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Abstract

We introduce a new platform-portable hash table and
collision-resolution approach, HashFight, for use in visualization
and data analysis algorithms. Designed entirely in terms of data-
parallel primitives (DPPs), HashFight is atomics-free and con-
sists of a single code base that can be invoked across a diverse
range of architectures. To evaluate its hashing performance, we
compare the single-node insert and query throughput of Hash-
Fight to that of two best-in-class GPU and CPU hash table
implementations, using several experimental configurations and
factors. Overall, HashFight maintains competitive performance
across both modern and older generation GPU and CPU devices,
which differ in computational and memory abilities. In partic-
ular, HashFight achieves stable performance across all hash ta-
ble sizes, and has leading query throughput for the largest sets
of queries, while remaining within a factor of 1.5X of the com-
parator GPU implementation on all smaller query sets. More-
over, HashFight performs better than the comparator CPU im-
plementation across all configurations. Our findings reveal that
our platform-agnostic implementation can perform as well as op-
timized, platform-specific implementations, which demonstrates
the portable performance of our DPP-based design.

Introduction

Many-core architectures are ubiquitous on modern super-
computers, involving diverse architectures from vendors such as
NVIDIA, AMD, and Intel. As visualization software adapts to
support this hardware, some efforts have focused on a hardware-
agnostic approach. In effect, the idea is a “write once, use any-
where” code base that is future-proofed for evolving hardware.

The VTK-m project is a popular open source effort advocat-
ing a hardware-agnostic approach [26]. VTK-m operates by hav-
ing algorithm developers utilize data-parallel primitives (DPPs)
as building blocks. Instead of iterating over data with traditional
“while” and “for” loops, developers use DPPs such as “map,” “re-
duce,” “gather,” “scatter,” etc. This approach reduces overall de-
velopment time, since it allows for porting to a new architecture
by writing architecture-specific code for DPPs (of which there are
approximately 20) rather than for algorithms (of which there are
currently dozens, with plans for hundreds more). Further, VTK-
m offers services not found in approaches such as RAJA [16] and
KOKKOS [8], since it manages mesh topology so that algorithm
developers can access the data they need to operate on a given
point or cell.

While VTK-m was initially designed for traditional visual-
ization and data analysis operations such as isosurfacing, particle
advection, and volume rendering, it also needs to support tradi-
tional data structures. With this work, we consider the topic of
hashing, which is needed to efficiently implement algorithms such

external facelist calculation [18], 3D volume reconstruction [27],
and surface collision detection [17]. In effect, the research asso-
ciated with this work is mapping a traditional data structure (hash
table) into a visualization-centric framework (VTK-m). This is
challenging because the mapping must be composed of DPPs
and must avoid architecture-specific operations, such as hardware
atomics and specialized memory accesses.

In this study, we address this challenge by introducing a new
hash table and collision-handling technique called HashFight.
Our approach is platform-portable and composed entirely of DPPs
within the VTK-m code base. The collision-resolution routine
does not use any hardware-specific locking mechanisms or hard-
ware atomics (e.g. compare-and-swap) to synchronize hash colli-
sions at a hash table address. Instead, our technique permits race
conditions and “winner-takes-all” writes by parallel threads. Un-
successful insertions by losing threads (i.e., insertions that were
overwritten by a race condition) are accounted for in subsequent
“hash-fighting” iterations.

Over a wide-variety of experimental configurations, Hash-
Fight achieves insertion and query throughput that is competitive
to state-of-the-art CPU and GPU hash table implementations from
open-source parallel algorithm libraries. For configurations with
the smallest and largest hash table sizes on the GPU, HashFight
performs comparably or better than the comparator GPU imple-
mentation. For configurations with the largest batches of unsigned
integer query keys, HashFight attains leading GPU query through-
put performance, while remaining within a factor of 1.5X of the
comparator implementation on smaller batch sizes. The query
throughput of HashFight is also shown to not be significantly af-
fected by the percentage of unsuccessful queries (i.e., query keys
that do not reside within the hash table). Moreover, HashFight
achieves better insert and query throughput than the comparator
CPU implementation across all experimental configurations.

