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ABSTRACT

We present a new parallel algorithm for probabilistic graphical
model optimization. The algorithm relies on data-parallel primi-
tives (DPPs), which provide portable performance over hardware
architecture. We evaluate results on CPUs and GPUs for an image
segmentation problem. Compared to a serial baseline, we observe
runtime speedups of up to 13X (CPU) and 44X (GPU). We also
compare our performance to a reference, OpenMP-based algorithm,
and find speedups of up to 7X (CPU).

Index Terms: Mathematics of computing—Graph algo-
rithms, Markov networks, Expectation maximization; Computing
methodologies—Image processing, Shared memory

1 INTRODUCTION

Image segmentation refers to labeling regions of an image based
on specific pixel properties. There are many approaches for this
task, resulting in different types of segmentations. One approach is
to transform an image into a graph, where each region of pixels is
encoded as a vertex. For each vertex (i.e., region of pixels), there
are multiple possible labels, and each label is assigned a probability.
The labels are chosen by minimizing an energy function, which is
solved via an optimization routine. This entire process is referred to
as probabilistic graphical model (PGM) optimization. In this study,
we consider a specific form of this process—described in detail in
Section §2—that uses Markov Random Fields (MRFs).

This process, i.e., constructing the graph and optimizing the en-
ergy function, requires significant computation. For our use cases
and data sets, serial execution times were not sufficient. This work
focuses on a novel reformulation of MRF optimization for shared-
memory parallelism via data parallel primitives (DPPs), which
enable portable performance over different architectures. Finally,
since our algorithm works on MRFs in parallel and uses DPPs, we
refer to the algorithm as DPP-PMRF.

Our results show that DPP-PMRF yields significant speedups.
We compared it to a serial implementation on a variety of platforms,
and observed speedups of up to 13X (CPU) and 44X (GPU). We also
developed a reference algorithm that uses OpenMP to parallelize the
MRF graph optimization in a coarsely-parallel manner. We found
that our DPP-based approach was up to 7X faster than the reference
algorithm (CPU). These performance gains are a result of the fine-
grained parallel design of DPP-PMRF, which reformulates the MRF
graph optimization in terms of multiple data-parallel operations over
1D arrays. This DPP-based design is particularly amenable for the
available instruction vectorization and high arithmetic and memory
throughput inherent in modern CPU and GPU architectures.

The contribution of this paper is two-fold. First, we have devel-
oped a novel, DPP-based, shared-memory parallel implementation
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of an algorithm for a graph-labeling, data analysis problem. This
contribution is important for our science objectives, since it helps to
improve platform-portable performance and data throughput of our
overall image analysis workflow. Second, we provide additional evi-
dence that the DPP approach —already quite popular for scientific
visualization— also works on graph-based data analysis problems.

§2 gives an overview about probabilistic graphical models ap-
plied to image segmentation. Additionally, we present some related
works on performance and portability in graph-based methods and
using data parallel primitives. §3 presents our implementation, with
particular attention to how an existing implementation of the MRF-
based image segmentation method is expressed using DPPs. §4
evaluates the DPP-based implementation in terms of correctness of
results, and in terms of strong scaling studies on a multi-core plat-
form, which includes a comparison with a reference OpenMP-based
implementation.

2 BACKGROUND AND RELATED WORK

2.1 MRF-based Image Segmentation
Image segmentation is a compute-intensive task, and is a key com-
ponent of multi-stage scientific analysis pipelines, particularly those
that work with large-scale image-based data obtained by experi-
ments and advanced instruments, such as the X-ray imaging devices
located at the Advanced Light Source at Berkeley Lab (Advanced
Light Source website: http://als.lbl.gov/). As such instru-
ments continually update in spatial and spectral resolution, there
is an increasing need for high-throughput processing of large col-
lections of 2D and 3D image data for use in time-critical activities
such as experiment optimization and tuning [4]. Our work here is
motivated by the need for image analysis tools that perform well
on modern platforms, and that are expected to be portable to next-
generation hardware.

The process of segmenting an image involves separating various
phases or components from the picture using photometric informa-
tion and/or relationships between pixels/regions representing a scene.
This essential step in an image analysis pipeline has been given great
attention recently when studying experimental data [38]. There are
several different types of image segmentation algorithms, which can
be divided into categories such as: threshold-based, region-based,
edge-based, clustering-based, graph-based and learning-based tech-
niques. Of these, the graph- and learning-based methods tend to
present the highest accuracy, but also the highest computational cost.

Graph-based methods are well-suited for image segmentation
tasks due to their ability to use contextual information contained
in the image, i.e., relationships among pixels and/or regions. The
probabilistic graphical model (PGM) known as Markov random
fields (MRF) [27] is an example of one such method. MRFs repre-
sent discrete data by modeling neighborhood relationships, thereby
consolidating structure representation for image analysis [25].

An image segmentation problem can be formulated using an MRF
model on a graph G, where the segmented image is obtained through
an optimization process to find the best labeling of the graph. The
graph G(V,E) is constructed from an input image, where V is the
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set of nodes and E is the set of edges. Each node Vi represents a
region (set of pixels) and two nodes, Vi and V j , are connected by an
edge if their corresponding regions share a boundary.

In an MRF model, the optimization process uses a global energy
function to find the best solution to a similarity problem, such as
the best pixel space partition. This energy function consists of a
data term and a smoothness term. For image segmentation, we use
the mean of the intensity values of a region as the data term. The
smoothness term takes into account the similarity between regions.
The goal is to find the best labeling for the regions, so that the
similarity between two regions with the same labels is optimal for
all pixels [29].

Given an image represented by y = (y1, . . . ,yN), where each yi is
a region, we want a configuration of labels x = (x1, . . . ,xN) where
xi ∈ L and L is the set of all possible labels, L = {0,1,2, . . . ,M}.
The MAP criterion [27] states that one wants to find a labeling x∗
that satisfies x∗ = argmax

x
{P(y|x,Θ)P(x)}, which can be rewritten

in terms of the energies [27] as x∗ = argmin
x
{U(y|x,Θ) +U(x)}

(please refer to [39] for details regarding the prior and likelihood
energies used in our approach).

