to every 10,000 cycles. Every application we surveyed is
currently using some form of in situ analysis, and most applications
want additional analysis capabilities.

Table 1: Table mapping simulation survey results to model parameters.
Average simulation cycle times (C,,.) are represented as ranges (in
seconds), since cycle times can vary depending on problem size
and dimensionality (e.g., 2D versus 3D). Analysis Frequency is the
range of average analysis frequencies that application teams reported.
DAV,,,, is the maximum overhead applications are willing to allow.

App Cave Analysis Frequency | DAV,,ux
MFIX (0.1, 10) 0.1% to 1% 20%
Castro 10 NA 5%
WarpX 1.0 1% 20%

Nyx (60,180) 1% to 100% 20%

Truchas PBF 0.1 0.02% 20%
MARBL (0.05,60) 0.01% to 1% 15%
GTS (5,15) 2% to 50% 5%

4.1.2 Experiments

To gather parameters for our model, we ran experiments that eval-

uated three simulations in a variety of configurations, including
many-core CPUs and GPUs.

In situ software: We used the Ascent in situ infrastructure [21].
Ascent is a lightweight library with existing integrations with simu-
lation codes, and has been demonstrated running on 16,384 GPUs.
For visualization, Ascent leverages VITK-m [28], a visualization
library capable of running on many-core CPUs and GPUs. Ascent
is tightly-coupled with the simulations, sharing the same resources
and memory space. At some frequency, the simulation turns over
control of all resources to Ascent. Once Ascent has completed the
analysis operations, Ascent returns control of the resources back to
the simulation.

Table 2: The costs of all operations for these experiments. The first row
is the average cycle time (C,,.) and is in seconds. The remaining rows
all correspond to analysis algorithms and are relative, i.e., Age/Cave *
100%. A value of 100% means that the analysis algorithm and the
average cycle time are the same, resulting in a 50% overhead if
the analysis algorithm is run every cycle. Finally, the time reported
is for the operation to complete in parallel, i.e., if there are parallel
inefficiencies with some operations, then they are captured in these
timings.

Operation | MARBL | Clover Sw4
Cave 18.31s 2.65s 0.20s
Histogram 0.05% 15% 80%
Statistics 0.16% 17% 105%
RayTracer 1.37% 15% 35%
Slice 0.38% 42% 180%
Contours 1.53% 92% 105%
IsoVolume 1.26% 235% 450%
Cinema 13% 185% 800%
10syp 2.40% 501% 9435%
I0FyLL 4.97% 2943% | 12290%

Trigger algorithms: We selected two current methods:

* Histogram: Calculating a distributed-memory histogram with
256 bins.

« Statistics: Calculating the 4"*-order moments including aver-
age, variance, skewness and kurtosis.

In each case, the method analyzes the current time step, and then the
trigger fires (or not) based on the result.

DAV algorithms: We chose a variety of DAV visualization tasks
that capture a spectrum of algorithmic and parallel communication
complexity:

¢ Contours: Calculating isosurfaces of 10 evenly spaced iso-
values.

* RayTracer: Rendering images of the output of the Contours
results.

* Slice: Calculating three axis-aligned slice planes intersecting
with the center of the data set.

* IsoVolume: Calculating a volumetric region of a scalar field
between a minimum and maximum value.

¢ Cinema: Creating a 64 image Cinema [3] database of the
Contours results.

¢ IOgyp: Saving the mesh and a single field into HDFS files (1
file per domain).

¢ IOpyLL: Saving the mesh and all published fields into HDF5
files (1 file per domain).

Simulations: We chose three diverse simulations with respect to in
situ performance:

* MARBL: A high-order finite element Lagrangian hydrody-
namics code [4].



Table 3: Table showing notional cases with our cost model to inform overhead with triggers for the MARBL simulation code. 7,,. and A,,. are
specified relative to C,,. (18.31s for MARBL), i.e., a T,,. value of 0.01 refers to 0.01 x C,,.. Cases #1 through #6 show the cost of analysis with
triggers, and with the assumption that the inspection task only triggers analysis 10% of the time (Rr = 0.1). Case #’s 7 through 10 (below the
double line) have R; of zero, meaning that no trigger tasks are called. In these cases, the time to perform the trigger task is moot.