Our findings demonstrate that HashFight is an effective so-
lution for large hashing workloads and the need to achieve com-
petitive portable performance across multiple platforms using
a single DPP-based implementation. We demonstrate that the
platform-agnostic design of HashFight performs comparably to
the platform-specific GPU and CPU hash table implementations.
This design also enables HashFight to be future-proof to new plat-
forms as they emerge, without the need to re-implement Hash-
Fight for each new platform. We are in the process of contributing
our HashFight implementation to the VTK-m library for open-
source use in visualization algorithms.

Background

The following section reviews hashing fundamentals, sum-
marizes existing parallel hashing implementations, describes
data-parallel primitives which serve as the foundation of our tech-
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nique, and surveys the use of hashing in visualization algorithms.

Searching via Hashing
Searching via hashing reorganizes an array of key-value

pairs (e.g., unsigned integers keys and values) in an indexable
hash table data structure H, such that only a constant number of
direct, random-access lookups are needed per query on average.
Each pair is inserted into the hash table at the index determined by
a hash function, which generally maps keys (e.g., integers or spa-
tial coordinate vectors) to arbitrary unsigned integers, modulo the
size of the table. The hash function can take a variety of forms,
but should be efficient to compute and distribute pairs as evenly
as possible throughout the table, reducing the occurrence of hash
collisions, i.e., two or more unique keys are hashed to the same
location in the table.

For a larger number of pairs and smaller hash table size (i.e.,
fewer empty locations into which to hash), hash collisions become
highly probable. Collisions are a result of both the choice of hash
function and the size of the hash table. The hash table size can be
described via a multiplicative factor of the number of keys |K| to
be inserted: |H|= |K|⇥ f , where f is a load factor that increases
the available slots into which keys can be hashed. Typically, 1.0<
f  2.0, with larger factors reducing the chance of hash collisions,
but requiring a larger memory allocation for the hash table.

Hash collisions are typically handled using one of two ap-
proaches: separate chaining and open-addressing. In separate
chaining, colliding keys are stored in a linked list data structure
at each hash table location. Query keys might need to make a
number of probes through the linked list at its hashed location.
In open-addressing, colliding keys are re-hashed to different loca-
tions in the hash table until they can be inserted into unoccupied
locations. To query a key, the sequence of hashed locations, or
probes, is followed in order until the key is found.

A variation of open-addressing, cuckoo hashing, allows
currently-residing keys to be evicted at probe locations and then
immediately re-hashed to different locations, making room for
colliding keys. Each key is assigned two or more probe locations
in the hash table, each computed with a different hash function.
When a key is evicted from its location by a colliding key, it is in-
serted into the next location of its probe sequence. If another key
already occupies this next location, then that key is evicted and
inserted into its next probe location, and so on until no further
collisions occur or a maximum number of evictions is made.

Parallel Hashing
Since the emergence of multi- and many-core CPUs and

general-purpose computing on GPUs, a large body of research
has investigated the design of parallel hashing techniques. In this
parallel setting, multiple threads each simultaneously perform one
or more hash table operations (e.g., insertion, deletion, or query),
with one operation per assigned key. Typically, each concurrent
operation at a hash table location must be explicitly synchronized
to handle hash collisions and prevent race conditions. Our Hash-
Fight technique does not try to prevent race conditions, but instead
uses them as a positive feature of the parallel hashing.

CPU-based Implementations
Single-node, CPU-based approaches have primarily focused

on the design of dynamic, concurrent hash tables within shared

memory [24, 29, 31]. These tables synchronize concurrent opera-
tions with either lock-based methods (e.g., mutexes or spin-locks)
or lock-free hardware atomics (e.g., compare-and-swap (CAS)).
Many of these tables are implemented as linked list data structures
to support resizing and separate-chaining collision-resolution.