Despite their high accuracy, MRF optimization algorithms have
high computational complexity (NP-hard). Strategies for overcom-
ing the complexity, such as graph-cut techniques, are often restricted
to specific types of models (first-order MRFs) [18] and energy func-
tions (regular or submodular) [18]. In order to circumvent such
drawbacks, recent works [30, 31] have proposed theoretical founda-
tions for distributed parameter estimation in MRF. These approaches
make use of a composite likelihood, which enables parallel solu-
tions to sub problems. Under general conditions on the composite
likelihood factorizations, the distributed estimators are proven to
be consistent. The Linear and Parallel (LAP) [32] algorithm paral-
lelizes naturally over cliques and, for graphs of bounded degree, its
complexity is linear in the number of cliques. It is fully parallel and,
for log-linear models, it is also data efficient. It requires only the
local statistics of the data, i.e., considering only pixel values of local
neighborhoods, to estimate parameters.

Perciano et al. [39] describe a graph-based model, referred to as
Parallel Markov random fields (PMRF), which exploits MRFs to
segment images. Both the optimization and parameter estimation
processes are parallelized using the LAP method. In the work we
present here, we use an OpenMP-based PMRF implementation as
the “reference implementation,” and reformulate this method using
DPPs. We study the viability of using DPPs as an alternative way
to formulate an implementation to this challenging graph-based
optimization problem, and compare shared-memory scalability of
the DPP and reference implementation.

2.2 Performance and Portability in Graph-based Meth-
ods

The idea of formulating algorithms as sequences of highly optimized
kernels, or motifs, is not new: this approach has formed the basis
for nearly all numerical library and high performance simulation
work going back almost 40 years, to the early implementations of
LINPACK [12]. Over the years, several different highly optimized
and parallel-capable linear algebra libraries have emerged, which
serve as the basis for constructing a diverse collection of scientific
computing applications. Such libraries include ScaLAPACK [8],
BLASFEO (Basic Linear Algebra Subroutines for Embedded Opti-
mization) [13] and MAGMA (Matrix Algebra on GPU and Multicore
Architectures) [43], to name a few.

The concept of using combinations of highly optimized building
blocks has served as guiding design principle for many works focus-
ing on high performance graph processing tools. The Boost Graph
Library (BGL) [41] is a seminal implementation of data structures
and methods for operating on graphs. The Multi-thread Graph Li-

brary (MTGL) [3] adapts and focuses BGL design principles for
use on multithreaded architectures, where latencies associated with
irregular memory access are accommodated by increasing the thread
count to fully utilize memory bandwidth. More recent works, such
as CombBLAS [6] and GraphBLAS [7, 16], provide the means to
implement graph-based algorithms as sequences of linear algebra
operations, with special attention to the irregular access patterns
of sparse vector and matrix operations, and on distributed-memory
platforms. GraphMat [42] provides the means to write vertex pro-
grams and map them to generalized sparse matrix vector multiplica-
tion operations that are highly optimized for multi-core processors.
The STAPL parallel graph library [14] focuses more on the data
structures and infrastructure for supporting distributed computa-
tions that implement computational patterns (e.g., map-reduce) for
user-written graph algorithms.

Like many of these previous works, we are also examining the
concept of platform portable graph algorithm construction using
optimized building blocks. Compared to these previous works, our
focus is narrower in terms of graph algorithm (PGM optimization)
and building block (DPP).

2.3 Performance and Portability with Data Parallel Prim-
itives

The primary motivation for focusing on data parallel methods, par-
ticularly those that are amenable to vectorization, is because this
approach appears promising for achieving good performance on
multi- and many-core architectures, where there is an increasing
on-chip computational capacity but relatively flat growth in memory
bandwidth. Levesque and Voss [24] speculate that vectorized codes
may achieve performance gains of as much as 10-30 fold compared
to non-vectorized code, with the added benefit of using less power
on multi- and many-core architectures. DPPs are amenable to vec-
torization, and in turn, are capable of high performance on multi-
and many-core architectures. This idea is not new, but dates back
over 20 years to work by Blelloch [5], who proposed a vector model
for parallel computing.

The following are examples of canonical DPPs that are used as
building blocks to construct data-parallel algorithms:

• Map: Invokes the same operation on each element of the input
array, storing the result in the corresponding location of an
output array of the same size;

• Reduce: Applies a binary operation (e.g., minimum or sum-
mation) on all elements of an input array, returning a single
aggregate output value. ificReduceByKey: Performs a seg-
mented Reduce on the input array, with segments based on
unique keys, or data values, yielding an aggregate output value
for each unique key;

• Scan: Calculates a series of partial summations, or a prefix
sum, over the data values in an input array, producing an output
array of the same size;

• Scatter: Writes each value of an input data array into a loca-
tion in an output array, as specified in an input array of write
indices;

• SortByKey Conducts an in-place segmented Sort on the input
array, with segments based on unique keys, or data values, in
the input array;

• Unique: Ignores duplicate values which are adjacent to each
other, copying only unique values from the input array to the
output array of the same or lesser size.

For this study, we have reformulated the MRF optimization prob-
lem entirely in terms of DPPs that are implemented as part of the
VTK-m library of data analysis and visualization algorithms for
emerging processor architectures [2, 34]. VTK-m is a platform-
portable framework that provides a set of key DPPs, along with
back-end code generation and runtime support for use on GPUs



(NVIDIA CUDA Toolkit [36]) and multi-core CPUs (Intel Thread
Building Blocks (TBB) [9]), all from a single code base.

Specifically, DPPs are called via high-level function names spec-
ified by VTK-m. The underlying data-parallel operations are then
executed via low-level function calls of a platform-specific library,
such as TBB for CPUs and NVIDIA Thrust [37] for GPUs. Thus, a
single VTK-m code base written in terms of DPP can be executed
across multiple platforms and methods of parallel processing. More-
over, VTK-m code (and DPP-based design, in general) is robust to
emerging platform architectures. Given a new platform (e.g, FPGA)
or multi-threading framework (e.g., OpenMP and OpenCL) for an
existing platform, each DPP just needs to be implemented in terms of
an optimized data-parallel library or code base native to the platform
of execution (e.g., OpenMP-based DPP for CPUs or OpenGL-based
DPP for GPUs). In this case, the DPPs would still be called with the
same high-level VTK-m function names, and invoke the underlying
platform-specific library functions.