Case Ry Tave Rp Operation Agve Overhead
#1 1.0 0.01 0.1 Cinema 0.89 9.9%
#2 1.0 0.01 0.1 10Fry1L 0.05 1.5%
#3 1.0 0.01 0.1 IsoVolume + RayTracer | 0.025 1.25%
#4 1.0 0.1 0.1 Cinema 0.89 18.9%
#5 1.0 0.1 0.1 IOryrL 0.05 10.5%
#6 1.0 0.1 0.1 IsoVolume + RayTracer | 0.025 10.25%
#7 0.0 - 0.1 Cinema 0.89 8.9%
#8 0.0 - 0.1 10Fry1L 0.05 0.5%
#9 0.0 - 1.0 Cinema 0.89 89%
#10 0.0 - 1.0 10ryrL 0.05 5%

* Cloverleaf: A hydrodynamics proxy-application [27] that
solves the compressible Euler equations.

* SW4: A three-dimensional seismic modeling [17] code that
uses a combination of rectilinear and curvilinear grids.

The experiments in this section were run on one of three machines:
Quartz, Summit, or Topaz. Quartz and Topaz both have Intel Xeon
ES5-2695 architectures. Summit uses both NVIDIA V100 GPUs (6
per node) and IBM POWERY CPUs. The configuration for each
simulation was:

Simulation Code || MARBL | Cloverleaf | SW4
1 MPI Task Per Core Node GPU
Total MPI Ranks 2304 256 2040
Total Nodes 64 256 340
# of Elements 22.M 14.9B 32.7B
Mesh Type || Unstruct. | Rectilinear | Rect.+Curv.
Machine Topaz Quartz Summit

Each configuration evaluated all analysis algorithms every 100
cycles, and recorded the times of all algorithms and simulation
cycles. In all cases, Ascent ran with the same configuration, i.e., if
the simulation executed on the GPU then so did the analysis.

Table 2 shows the results of our experiments. The difference
in cycle time between the three simulations is nearly an order of
magnitude, with MARBL having the longest cycle time and SW4
having the shortest. As a result, the visualization and I/O operations
vary in burden. The most expensive operation, /Ofyyy, takes less
than 5% of a cycle for MARBL (0.91s total) while it is more than
100X the cycle time of SW4 (24.5s total). This is because SW4 is
producing more data per cycle despite its faster cycle time. Further,
this example illustrates a relationship seen throughout the table,
namely that the cost of the visualization, analysis, and I/O is more
correlated with the number of elements produced than the cycle time.
Finally, each simulation was run with a fixed configuration, and the
timings of the operations could change as the configuration changes.
For example, if the number of MPI ranks increases, then parallel
inefficiencies could increase for some operations.

4.1.3 Notional Usage of Our Model with Values from the
Data Corpus

Table 3 shows notional cases using the simplified model (i.e., Equa-
tion 4) for the MARBL simulation. The table uses information
gathered from domain scientists in Section 4.1.1 and results from
the experiments in Section 4.1.2. The table considers three DAV
tasks: generating a Cinema database, /Ofyy 1, and the combined
IsoVolume plus RayTracer task. The costs for these tasks (Agye),
which can also be found in Table 2, are 89% (Cinema), 5% (IOry1),
and 2.5% (IsoVolume and RayTracer combined) of the time of one
simulation cycle (Cyy.). Further, Table 3 considers two scenarios for
the cost of running a trigger (Tzye): 1% and 10% of Cgye.

We consider Case #1 in Table 3 to be a typical example, as the
trigger inspection is called every cycle (R; = 1) and the trigger test
is very lightweight (1% of Cg,.). It is also reasonable for MARBL,
given the costs of in situ Statistics and Histogram operations. Using
Equation 2, the total time for Case #1 would be:

Tiotal =
N x(Cy+Ryx (Py+Ty)+Rp xAy)
N X (Caye +1.0 X (0+0.01 X Caye) +0.1 x 0.89 X Caye)
N X (Caye +0.01 X Caye +0.089 X Cpye)
N X Caye x (1+40.0140.089)
N X Caye x (1.099)

(&)

This aligns with the simplified cost model (Equation 4), which shows
the cost to be 9.9% overhead for Cinema analysis.