Notable open-source library implementations of CPU-based
concurrent hash tables are provided within the Intel Thread Build-
ing Blocks (TBB) library and the Microsoft Parallel Patterns Li-
brary (PPL) [11, 25]. Both libraries include a concurrent un-
ordered map hash table that supports lock-free (non-blocking)
insertions, queries, and updates, using an underlying linked list,
with CAS atomics over nodes [24, 31]. These unordered maps are
extensible and hash key-value pairs into buckets, or segments of
the linked list, similar to the unordered map provided by the C++
Standard Library. However, both maps do not support concurrent-
safe deletions and the hash table size is expected to be a power of
2, which may affect the choice of hash function used.

GPU-based Techniques
GPUs are specifically designed for data-parallel processing,

whereby a single instruction is performed over multiple data el-
ements (SIMD) in parallel. The massive thread- and instruction-
level parallelism available on a modern GPUs has motivated a
large body of GPU-specific hashing techniques [17, 1, 2, 9, 10,
27, 5, 3, 7]. These techniques identify and address various per-
formance challenges (e.g., irregular random memory accesses,
thread control flow divergence, host-to-device data transfer, etc.)
that arise while performing data-parallel hashing on the GPU.
Many of these techniques maintain a static, on-device hash ta-
ble with open-addressing collision-handling. These tables are ef-
ficient to construct and use fine-grained, hardware atomic primi-
tives to synchronize table accesses and modifications.

The best-in-class open-source library implementation of
GPU parallel hashing is based on cuckoo hashing and is packaged
within the CUDA Data Parallel Primitives Library (CUDPP) [22],
which contains top-performing algorithms and data structures
written in NVIDIA CUDA. Introduced by Alcantara et al. [2],
this general-purpose, cuckoo hash table supports a variable num-
ber of hash functions, hash table size, and maximum length of a
probing sequence. The hash table resides in global memory and
is constructed in parallel by threads each inserting key-value pairs
into locations specified by the cuckoo hash functions. Insertions
and evictions are synchronized using CAS atomic primitives, and
each thread manages the re-insertion of any key-value pair that it
evicts along the eviction chain, until a pair is finally placed in an
empty table location. If a thread exceeds its maximum eviction,
or probe, chain length during the insertion phase, then the table is
reconstructed.

Heimel et al. [10] introduce an OpenCL-based hashing ap-
proach for databases that is most closest to our own approach,
in the desire to implement hash tables on diverse architectures.
However, uur work differs in that it considers this approach in the
context of a visualization framework using DPPs.

A traditional benchmark for hashing key-value pairs, which
we consider in this study, is to first sort the pairs by key and then
perform queries via binary search. The CUDA Thrust library of
data-parallel algorithms and data structures [28] provides fast and
high-throughput data-parallel implementations of mergesort [30]
and radix sort [23] for arrays of custom or numerical data types,

376-2
IS&T International Symposium on Electronic Imaging 2020

Visualization and Data Analysis



respectively. Additionally, Thrust includes a data-parallel, vector-
ized binary search primitive to efficiently search within a sorted
array. The combination of sorting an array and searching within
it has been widely-used as a benchmark for search-based tasks,
particularly hashing [2, 4]. As a platform-portable library, Thrust
also provides implementations of these algorithms and data struc-
tures in TBB and OpenMP for CPU execution.

Data-Parallel Primitives
Our HashFight approach is designed entirely in terms of

data-parallel primitives (DPPs), which are building blocks that
can be combined together to compose a larger algorithm. By pro-
viding highly-optimized implementations of each DPP for each
platform architecture (e.g., implemented in CUDA for GPUs and
TBB for CPUs ), an algorithm composed of DPPs can be exe-
cuted efficiently across multiple platforms with varying level of
parallelism using only a single high-level code base, as seen in a
variety of algorithms [19, 15, 20, 21]. This use of DPPs elimi-
nates the combinatorial (cross-product) problem of implementing
a different version of HashFight for each different platform of ex-
ecution. Thus, only a single code base is needed to execute Hash-
Fight across varying platforms. As new platforms emerge, only
the underlying DPPs of HashFight need to be re-implemented for
these platforms, enabling a future-proof design. Example DPPs
that are used in our approach include the following:

• Map: Applies an operation on all elements of the input array,
storing the result in an output array of the same size, at the
same index;

• Reduce: Applies a summary binary operation (e.g., summa-
tion or maximum) on all elements of an input array, yielding
a single output value.