VTK-m’s primary focus thus far has been on platform portable
scientific visualization applications, with recent work showing vi-
ability in terms of portability, scalability, and performance gains
within the context of ray-tracing [20], unstructured volume render-
ing [19], isocontouring [28], cell-projection volume rendering [40],
external facelist calculation [21], and wavelet compression [26].

While VTK-m’s use as a vehicle for achieving platform portability
and performance for visualization methods is becoming better under-
stood, its use as the basis for platform portable analysis computations
is largely unexplored. Recent work [23] uses a DPP formulation
of a graph analytics problem, namely maximal clique enumeration
(MCE). The results show that the DPP reformulation is competitive
with a state-of-the-art implementation in locating maximal cliques,
is platform portable with performance analysis on both CPU and
GPU platforms, and offers significant evidence that this approach is
viable for use on graph-based problems.

An open question, which is outside the scope of this work, is
whether or not the MRF optimization problem can be recast in a
way that leverages platform-portable and parallel implementations
such as GraphBLAS [7, 16], which accelerates graph operations by
recasting computations as sparse linear algebra problems. Unlike
many graph problems, the MRF optimization problem here is not
a sparse-data problem: as part of the problem setup, the graphical
model is represented internally, in the reference implementation, in
dense array form, and then the energy optimization computations
are performed on densely packed arrays. Our DPP-PMRF imple-
mentation recasts these dense-memory computations using DPPs,
which are highly amenable to vectorization. The primary focus
of this study is to better understand the performance comparison
and characterization between a reference implementation and one
derived from DPPs.

3 DESIGN AND IMPLEMENTATION

This section introduces our new DPP-based PMRF image segmenta-
tion algorithm, which we refer to as DPP-PMRF. We first review the
foundational PMRF approach upon which our work is based, and
then present our reformulation of this approach using DPP.

3.1 The Parallel MRF Algorithm
The parallel MRF algorithm (PMRF) proposed by Perciano et
al. [39] is shown in Algorithm 1. It consists of a one-time initial-
ization phase, followed by a compute-intensive, primary parameter
estimation optimization phase. The output is a segmented image.

The goal of the initialization phase is the construction of an
undirected graph of pixel regions. The graph is built based on an
oversegmented version of the original input image. An overseg-
mentation is a partition of the image into non-overlapping regions
(superpixels), each with statistically similar grayscale intensities
among member pixels [35]. The partitioning of the image we are

Algorithm 1 Parallel MRF
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: Initialize parameters and labels randomly
2: Create graph from oversegmentation
3: Calculate and initialize k-neighborhoods from graph
4: for each EM iteration do
5: for each neighborhood of the subgraph do
6: Compute MAP estimation
7: Update parameters
8: end for
9: Update labels

10: end for

using in this work is irregular, i.e. the non-overlapping regions can
have different sizes and shapes. Each vertex V of the graph repre-
sents a region in the oversegmented image (i.e., a spatially connected
region of pixels having similar intensity), and each edge E indicates
spatial adjacency between regions. Given the irregular nature of
the oversegmentation, the topological structure of the graph varies
accordingly.

Next, in the main computational phase, we define an MRF model
over the set of vertices, which includes an energy function represent-
ing contextual information of the image. In particular, this model
specifies a probability distribution over the k-neighborhoods of the
graph. Each k-neighborhood consists of the vertices of a maximal
clique, along with all neighbor vertices that are within k edges (or
hops) from any of the clique vertices; in this study, we use k = 1.
Using OpenMP, the PMRF algorithm performs energy function op-
timization, in parallel, over the neighborhoods, each of which is
stored as a single row in a ragged array. This optimization consists
of an iterative invocation of the expectation-maximization (EM) al-
gorithm, which performs parameter estimation using the maximum a
posteriori (MAP) inference algorithm [17]. The goal of the optimiza-
tion routine is to converge on the most-likely (minimum-energy)
assignment of labels for the vertices in the graph; the mapping of the
vertex labels back to pixels yields the output image segmentation.

Our proposed DPP-based algorithm overcomes several important
problems encountered in the PMRF implementation such as non-
parallelized steps of the algorithm (e.g., partitioning of the graph
and MAP estimation computation), and platform portability. In par-
ticular, the OpenMP design of the PMRF conducts outer-parallelism
over the MRF neighborhoods, but does not perform inner-parallelism
of the optimization phase for each neighborhood (e.g., the energy
function computations and parameter updates). Thus, the ability to
attain fine-grained concurrency and greater parallelism is limited
by the non-parallel computations within each outer-parallel opti-
mization task. Finally, for the construction of MRF neighborhoods,
our new method makes use of a recent work on maximal clique
enumeration using DPPs [23].

3.2 DPP Formulation of PMRF
We now describe our DPP-based PMRF algorithm (DPP-PMRF) to
perform image segmentation. Our algorithm redesigns PMRF in
terms of DPPs to realize outer-level parallelism over MRF neighbor-
hoods, and inner-level parallelism within the optimization routine
for the vertices of each neighborhood. This data-parallel approach
consists of an initialization phase followed by the main MRF opti-
mization phase; refer to Algorithm 2 for the primary data-parallel
steps.

3.2.1 Initialization
In this initial phase, we first construct an undirected graph G repre-
senting the connectivity among oversegmented pixel regions in the
input image; refer to §3.1; Then, we enumerate all of the maximal



cliques within G, yielding a set of complete subgraphs that form the
basis of the MRF neighborhood structure.