From our simulation survey, we know that the DAV, for
MARBL is 15% (Table 1). Eight cases of our notional usage of
the model for MARBL simulation are within this limit. Case #’s 7
through 10 reflect a static model for analysis tasks, i.e., scheduling
analysis tasks at regular intervals and not using triggers. While both
the adaptive and static models can incur unacceptable overhead in
some cases (case #4 has 18.9% overhead and case #9 has 89% over-
head), the key point of the adaptive model is to choose the cycles
where the analysis will be the most meaningful. Finally, cases #1,
#2, #3, #5, and #6 illustrate ideal trigger setups — the trigger task is
called frequently, but leads to acceptable overhead, and the analysis
task is called infrequently enough to make the overall overhead be
acceptable.

4.2 Validation

This section presents results for validating the cost model. This
validation is complicated by the data-dependent nature of the fire rate
(RF). To see that fire rate is data dependent, consider the example
of a simulation of a steel rod impacting a wall. The area of interest
for analysis is the period of time when rod impacts the wall, and the
impact has detectable characteristics, although we might not know
exactly when that occurs. One possible way to detect the impact
event is to monitor the entropy of density. At first, the two materials
have constant density, but at the time of impact, the materials begin
to deform and the entropy value increases, and when the impact
event is over, the entropy values converges to a new state.

In response to the data-dependent nature of fire rate, we approach
validation in two steps, first considering a scenario where the fire
rate can be set through artificial means (Section 4.2.1) and then
considering real-world scenarios where the fire rate varies based
on simulation properties (Section 4.2.2). We feel this combined
approach allows us to validate the cost model, and thus answer
research question RQ1.



Table 4: Overhead error ranges for all validation experiments. Positive values mean that the prediction underestimated simulation overhead and

negative values mean that the prediction overestimated simulation overhead.

Test A

Test B

Test C

Test D

Test E

ave

(-21.0%, 14.4%)

(-7.3%, 4.2%)

(-0.46%, 0.11%)

(-2.3%, 0.20%)

(-1.5%, 0.29%)

Table 5: Overhead error ranges for validation experiments where the simulation overhead was less than 15%.

Test A Test B Test C Test D Test E
ave | (-1.5%,0.89%) | (-1.1%,0.78%) | (-0.23%, 0.06%) | (-0.43%,0.15%) | (-0.60%, 0.22%)
max | (-4.2%, 0.56%) | (-4.8%, -0.05%) | (-2.3%, -0.02%) (-0.91%, 0%) (-2.3%, -0.08%)

4.2.1

Validation with Artificial Fire Rates

4.2.2 Studying Fire Rate in Practice

The first step of our validation approach is to use artificial fire rates
and compare estimated values to actual values.
Experiment Overview: Our validation runs used the Cloverleaf
simulation code, running on 576 cores and operating on data sets
of 544M cells. The cores were divided over 16 nodes, with one
MPI rank per node and OpenMP parallelism within a node. The
supercomputer, “Pascal,” was composed of Intel Xeon E5-2695
nodes, each with 36 cores.

We ran five sets of tests using the following trigger-analysis com-
binations:

» Test A: Histogram-Cinema

» Test B: Statistics-1O0syp

 Test C: Statistics-Slice

* Test D: Histogram-IsoVolume

* Test E: Histogram-Contour

For each of the five tests we ran the cross product of 10 inspection
rates and four target fire rates:

e Rp:1,1/2,1/3,...,1/10

* Target Rp: Ry +0.25, Ry %0.5, Ry % 0.75, Ry % 1.0

In total, we ran 200 tests (5 % 10 x4 = 200). To fire the artificial
trigger, we used the Mersenne Twister algorithm to generate a ran-
dom number each time the analysis filter was invoked and called the
analysis when the random number was below the target Rr.
Validation Results: Across all of our runs, the Cloverleaf cycle
time was 2.5s with very low variation, so, to simplify the validation,
we use this value as Cy;. For each test, there were 40 experimental
values for 7, and Ay to choose as inputs to the model. We cross-
validated every possible choice of model inputs by using each of
the 40 experimental values as inputs to the model and evaluated
error against the remaining 39. We compared model accuracy in
terms of actual simulation overhead versus predicted simulation
overhead, and we summarized all model choices as ranges, which
is the union of all error ranges. Saying it another way, the accuracy
ranges represent the worst-case scenario.