• Gather: Reads each value of an input data array into an in-
dex in an output array, as specified in the array of indices;

• Scatter: Writes each value of an input data array into an
index in an output array, as specified in the array of indices;

Additional DPPs that we use in our algorithm include Bi-
nary Search, Sort, and Copy.

Hashing in Visualization Algorithms
Hash tables are used in visualization algorithms to quickly

store and query spatial data elements, and identify spatially-
similar or duplicate elements. The following are recent examples
from related research that apply hash tables to visualization tasks:

• For external facelist calculation of 3D unstructured meshes,
a hash table is used to identify and discard the internal, or
duplicate, cell faces that hash to the same value and are not
needed in the output rendering or isosurface [18].

• For surface collision detection, hash tables are used to
quickly detect intersecting geometrical surfaces that hash to
the same table location [9].

• For real-time 3D volume reconstruction, hash tables are
used to compactly store only the spatial regions, or voxel
cells, in which surface data has been observed. This ap-
proach achieves similar performance as grid-based hierar-
chical data structures that store the entire 3D space [27].

• For merging coincident points in a space, hash tables can be
used to quickly identify points that reside in, or hash to, the

same spatial bin, as defined by a similarity metric. These
spatially-coincident points are then merged together into a
single, representative point [32].

Algorithm Overview and Discussion

The following section introduces our HashFight hashing ap-
proach, which is designed for data-parallel, platform-portable ex-
ecution on both CPU and GPU platforms. In this approach, keys
are inserted into and queried from a multi-level hash table via an
iterative routine, which we refer to as hash fighting. During hash
collisions at table locations, no explicit synchronization or hard-
ware atomics are used. Instead, all colliding keys are inserted into
the location in a winner-takes-all fashion, with the winner of the
hash fight being the last key written into the location. Then, after
all hash fights have completed, each thread checks its hash table
location to see its key is currently residing in the table; that is,
whether the key was the winner of its hash fight. All winning
keys are marked as inactive and the remaining non-winning keys
(marked as “active”) proceed to the next round, or iteration, where
they hash fight again, but into a smaller hash table. The size of the
hash table at each iteration is equal to the number of active keys
times the pre-specified hash table load factor. As in the first itera-
tion, all active keys attempt to insert themselves into the subtable,
and then check to see whether they won the fight into the table or
need to remain active for another iteration of hash fighting.

The hash fighting routine continues until a specified number,
or threshold, of keys have become inactive and are successfully
placed into a location in one of the subtables. After this thresh-
old, the remaining active key-value pairs are sorted and then con-
tiguously inserted into a buffer region at the end of the hash ta-
ble. Since the hash table size decreases each iteration, new sets
of colliding keys may arise at hash locations, leading to a vari-
able number of iterations necessary to insert all keys. In all of our
experimental configurations, particularly those with a small hash
table load factor, the number of iterations rarely exceeds 6 and
never reaches 10. In terms of computation time, only the first one
or two iterations account for most of the overall runtime.

For querying keys within the hash subtables, hash fighting is
performed in a similar fashion to the insertion phase. Each itera-
tion, all active keys hash to their location in the current subtable
and then read the key-value pair residing in that location. If the re-
siding key is equal to the query key, then the value is returned and
the query key is set to inactive. If not equal, then the key remains
active and performs a query again within the subtable of the sub-
sequent iteration. Since each table location is initially populated
with an “empty” key-value pair prior to the insertion phase, the
residing key will remain empty if no input pairs were hashed and
inserted into that location. For this latter case, a query key imme-
diately returns an empty value and is set to inactive. The querying
continues until all subtables have been searched, after which the
remaining active keys each binary search for their query matches
within the ending buffer region of the hash table. This region
contains the keys from the insertion phase that were sorted and
contiguously inserted.