Our initialization procedure is similar to that of the reference
PMRF, but differs in the following ways. First, all of our initial-
ization operations and algorithms are designed in terms of DPP,
exposing high levels of data-parallelism throughout the entire image
segmentation pipeline; refer to [23] for the DPP-based enumeration
of maximal cliques. Second, we represent G in a compressed, sparse
row (CSR) format that fits compactly within shared memory; see
[23] for details on the DPP construction of this graph.

3.2.2 Optimization

Given the graph G and its set of maximal cliques from the
initialization, we proceed to the optimization phase, which consists
of the following two primary data-parallel tasks: construction
of neighborhoods over the maximal cliques and EM parameter
estimation, the latter of which comprises the main computational
work in this phase. Prior to constructing the neighborhoods, the
mean and standard deviation parameters, µ and σ , of each label are
randomly initialized to values between 0 and 255, representing the
8-bit grayscale intensity spectrum; in this study we focus on binary
image segmentation with two labels of 0 and 1. Additionally, the
label for each vertex of G is randomly initialized to either 0 or 1.

Construction of Neighborhoods: In the PMRF algorithm, 1-
neighborhoods are serially constructed from maximal cliques during
the initialization process of the algorithm. Our approach constructs
the 1-neighborhoods before the parameter estimation phase and
consists of the following data-parallel steps that operate on individual
vertices, as opposed to entire maximal cliques, exposing more inner,
fine-grained parallelism.

1. Find Neighbors: Invoke a data-parallel Map primitive to ob-
tain, for each vertex, a count of the number of neighbors that
are within 1 edge from the vertex and not a member of the
vertex’s maximal clique.

2. Count Neighbors: Call a Scan primitive to add the neighbor
counts, the sum of which is used to allocate a neighborhoods
array.

3. Get Neighbors: In a second pass to a Map primitive, populate
the neighborhoods array with the neighbors, parallelizing over
vertices as before.

4. Remove Duplicate Neighbors: Since multiple vertices within
the same maximal clique may output common 1-neighbors in
the neighborhoods array, successively invoke SortByKey and
Unique primitives to remove the duplicate neighbors. The
SortByKey primitive contiguously arranges vertices in the ar-
ray in ascending order of their vertex Id and clique Id pairs.
Then, the Unique primitive removes these duplicate, adjacent
vertices, leaving a final neighborhoods array in which each set
of neighbors is arranged in order of vertex Id.

EM Parameter Estimation: We formulate the EM parameter
estimation via the following data-parallel steps.

1. Replicate Neighborhoods By Label: Next, each neighbor-
hood is replicated for each of the two class output labels. With
a sequence of Map, Scan, and Gather DPPs, we obtain a set
of expanded indexing arrays, each of size 2× |hoods|. The
testLabel array indicates which replication of the neighbor-
hood a given element belongs to; e.g., vertex element 2 be-
longs to the first copy of its neighborhood, denoted by a 0 label.
The hoodId array gives the Id of the neighborhood to which
element belongs, and the oldIndex array contains back-indices

Algorithm 2 DPP-PMRF
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: Create graph from oversegmentation in parallel
2: Enumerate maximal cliques of graph in parallel
3: Initialize parameters and labels randomly
4: Construct k-neighborhoods from maximal cliques in parallel
5: Replicate neighborhoods by label in parallel
6: for each EM iteration do
7: Gather replicated parameters and labels in parallel
8: for each vertex of each neighborhood do
9: MAP estimation computed in parallel

10: end for
11: Update labels and parameters in parallel
12: end for

into the original hoods array, for each replicated element.

hoods = [0 1 2 5 1 3 4]
testLabel = [0 0 0 0 1 1 1 1 0 0 0 1 1 1]
oldIndex = [0 1 2 3 0 1 2 3 4 5 6 4 5 6]

hoodId = [0 0 0 0 0 0 0 0 1 1 1 1 1 1]
repHoods = [0 1 2 5︸ ︷︷ ︸

Hood0
Label0

0 1 2 5︸ ︷︷ ︸
Hood0
Label1

1 3 4 1 3 4]

The replication of the hoods array, repHoods, is not allocated
in memory, but is simulated on-the-fly with a memory-free
Gather DPP using oldIndex.

2. For each EM iteration i:
• Compute Energy Function: Using the array of back-

indices (oldIndex) into the neighborhoods array (hoods),
we invoke a set of Gather DPP to create replicated data
arrays of size 2×|hoods|:

vertLabel = [1 1 0 1 1 1 0 1 1 0 1 1 0 1]
vertMu = [40 20 55 25 40 20 55 25 20 65 35 20 65 35]

labelMu = [30 30 60 30 30 30 60 30 30 60 30 30 60 30]

We then invoke a Map DPP to compute an energy func-
tion value for each of the replicated neighborhood ver-
tices. This operation parallelizes over the data arrays
and calculates, for each vertex of a neighborhood, the
energy, or deviation, between its actual grayscale inten-
sity value (vertMu) and that of the label mean parameter
(labelMu).

• Compute Minimum Vertex and Label Energies:
Within the array of computed energy function values,
each vertex of a given neighborhood is associated with
two values, one for each of the labels. In order to deter-
mine the minimum energy value between these labels,
we invoke a SortByKey DPP, which makes each pair of
energy values contiguous in memory. Then, we call
consecutive ReduceByKey〈Min〉 DPP on the sorted en-
ergy values to obtain the minimum energy value for each
vertex:

• Compute Neighborhood Energy Sums: Given the
minimum energies values, we call a ReduceByKey〈Add〉
DPP to compute the sum of the values for each neigh-
borhood.

• MAP Convergence Check: We maintain an array that
stores the energy sum of each neighborhood at the end of
every EM iteration. Using a Map DPP, we measure the
amount of change in neighborhood energy sums from



the previous L iterations (L = 3 in this study), and mark
a neighborhood as converged if this change falls be-
low a constant threshold of 1.0×10−4. Once all neigh-
borhoods have converged—assessed via a Scan DPP
primitive—we end the EM optimization.

3. Update Output Labels: Invoke a Scatter DPP to write the
minimum-energy label of each neighborhood vertex to its cor-
responding location in the global vertex label array.