Table 4 shows the results of all validation experiments. Tests
C-D have accuracy ranges that are reasonable, i.e., the predicted
simulation overhead was never more than a few percent away from
the actual overhead. In tests A and B, the prediction accuracy was
lower. We chose to measure simulation overhead because it demon-
strates the practical application of our cost model. That said, the
relative costs of the analysis operations have a large impact on the
overall error ranges. For example, the cost of Cinema (Test A) is
approximately 2.5x more than a simulation cycle, so even a small
prediction error is amplified when put in terms of simulation over-
head. Additionally, for completeness, our validation experiments
covered impractical choices of R; and Rf, e.g., performing Cinema
every simulation cycle. Table 5 contains the error ranges for all tests
where the estimated simulation overhead is less than 15%. When
using the average values for 7, and Ay, total model accuracy in all
tests is -1.51% to 0.89%. Overall, we believe this demonstrates that
the model can be used to make informed decisions when considering
triggers.

In this section, we extend the validation by considering fire rates
in the context of the data collected from the three simulations. In
general, trigger fire rates can be challenging to understand, since they
depend on the specifics of the simulation advancements, i.e., they are
data dependent. That said, domain scientists are well positioned to
reason about fire rates, since they understand the underlying physical
processes they are simulating. In many cases, this enables them
to define trigger functions tailored to a simulation and effectively
predict fire rates.

To study the effect of a data-dependent function, we consider a
trigger that evaluates the change in entropy over time, calculated
from the histogram operation, and examine how this trigger function
behaves in the context of the entropy in each simulation. Our trigger
function (Equation 6) evaluates the absolute value of the entropy
change at an inspection rate of R;:

Fire = abs(entropy(t;) — entropy(t;_1)) > threshold ~ (6)

Ultimately, R is dependent on R, the threshold value, and the
entropy values. Since the user sets up the simulation, we expect that
the user will have general a priori knowledge about the expected
simulation behavior or have data from previous simulation runs,
which gives them an idea about realistic values of threshold and
entropy and in turn Rr. To that end, we use the data gathered from
our experiments as a stand-in for this a priori knowledge, and we
use the entropy trigger as a proxy to demonstrate the usefulness of
our model. Figure 2 shows the entropy values over time in different
fields for each simulation. Using the entropy data, we can explore
the costs from R; and threshold values.

Due to limited compute time, we only performed inspection and
analysis every 100 cycles, so as not to exhaust our compute resources
performing mostly analysis and visualization. This constraint mir-
rors the cost-benefit choice we are exploring. Thus, we use values of
R; beginning at 0.01, and we subsample the data points (i.e., every
7" sample point) to evaluate smaller values of R;. Based on the
entropy distribution from each simulation, we chose a range of po-
tential threshold values to explore, and we chose analysis operation
where the cost was relatively high compared to the simulation’s Cyye.
Figure 3 shows the results of applying the model to our experimental
data and our trigger function.

Using the cost model combined with the range of acceptable
DAV, values in Table 2 informs the resulting costs given different
choices of Ry and threshold values. Looking at MARBL, all choices
of R; and threshold result in a total analysis cost of less than 1%.
If the user is satisfied with choices within this space, then all they
have to do is pick the most appropriate parameters for their use
case. Conversely, the cost space for Clover and SW4 is much more
varied. Each of the plots contains regions where the total cost is
approaching 20%, which is the upper limit of the analysis cost from
Table 1 that simulation scientists indicated they find acceptable. As
per the rightsizing approach, the user must decide what cost they are
willing to pay and choose the appropriate threshold and R; values.
If none of the choices are viable, then they must re-evaluate trigger
choice, analysis choice, or their trigger function, then re-apply the
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Figure 2: The entropy curves for all three simulations. From left to right, MARBL (density), Clover (energy), and SW4 (velocity magnitude).
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Figure 3: Plots showing the results of applying the model using the entropy based function to the experimental data. The x-axis is a range of
potential threshold values to the trigger, and the y-axis is the log scale of R;. For the left column, the color shows the Ry values for each trigger,
and for the right column, the color shows the total cost as a percentage of simulation time. Each row corresponds to one of the three simulations.
Finally, each plot has black contour lines to better illustrate the complexity of the underlying field. (The contour lines are of the same field as the
pseudocolor plot underneath.)
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Figure 4: Cost contours for Cinema analysis triggered by Histogram
inspection for the three simulation codes included in our experiments.
These cost contours can help inform viable combinations of R; and
Rr given desired overhead costs. In all graphs, the X-axis is the
inspection rate, the Y-axis is the fire rate, and the color represents the
overhead incurred. These plots are generated from the cost models
(not experimentally), so the boundaries between contours are straight
lines. There is interesting behavior with both high inspection rates
and low inspection rates, so we separate the two cases into separate
graphs — each simulation has a pair of images, one with inspection
rates varying from never (R; = 0%) to every cycle (R; = 100%), and
the other with inspection rates from zero cycles (R; = 0%) to 10% of
the cycles (R; = 10%). Since Rr cannot exceed Ry, the upper triangle
of the plot is not valid. Further, costs on the diagonal line represent
points where Rr = R; (i.e., every inspection leads to a fire), and so
values along that diagonal correspond to the maximum possible cost
for a given inspection rate.