Design Goals and Limitations
HashFight is designed for static hashing in which key-value

pairs are first inserted into a table and subsequently queried. Thus,
our approach does not currently support inter-mixed modifica-
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1 void Insert(const uint32 *keys ,

2 const uint32 *vals ,

3 HashTable &ht , uint32 numKeys)

4 {

5 // All keys start active

6 uint32 activeKeys = numKeys;

7 uint8 *isActive[numKeys] = {1};

8
9 // Hash into subtables

10 uint32 tableStart = 0;

11 uint32 tableSize =

12 activeKeys*ht.loadFactor;

13
14 // Hash until a lower limit

15 //of active keys is reached.

16 while (activeKeys > HASHING_LIMIT) {

17 ht.subTableSizes.push_back(tableSize );

18
19 // Active keys hash into subtable

20 Fight(keys ,vals , ht.entries ,

21 isActive , tableStart , tableSize );

22
23 // Active keys see if they won.

24 //If a winner , a key is deactived.

25 CheckWinner(keys , ht.entries ,

26 isActive , tableStart , tableSize );

27
28 tableStart = tableSize;

29 activeKeys = Reduce(isActive );

30 tableSize = activeKeys*ht.loadFactor;

31 }

32
33 // Sort remaining active keys and

34 // insert them into end of table.

35 uint32 *tempKeys , *tempVals;

36 CopyIf(keys , isActive , tempKeys );

37 CopyIf(vals , isActive , tempVals );

38 SortByKey(tempKeys , tempVals );

39 CopyToTable(tempKeys , tempVals ,

40 ht.entries , tableStart , HASHING_LIMIT );

41 }

Listing 1. Pseudocode of HashFight Insertion

tions, such as deleting pairs or changing the values of keys. The
hash table must be reconstructed in order to insert new entries or
delete existing entries.

Due to its data-parallel processing, HashFight is best-suited
to perform insertions and queries in large batches of keys, with
each key being assigned to one of many threads. Thus, the ex-
ecution of HashFight on small, or even individual, workloads of
keys can result in sub-optimal performance, as the overhead time
of the DPP kernel invocations exceeds the time needed to perform
the actual hash table operation.

Listings 1 through 5 provide algorithm pseudocode for the
HashFight insertion and query phases, along with the subrou-
tines that compose the majority of the overall computation. These
phases are discussed in more detail as follows.

1 void Fight(const uint32 *keys ,

2 const uint32 *vals , uint64 *entries ,

3 const uint8 *isActive ,

4 uint32 tableStart , uint32 tableSize)

5 {

6 // Thread index

7 uint32 tid = getGlobalIndex ();

8 if (isActive[tid]) {

9 uint32 key = keys[tid];

10 uint32 value = vals[tid];

11 uint64 entry =

12 (( uint64 )(key) << 32)+ value;

13 uint32 hash = Hash(key);

14 hash = (hash%tableSize )+ tableStart;

15
16 //Non -atomic write

17 entries[hash] = entry;

18 }

19 }

Listing 2. Pseudocode of the Fight Kernel

Insertion Phase
In the Insert function, keys are hashed to random locations

in the hash table and then inserted as pairs with their accompany-
ing values (Listing 1). Given an array of 32-bit unsigned integer
keys and an array of 32-bit unsigned integer values, each value
is appended to its corresponding key to form a 64-bit unsigned
integer pair. The hash table structure (Line 3) has pre-allocated
sufficient memory to store these pairs, and each location in the ta-
ble is initialized to an “empty” key-value pair UINT MAX << 32.
Initially, all keys are considered “active” and marked as such with
an isActive array of bit indicators (Line 7).