4. Update Parameters: Use a sequence of Map, ReduceByKey,
Gather, and Scatter DPP, to update the parameters of each
label (µ and σ ) as a function of a) the intensity values of the
vertices assigned to the labels (i.e., minimum energy labels),
and b) the sum of the per-label and per-vertex energy function
values.

5. EM Convergence Check: We maintain an array that stores,
for each EM iteration, the total sum of the neighborhood energy
value sums after the final MAP iteration. Calling a Scan DPP
on these neighborhood sums yields this total EM sum. Similar
to the MAP convergence check, we assess, via a Map DPP, the
variation in EM sums over the previous L iterations.

During our experimentation, we find that most invocations of the
EM optimization converge within 20 iterations; thus, we use that
number of iterations in this study. Finally, we return the estimated
parameters and assignment of labels to vertices as output. These
labels can be mapped back to pixel regions of the vertices to produce
the final segmented image.

4 RESULTS

The experimental results in this section serve to answer two primary
questions. First, in §4.2, we examine the question of correctness:
is the new DPP-PMRF algorithm producing correct results? Sec-
ond, in §4.3, we are interested in understanding how well the DPP-
PMRF implementation performs on different modern CPU and GPU
platforms: does DPP-PMRF demonstrate platform-portable perfor-
mance? Because these experiments examine different questions,
each uses a different methodology, which we present in conjunction
with the experiment results. §4.1 describes the source datasets and
the computational platforms that we use in both sets of experiments.

4.1 Source Data, Reference Implementation, and Com-
putational Platforms

4.1.1 Datasets

We test the DPP-PMRF implementation using two types of image-
based datasets: one is synthetic and the other is output from a
scientific experiment. The former is used to verify the accuracy of
the proposed algorithm against a known benchmark that offers a
ground-truth basis of comparison. The latter shows how DPP-PMRF
performs on a real-world problem.

Synthetic data. We selected the synthetic dataset from the 3D
benchmark made available by the Network Generation Comparison
Forum (NGCF) 1. The NGCF datasets are a global, recognized stan-
dard to support the study of 3D tomographic data of porous media.
The datasets provided are binary representations of a 3D porous me-
dia. For the purposes of this analysis, we corrupted the original stack
by noise (salt-and-pepper) and additive Gaussian with σ = 100. Ad-
ditionally, we also simulate ringing artifacts [38] into the sample to
closer resemble real-world results. For the segmentation algorithm
analysis, the corrupted data serves as the “original data” and the bi-
nary stack as the ground-truth. A full synthetic dataset is 268 MB in
size, and consists of 512 image slices of dimensions 512×512. The
chosen dataset emulates a very porous fossiliferous outcrop carbon-
ate, namely Mt. Gambier limestone from South Australia. Because

1http://people.physics.anu.edu.au/ aps110/network comparison

of the more homogeneous characteristic of this dataset, its related
graph contains a larger number of smaller-sized neighborhoods.

Experimental data. This dataset contains cross-sections of a
geological sample and conveys information regarding the x-ray at-
tenuation and density of the scanned material as a gray scale value.
This data was generated by the Lawrence Berkeley National Lab-
oratory Advanced Light Source X-ray beamline 8.3.2 2 [11]. The
scanned samples are pre-processed using a separate software that
provides reconstruction of the parallel beam projection data into a
3 GB stack of 500 image slices with dimensions of 1813× 1830.
This dataset contains a very different and more complex set of struc-
tures to be segmented. Consequently, compared to the synthetic
data, this experimental data leads to a denser graph with many more
neighborhoods of higher complexity.

4.1.2 Hardware Platforms

Our verification and performance tests were run on two different
multi-core platforms maintained by the National Energy Research
Scientific Computing Center (NERSC). For each platform, all tests
were run on a single node (among many available). Specifications
for these two platforms are as follows:

1. Cori.nersc.gov (KNL): Cray XC40 system with a partition
of 9,688 nodes, each containing a single-socket 68-core 1.4
GHz Intel Xeon Phi 7250 (Knights Landing (KNL)) processor
and 96 GB DDR4 2400 GHz memory. With hyper-threading,
each node contains a total of 272 logical cores (4 hyper-threads
per core)3.

2. Edison.nersc.gov (Edison): Cray XC30 system comprised
of 5586 nodes, each containing two 12-core 2.4 GHz Intel Ivy
Bridge processors (two sockets) and 64 GB DDR3 1866 MHz
memory. With hyper-threading, each node contains a total of
48 logical cores (24 logical cores per socket of a node)4

The intention of running on the KNL and Edison systems is to
create an opportunity for revealing architecture-specific performance
characteristics.

Performance tests were also conducted on a general-purpose GPU
platform:

1. K40: NVIDIA Tesla K40 Accelerator with 2880 processor
cores, 12 GB memory, and 288 GB/sec memory bandwidth.
Each core has a base frequency of 745 MHz, while the GDDR5
memory runs at a base frequency of 3 GHz.

For both the experimental and synthetic image datasets, the peak
memory usage of DPP-PMRF is well within the maximum available
memory of the tested CPU (between 64 GB and 96 GB) and GPU (12
GB) platforms. The execution of DPP-PMRF results in a maximum
memory footprint of between 300 MB to 2 GB for the experimental
images and between 100 MB and 400 MB for the synthetic images.

4.1.3 Software Environment

Our DPP-PMRF algorithm is implemented using the platform-
portable VTK-m toolkit [2]. With VTK-m, a developer chooses
the DPPs to employ, and then customizes those primitives with
functors of C++-compliant code. This code then invokes back-end,
architecture-specific code for the architecture of execution (enabled
at compile-time), e.g., CUDA Thrust code for NVIDIA GPUs and
Threading Building Blocks (TBB) code for Intel CPUs.