cost model until they have a choice that works.

The data in Figure 3 was generated by applying the cost model.
We validated the accuracy of the cost model by re-running the SW4
experiment with a Ry of 1, meaning that we performed trigger in-
spection every cycle. This allowed us to compare 1000 interpolated
values generated by the cost model with actual overheads. We found
that the average error in the total analysis costs was 3%.

4.3 Using the Cost Model to Inform the Space of Viable
Trigger Approaches

This section addresses RQ2 by applying our model to determine
the viability of different use cases, using the model values deter-

mined from the previous investigation. While our data corpus is not
exhaustive, we feel its members are representative and analyzing
viability questions with these members informs the entire space. We
break this analysis into two parts. First, Section 4.3.1 considers
how the model can be used to inform different trigger investigation
and fire rates for a single pairing of trigger and DAV algorithm
(specifically histograms and generating a Cinema database). Sec-
ond, Section 4.3.2 repeats the analysis from Section 4.3.1 but with
multiple pairings of trigger and DAV algorithms.

4.3.1 Varying Trigger Inspection and Fire Rate

For our rightsizing approach, we feel the most common settings to
change will be inspection rate (Ry) and fire rate (Rr). In other words,
we feel the other terms in the model will be less likely to change
— certainly not cycle time (C,), and likely not the DAV task (Ay)
or an increase in the amount of overhead (DAVp,erheaq)- Further,
if a domain scientist believes that a trigger approach will capture
the right insight and is lightweight enough, then it is also not likely
to change (7},). In all, our goal with this analysis is to inform the
variation in overhead as trigger settings vary. To do this, we pick
one combination of trigger and analysis — Histograms and Cinema
output — and consider the effects over all three simulation codes.

Figure 4 shows cost contour plots for all three simulations and for
all inspection rates and fire rates. A plot like this can allow a domain
scientist to quickly infer whether DAV overhead will exceed their
acceptable overhead (DAVjs4x). For example, the MARBL team
is willing to allow up to 15% overhead. Figure 4 shows that this
level of overhead almost never occurs in practice, and so less care is
needed in arranging triggers and DAV. On the other hand, the costs
for Clover and SW4 quickly get quite large. In these cases, domain
scientists would likely want to scale back inspection rate and also
adjust their trigger so the fire rate was low.

4.3.2 Varying Trigger Inspection and Fire Rate for Multiple
Triggers and DAV Algorithms

Where Section 4.3.1 considered a single pair of trigger and DAV
algorithm, this section considers all pairs from our experiments
— the results in this section are the ones most responsive to RQ2.
Figure 5 plots these results, enabling exploration across a wide range
of cases. The value of this figure is that it enables comparisons across
trigger and DAV algorithm. For example, while an assumption from
Section 4.3.1 was that domain scientists were not likely to change
their DAV algorithm, this plot enables them to at least consider
the change in cost from switching using our rightsizing approach.
In this particular case, producing a Cinema database (the example
from Section 4.3.1) was problematic for Clover and SW4, but the
RayTracer is more reasonable — a domain scientist may decide
that DAV algorithm represents a worthy tradeoff given its reduced
overhead. With respect to RQ2, DAV practitioners can reason about
the costs of their algorithms. In particular, trigger evaluation time
(Ty) was not problematic for MARBL, but Figure 5 shows that it is
more significant for Clover and SW4. This is clearly visible with
the RayTracer plots, where the zero-cost trigger stays less than 50%
overhead (blue or yellow colors) for many more configurations than
Histogram and Statistics.