Next, the hash fighting routine begins, consisting of multiple
iterations (Line 16). Each iteration is assigned a separate con-
tiguous partition, or subtable, of the larger hash table, into which
the currently-active keys are hashed and inserted. This subtable is
specified by a start location and a size (Line 10 – 11), the latter of
which is equal to the number of active keys times a pre-specified
hash table load factor. As the number of active keys decreases
each iteration, the subtable sizes decrease proportionally.

Given a subtable, the active keys proceed to insert, or fight,
themselves into the subtable.

In the Fight kernel (Listing 2), a thread is assigned to each
key, and only threads with active keys (Line 8) perform compu-
tation. Each thread computes the hash value of its assigned key
(Line 13) and takes the modulo of the subtable size to determine
the write location (Line 14). We use a randomly-generated, non-
cryptographic hash function that is a variant of the MurmurHash,
which is efficient to compute and maintains strong hash prop-
erties to minimize collisions between 32-bit unsigned integers.
Then, the threads concurrently write their key-value entries into
the subtable (Line 17). During this scatter process, no locking
mechanism or hardware atomics are used to synchronize simulta-
neous writes. Instead, race conditions are a fundamental and non-
detrimental feature of handling hash collisions. Multiple threads
may contend for the same location and overwrite each other (one
after the other), but the final thread to write its pair into the loca-
tion is declared the “winner” of the hash fight.

After all threads have finished hash fighting their keys, they
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1 void CheckWinner(const uint32 *keys ,

2 const uint64 *entries ,

3 uint8 *isActive ,

4 uint32 tableStart , uint32 tableSize)

5 {

6 // Thread index

7 uint32 tid = getGlobalIndex ();

8
9 if (isActive[tid]) {

10 uint32 hash = Hash(keys[tid]);

11 hash = (hash%tableSize )+ tableStart;

12 uint64 entry = entries[hash];

13 uint32 winningKey =

14 (uint32 )(entry >> 32);

15 if (winningKey == keys[tid])

16 isActive[tid] = 0;

17 }

18 }

Listing 3. Pseudocode of the CheckWinner Kernel

return to the Insert function and proceed to determine whether
they have “won” the fight, or successfully inserted the keys into
the subtable (Listing 1, Line 28).

In the CheckWinner kernel (Listing 3), each thread re-
computes the hash location of its assigned (and active) key (Line
14) and reads the currently-residing, or “winning,” key-value pair
at the location in the subtable (Line 12). If the thread’s key is
equal to the winning key (Line 15), then the thread won the hash
fight and marks the key as inactive (Line 16). Otherwise, the key
remains active and another thread will attempt to insert the key
again in the next iteration of the insertion phase.

Finally, the threads return to the Insert function (Listing
1), where the local function variables are updated for the next it-
eration, including a Reduce data-parallel operation (Line 29) that
counts and updates the number of active keys (or set bits).

The hash fighting continues until a minimum number of ac-
tive keys remain; in this work, we used a minimum of 1 million
keys (Line 16). After this point, all the active key-value pairs are
sorted in ascending order by key and then contiguously written
into a new subtable, or buffer region (Line 35 – 40). This end-
ing sort and write procedure is meant to be faster and simpler
to perform than hash fighting a small number of active keys into
smaller-sized subtables, because with a small number of active
keys, new collisions induce extra hash fight iterations and over-
head of kernel invocations on rather small amounts of data.

Query Phase
In the Query function (Listing 4), a batch of input query keys

(Line 1) is searched within the multiple subtables of a hash table
(Line 2), which was previously constructed in the insertion phase
(Listing 1). The result of this function is an output array of val-
ues (Line 3) corresponding to the query keys. Since the query
keys are independent from the keys inserted into the hash table, a
certain percentage of the query keys may not exist within any of
the subtables, prompting an “empty,” or failed, query value to be
returned. Initially, all query values are set to an empty value of
UINT MAX, which is the largest 32-bit unsigned integer value.