In our CPU-based experiments, VTK-m was compiled with TBB
enabled (version 17.0.2.174) using the following C++11 compilers:
GNU GCC 7.1.0 on Edison and Intel ICC 18.0.1 on KNL. In our

2microct.lbl.gov
3Cori configuration page: http://www.nersc.gov/users/

computational-systems/cori/configuration/
4Edison configuration page: http://www.nersc.gov/users/

computational-systems/edison/configuration/

h
m
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nersc.gov/users/computational-systems/edison/configuration/
http://www.nersc.gov/users/computational-systems/edison/configuration/


(a) Original (b) Ground-truth (c) DPP-PMRF result (d) Simple threshold

(e) 3D rendering of the origi-
nal data

(f) 3D rendering of the DPP-
PMRF result

Figure 1: Results applying DPP-PMRF to the synthetic dataset. (a) Region of interest from the noisy data; (b) Ground-truth; (c)
Result obtained by the proposed DPP-PMRF; (d) Result obtained using a simple threshold; (e) 3D rendering of the original noisy
dataset; (f) 3D rendering of the result obtained by DPP-PMRF.

(a) Original (b) Reference result (c) DPP-PMRF result (d) Simple threshold

(e) 3D rendering of the original
data

(f) 3D rendering of the DPP-
PMRF result

Figure 2: Results applying DPP-PMRF to the experimental dataset. (a) Region of interest from the original data; (b) Reference
result; (c) Result obtained by the proposed DPP-PMRF; (d) Result obtained using a simple threshold; (e) 3D rendering of the
original dataset; (f) 3D rendering of the result obtained by DPP-PMRF.

GPU-based experiments, VTK-m was compiled with CUDA enabled
(version 8.0.61) using the NVIDIA CUDA NVCC compiler. For all
experiments, version 1.2.0 of VTK-m was used.

With TBB enabled in VTK-m, each invocation of a DPP executes
the underlying TBB parallel algorithm implementation for the prim-
itive. The basic input to each of these parallel algorithms is a linear
array of data elements, a functor specifying the DPP operation, and a
task size that sets the number of contiguous elements a single thread
can operate on. A partitioning unit invokes threads to recursively

split, or divides in half, the array into smaller and smaller chunks.
During a split of a chunk, the splitting thread remains assigned to
the left segment, while another ready thread is assigned to the right
segment. When a thread obtains a chunk the size of a task, it exe-
cutes the DPP functor operation on the elements of the chunk and
writes the results into an output array. Then, the thread is ready
to be scheduled, or re-assigned, to another chunk that needs to be
split further. This work-stealing scheduling procedure is designed to
improve load balancing among parallel threads, while minimizing



cache misses and cross-thread communication.

4.1.4 Reference Implementation of PMRF
In this study, we compare the performance and correctness of the
new DPP-PMRF implementation with the PMRF reference im-
plementation developed with OpenMP 4.5, which is described in
§3.1. We take advantage of OpenMP loop parallelism constructs
to achieve outer-parallelism over MRF neighborhoods, and make
use of OpenMP’s dynamic scheduling algorithm in the performance
studies (see §4.3.3 for details).

The OpenMP-based implementation was built with the following
C++11 compilers (same as for the DPP-based version): GNU GCC
7.1.0 on Edison and Intel ICC 18.0.1 on KNL.

4.2 Verification of Correctness
The following subsections present a set of tests aimed at verifying
that DPP-PMRF computes the correct, ground-truth image segmen-
tation output.

4.2.1 Methodology: Evaluation Metrics
In order to determine the precision of the segmentation results we use
the metrics precision = T P

T P+FP , recall = T P
T P+FN , and accuracy =

T P+T N
T P+T N+FP+FN , where T P stands for True Positives, T N for True
Negatives, FP for False Positives, and FN for False Negatives.

In addition, we also use the porosity (ratio between void space
and total volume), or ρ = Vv

Vt
,, where Vv is the volume of the void

space and Vt is the total volume of the void space and solid material
combined.

4.2.2 Verification Results
Figure 1 shows the results of applying DPP-PMRF to the synthetic
data. Figure 1(a) presents a 2D region of interest from the corrupted
data, Figures 1(b-d) show the ground-truth, the result from DPP-
PMRF and the result using a simple threshold, respectively, and
Figures 1(e-f) shows the 3D renderings of both the corrupted data
and the DPP-PMRF result. We observe a high similarity between the
DPP-PMRF result and the ground-truth, indicating a high precision
when compared to the simple threshold result. For this synthetic
dataset, the verification metrics obtained are a precision of 99.3%, a
recall of 98.3%, and an accuracy of 98.6%.

Following the same methodology, we present the results using
the experimental dataset in Figure 2. Figures 2(a-d) shows regions
of interest from the original data, the result from the reference
implementation, the DPP-PMRF result, and a simple threshold result,
respectively. Much like the results using the synthetic data, we
observe a close similarity between the DPP-PMRF result and the
reference result. The differences observed between the results are
usually among the very small regions in the image, where small
variations of labeling of the graph could lead to the same minimum
energy value. For this dataset the verification metrics obtained are a
precision of 97.2%, a recall of 95.2% and an accuracy of 96.8%.

4.3 Performance and Scalability Studies
The next subsections present a set of studies aimed at verifying the
performance, scalability, and platform-portability of DPP-PMRF,
as compared to a OpenMP-parallel reference implementation and
serial baseline.

4.3.1 Methodology
The objectives for our performance study are as follows. First, we
are interested in comparing the absolute runtime performance of the
OpenMP and DPP-PMRF shared-memory parallel implementations
on modern multi-core CPU platforms. Second, we wish to compare
and contrast their scalability characteristics, and do so using a strong-
scaling study, where we hold the problem size constant and increase

concurrency. Finally, we assess the platform-portable performance
of DPP-PMRF by executing the algorithm on a general-purpose GPU
platform and comparing the runtime performance to a serial (non-
parallel) baseline and the CPU execution from the strong-scaling
study.

To obtain elapsed runtime, we run these two implementations in a
way where we iterate over 2D images of each 3D volume (synthetic
data, experimental data). We report a single runtime number, which
is the average of elapsed runtime for each 2D image in the 3D vol-
ume. The runtime takes into account only the optimization process
of the algorithm as this is the portion of the algorithm that is most
computationally intensive.