In terms of takeaways for DAV scientists developing triggers,
there is clearly a large spectrum of outcomes, as the costs vary
significantly from simulation to simulation. There are many reasons
for this variation, including data size, mesh types, the types of solvers
used, and architectures that the codes run on. For example, MARBL
is simulating a Kelvin-Helmholtz instability while Clover is solving
the incompressible Euler equations, i.e., MARBL is doing far more
work than Clover. That said, for a DAV scientist, the opportunity to
do more frequent inspections and heavier weight triggers exists for
MARBL, but does not for Clover. For SW4 (which is representative
of a simulation code that generates lots of data and has a short cycle
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Figure 5: Cost contours for all DAV algorithms for MARBL (top group-
ing), Clover (middle grouping), and SW4 (bottom grouping). Further,
a hypothetical trigger that has zero cost was included, to evaluate the
contribution of the trigger operation to the contours. Each grouping
has three rows, each corresponding to a trigger: the zero-cost trigger
(top row within a grouping), Histogram (middle row within a grouping),
and Statistics (bottom row within a grouping).

time), the situation is even worse — trigger-based approaches must
employ some combination of being very fast, inspecting infrequently,
and having a low fire rate. Once again, the main takeaway is that the
appropriateness of a trigger is highly dependent on the simulation
code.

5 CONCLUSION

This paper considers two important research questions with respect
to execution time for trigger-based in situ analysis, with the first
on whether a specific configuration is viable and the second on in-
forming the space of viable approaches. We used a cost model for
answering both questions, and we believe this is the first in situ cost
model that incorporates triggers. Our approach provides a tool that
enables trigger users and researchers to make decisions balancing
between science goals, cost constraints, and data-dependent prop-
erties. It informs analysis overhead in a variety of scenarios, and
how the design of a specific trigger can be adapted to increase or
decrease overhead.

We believe the work is valuable to both computational scientists

and in situ analysis researchers. For computational scientists, our
model will help with reasoning about what tasks can be performed
with triggers, and how modifying thresholds in triggers can affect
overhead. For in situ analysis researchers, this work helps informs
the boundaries of future research, i.e., what are reasonable limits
for execution time for both triggers and follow-on analysis tasks?
Finally, we feel cost viability questions such as this one will become
increasingly important as more application codes look to optimize
in situ analysis.

Future work primarily involves revisiting the three key assump-
tions made in our study. First, while our work assumed a “tightly-
coupled” environment, considering a flexible in transit setting — as
used by ADIOS [24], Bredala [15], Damaris [14], FlowVR [23],
GoldRush [34], SENSEI [8], and others — could lead to valuable
propositions for improved analysis at reduced cost. With respect
to our model, the analysis for costs would involve usage of dedi-
cated resources, non-zero publishing costs, and (of course) ques-
tions of where triggers/analysis should be performed. Second, we
assumed that an analyst would have intuition about when visual-
ization/analysis was being performed too infrequently and would
adapt choices to ensure this does not happen. One path forward to
eliminating this assumption is to gain more holistic understanding
of the error incurred based on trigger strategy and frequency. The
benchmarking work by Kawakami et al. [18] is an initial attempt
in this direction, and expanding this benchmark suite with more
trigger techniques, simulations, analyses, etc., could add significant
insight on this issue. Also, while the experiments in this paper do
not include saving simulation state to disk at a regular interval, this
practice certainly fits within our approach and cost model frame-
work, and also limits concerns about missing important phenomena
and potentially having to re-run the simulation. Third, our approach
requires estimates of cycle times, inspection times, analysis times,
etc., which we primarily obtained experimentally. Additional cost
models would eliminate the need to run such experiments. Further,
while our model accounted for a range of outcomes from cycle to
cycle (i.e., allowing for A, instead of A,y.), we feel that predictions
can become increasingly accurate as the range of outcomes are better
understood. In particular, we saw low variance among activities in
our experiments, but other simulations may have higher variance,
which would be challenging for our approach.

Finally, while this work considered binary triggers that consider
a given time step, triggers can be more probabilistic in nature, for
example attempting to quantify the value of analyzing the current
time step given previous analyses. Our approach can support non-
binary triggers (since they ultimately do decide to fire or not fire),
but reasoning about their fire rates can be more difficult. We view
non-binary triggers techniques as a worthy future research direction,
as well as expanding our model to accommodate them.
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