From runtime measurements, we report results using charts that
show time vs. concurrency, which are often known as ”speedup”
charts. Moreland and Oldfield [33] suggest that such traditional
performance metrics may not be effective for large-scale studies for
problem sizes that cannot fit on a single node. Since our problems
all fit within a single node, and are of modest scale, we are showing
traditional speedup charts.

Speedup is defined as S(n, p) = T ∗(n)
T (n,p) where T(n,p) is the time it

takes to run the parallel algorithm on p processes with an input size
of n, and T*(n) is the time for the best serial algorithm on the same
input.

4.3.2 CPU Runtime Comparison: OpenMP vs. DPP-PMRF
The first performance study question we examine is a comparison of
runtimes between the OpenMP and DPP-PMRF implementations.
We executed both codes at varying levels of concurrency on the
Cori and Edison CPU platforms, using the two different datasets as
input. Each concurrency level represents the number of physical
cores used within a single node. Hyper-threading was active in each
experiment, resulting in more logical (virtual) cores than physical
cores being utilized per node (see §4.1.2 for hardware configuration
details). The runtimes for this battery of tests are presented in Fig. 3
in a way that is intended to show the degree to which DPP-PMRF is
faster, or slower, than the OpenMP version.

In Fig. 3, each bar is computed as the quotient of the OpenMP
runtime and the DPP runtime. A bar height of 1.0 means both codes
have the same runtime; a bar height of 2.0 means DPP-PMRF ran
in half the time of the OpenMP code. A bar height of less than
1.0 would mean that the OpenMP code ran faster than DPP-PMRF.
These results reveal that DPP-PMRF significantly outperforms the
OpenMP code, by amounts ranging from 2X to 7X , depending upon
the platform and concurrency level.

The primary factor leading to this significant performance differ-
ence is the fact that the DPP formulation makes better use of the
memory hierarchy. Whereas the OpenMP code operates in parallel
over rows of a ragged array, DPP-PMRF recasts the problem as a
series of atomic data parallel operations. To do so, it creates 1D
arrays, which are then partitioned at runtime across a thread pool.
Such a formulation is much more amenable to vectorization, and
results in significantly more uniform and predictable memory access
patterns. The size of these partitions, or chunks, is determined by
TBB in a way to best match the cache characteristics and available
parallelism of the underlying platform (see §4.1.3 for details). In
contrast, the OpenMP code “chunk size” is the size of the given
graph neighborhood being processed. There is a significant per-
formance difference that results when using a consistent and well
chosen “blocking factor,” which results in better use of locality, in
both space and time [10]. Our results are consistent with previous
literature, which suggest one key factor to high performance on con-
temporary architectures is through code vectorization (c.f. Levesque
and Vose, 2017 [24]).

At higher levels of concurrency on the KNL platform, we see
a significant performance decrease in DPP-PMRF, which is unex-
pected. At 64 cores, the runtime for DPP-PMRF actually increases
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Figure 3: Comparison of absolute runtime of the DPP and OpenMP implementations at varying concurrency, on both platforms,
and both sample datasets. The horizontal axis is concurrency level, or the number of physical cores used on a single node. Each
bar represents the ratio of runtimes of the DPP-PMRF to the OpenMP code. The vertical axis measures how much faster the
DPP-PMRF code is than the OpenMP code for a given dataset, on a given platform, and a given concurrency. A bar height of 1.0
means both codes have the same runtime; a bar height of 2.0 means the DPP code ran in half the time of the OpenMP code. See
§4.3.2 for more details.

compared to the runtime for 32 cores. Examination of detailed
per-DPP timing indicates the runtime for two specific data parallel
primitives, SortByKey and ReduceByKey, are the specific operations
whose runtime increases going from 32 to 64 cores. These data
parallel primitives rely on an underlying vendor implementation in
VTK-m with TBB as the back-end. Further investigation is needed
to better understand why these underlying vendor implementations
decrease in performance going from 32 to 64 cores.

4.3.3 Strong Scaling Results
The second performance study question we examine is the degree to
which the OpenMP and DPP-PMRF implementations speed up with
increasing concurrency. Holding the problem size fixed, we vary the
concurrency on each platform, for each of the two image datasets.
Concurrency ranges from 1 to N, where N is the maximum number
of cores on a node of each of the two platforms.

Results from this study are shown in Fig. 4, which show speedup
curves for both implementations, on both platforms, at varying
concurrency. Looking at these results, the discussion that follows
centers around two main themes. First, how well are these codes
scaling, and what might be the limits to scalability? Second, how do
scaling characteristics change with increasing concurrency, platform,
and dataset?

In terms of how well these codes are scaling, the ideal rate of
speedup would be equal to the number of cores: speedup of 2 on 2
cores, speedup of 4 on 4 cores, and so forth. The first observation
is the both codes exhibit less than ideal scaling. The OpenMP code
shows the best scaling on the synthetic dataset on both platforms,
even though its absolute runtime is less than DPP-PMRF (except for
one configuration, at 64 cores on the KNL platform). The reasons
for why these codes exhibit less than ideal scaling differ for each of
the codes.

The OpenMP code, which uses loop-level parallelism over the
neighborhoods of the graph, has as critical section that serializes
access by all threads. This critical section is associated with a thread
writing its results into an output buffer: each thread is updating a row
of a ragged array. We encountered what appears to be unexpected
behavior with the C++ compiler on both platforms in which the
output results were incorrect, unless this operation was serialized
(see §4.1.4 for compilation details). Future work will focus on

eliminating this serial section of the code to improve scalability.
The DPP-PMRF code, which is a sequence of data parallel opera-

tions, depends upon an underlying vendor-provided implementation
of key methods. In these studies, an analysis of runtime results
looking at individual runtime for each of the DPP methods (detail
not shown in Fig. 4), indicates that two specific DPP operations are
limited in their scalability. These two operations, a SortByKey and
ReduceByKey, exhibit a maximum of about 5X speedup going from
1 to 24 cores on Edison, and about 11X speedup going from 1 to
64 cores on Cori. As a result, the vendor-supplied implementation
of the underlying DPP is in this case the limit to scalability. We
have observed in other studies looking at scalability of methods that
use these same DPP on GPUs [22], that the vendor-provided DPP
implementation does not exhibit the same limit to scalability. In
that study, the sort was being performed on arrays of integers. In
the present study, we are sorting pairs of integers, which results in
greater amounts of memory access and movement, more integer
comparisons, as well as additional overhead to set up the arrays and
work buffers for both those methods.

On Edison, both codes show a tail-off in speedup going from
12 to 24 cores. A significant difference between these platforms
is processor and memory speed: Edison has faster processors and
slower memory; Cori has slower processors and faster memory. The
tail-off on Edison, for both codes, is most likely due to increasing
memory pressure, as more cores are issuing an increasing number
of memory operations.

For the OpenMP code on both platforms, we see a noticeable
difference in speedup curves for each of the two different datasets.
On both platforms, the OpenMP code scales better for the synthetic
dataset. Since the algorithm performance is a function of the com-
plexity of the underlying data, specifically neighborhood size, we
observe that these two datasets have vastly different demographics
of neighborhood complexity (not shown due to space limitations).
In brief, the synthetic dataset has a larger number of smaller-sized
neighborhoods and the histogram indicates bell-shaped distribution.
In contrast, the experimental dataset has many more neighborhoods
of higher complexity, and the distribution is very irregular. Because
the OpenMP code parallelizes over individual neighborhoods, it is
not possible to construct a workload distribution that attempts to
create groups of neighborhoods that result in an even distribution of
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Figure 4: Speedup of the synthetic and experimental datasets on Edison and Cori. See §4.3.3 for more detail.

work across threads. We are relying on OpenMP’s dynamic schedul-
ing to achieve good load balance in the presence of an irregular
workload distribution. In this case, the result is the more irregular
workload results in lower level of speedup for the OpenMP code on
both platforms. In contrast, the DPP code reformulates this problem
in a way that avoids this limitation.

4.3.4 Platform Portability: GPU Results

The final performance study question we examine is an assessment
of the platform-portable performance of DPP-PMRF. We ran the
algorithm on an NVIDIA Tesla K40 GPU accelerator, using the
experimental and synthetic image datasets as input. The average
GPU runtime for each dataset is compared to the average KNL CPU
runtimes of both a serial (single core, hyper-threading disabled)
execution of DPP-PMRF and the parallel execution of DPP-PMRF
at maximum concurrency (68 cores, hyper-threading enabled; see
§4.3.3).

From Table 1 we observe that, for both of the image datasets, DPP-
PMRF achieves a significant speedup on the GPU over the serial ver-
sion, with a maximum speedup of 44X on the experimental images.
Further, for both datasets, DPP-PMRF attains greater runtime perfor-
mance on the GPU (maximum speedup of 13X on the experimental
images), as compared to its execution on the KNL CPU platform.
These speedups demonstrate the ability of a GPU architecture to
utilize the highly-parallel design of our algorithm, which consists
of many fine-grained and compute-heavy data-parallel operations.
Moreover, this experiment demonstrates the portable performance
of DPP-PMRF, as we achieved improved runtimes without having
to write custom, optimized NVIDIA CUDA GPU code within our
algorithm; the same high-level algorithm was used for both the CPU
and GPU experiments.

5 CONCLUSION AND FUTURE WORK

In the quest for platform portability and high performance, this work
shows that reformulating a data-intensive graph problem using DPPs
results in an implementation that achieves a significant speedup
over a serial variant on both GPU and contemporary multi-core
CPU architectures, and outperforms an OpenMP-parallel reference
implementation. The DPP-PMRF performance gain is the result
of how it makes use of the memory hierarchy: it recasts the graph
optimization into a series of 1D data-parallel operations, which are in
turn more amenable for vectorization and fine-grained, thread-level
parallelism on the underlying platform. In contrast, the OpenMP
implementation, which is a coarse-grained, loop-parallelized version
of MRF optimization, has memory use patterns that are less efficient

Table 1: GPU runtimes (seconds) for DPP-PMRF over the
experimental and synthetic image datasets, as compared to
both serial and parallel CPU executions of DPP-PMRF on the
KNL platform. The GPU speedup for a dataset is the serial
CPU runtime divided by the DPP-PMRF GPU runtime. The
CPU speedup is the DPP-PMRF CPU runtime divided by the
DPP-PMRF GPU runtime.

Platform / Dataset Experimental Synthetic
Serial CPU 284.51 44.63
DPP-PMRF CPU 22.77 7.09
DPP-PMRF GPU 6.55 1.71
Speedup-CPU 13X 7X
Speedup-GPU 44X 27X

than the DPP-PMRF version. Even though the OpenMP code is
parallelized, ultimately its runtime performance is constrained by
how it makes use of the memory hierarchy.

Our performance study focused on two multi-core platforms and
a general-purpose GPU platform, and our results report total runtime.
Future work will increase the diversity of platforms, to include newer
GPU accelerators, as well as executing the OpenMP implementation
on these GPU platforms for comparison with the DPP-PMRF GPU
performance. The ability to dispatch OpenMP code to a GPU is an
emerging capability, but not yet widespread (c.f., [1]). Additionally,
we will focus on collecting and analyzing additional hardware perfor-
mance counters to gain a deeper understanding of memory utilization
characteristics of both the OpenMP- and DPP-based codes.

The method we present here operates on 2D images; the 3D
datasets are processed as a stack of 2D images. However, the PMRF
method is, in theory, applicable to n−dimensional source data: the
PMRF optimization takes a graph as input, and the dimensionality
of the image isn’t a factor once the MRF graph is constructed. We
are currently extending our preprocessing pipeline to convert 3D
structured images into an undirected graph format, which can en-
able DPP-PMRF to operate on 3D images directly, as opposed to
a stack of 2D images. Moreover, we intend to extend the methods
presented here to larger datasets, and to combine with a distributed-
memory parallel PMRF [15] for a hybrid-parallel approach that is
both platform-portable and that exhibits high performance for use
on very large scientific data.
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