Similar to the Insert function, all input query keys are

1 void Query(const uint32 *queryKeys ,

2 const HashTable &ht,

3 uint32 *queryVals , uint32 numKeys)

4 {

5 // All query keys start active

6 uint32 activeKeys = numKeys;

7 uint8 *isActive[numKeys] = {1};

8
9 // Hash into subtables

10 uint32 iter = 0, tableStart = 0;

11 uint32 numTables=ht.subTableSizes.size ();

12 uint32 tableSize=ht.subTableSizes [0];

13
14 while (iter < numTables) {

15 // Probe the subtable for the

16 // active query keys.

17 Probe(queryKeys , ht.entries , queryVals ,

18 isActive , tableStart , tableSize );

19 tableStart = tableSize;

20 tableSize = ht.subTableSizes[iter ++];

21 }

22
23 // Binary search the end of hash table

24 // for remaining active query keys.

25 BinarySearch(queryKeys , queryVals ,

26 isActive , ht.entries ,

27 tableStart , HASHING_LIMIT );

28 }

Listing 4. Pseudocode of HashFight Querying

marked as active (Lines 7) and local parameters are initialized to
record the start index and size of a subtable (Lines 10 – 12). Then,
numTables iterations of querying are conducted, with each itera-
tion searching for active query keys within a different subtable.
A data-parallel Probe kernel is invoked (Line 17) to look-up,
or probe, the query keys within the subtable. Within this ker-
nel (Listing 5), each query key is assigned to a thread (Line 7),
which computes the hash table location of the key (if active) and
reads the residing key-value pair at that location (Lines 10 – 13).
If the query key is equal to residing key, then the residing value is
returned as the query value and the query key is marked inactive
(Lines 23, 28). If the table location contains the empty key-value
pair, then no key was ever hashed to that location, and the query
key is marked inactive (Line 22). Since the query value is set to
empty by default, a query value does not need to be returned. Fi-
nally, if the residing key is neither empty nor equal to the query
key, then the query key may exist within another subtable and,
thus, remains active.

After all probing has completed, the threads return to the
Query function, and local parameter values are updated for the
next iteration of querying (Lines 19 – 20). Once all subtables
have been searched via hashing, any remaining active query keys
are binary-searched (Line 25) within the sorted buffer region of
keys that were inserted at the end of the hash table during the
insertion phase. This binary search is performed in data-parallel
fashion by threads assigned to the remaining query keys. As in
the Probe kernel, if the query key is not found, then an empty
query value is returned; otherwise, the residing value in the table
is returned.
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1 void Probe(const uint32 *keys ,

2 const uint64 *entries , uint32 *vals ,

3 uint8 *isActive , uint32 tableStart ,

4 uint32 tableSize)

5 {

6 // Thread index

7 uint32 tid = getGlobalIndex ();

8
9 if (isActive[tid]) {

10 uint32 queryKey = keys[tid];

11 uint32 hash = Hash(queryKey );

12 hash = (hash%tableSize )+ tableStart;

13 uint64 entry = entries[hash];

14 uint32 residingKey =

15 (uint32 )(entry >> 32);

16
17 bool isEqual = queryKey == residingKey;

18 bool isEmpty = residingKey == UINT_MAX;

19
20 //If keys match or residing key is

21 //empty , then deactivate query key.

22 if (isEqual || isEmpty)

23 isActive[tid] = 0;

24
25 // Query is successful , so return

26 // the residing value.

27 if (isEqual)

28 vals[tid] = (uint32)entry;

29 }

30 }

Listing 5. Pseudocode of the Probe Kernel

Peak Memory Footprint
Assuming 4-byte (32-bit) keys and values, and 8-byte (64-

bit) hash table entries, the peak CPU memory allocation (in bytes)
required for both the insertion and querying phases is approxi-
mated by the following equation:

memcpu = (9+12.6 f )|K|+8|Q|+8|B|, (1)

where f is the hash table load factor, |K| is the number of input
keys, |Q| is the number of query keys, and B is the buffer region
at the end of the hash table (Listing 1, Line 43), whose size |B| is
set equal to the number of active keys that are sorted and copied
directly into the buffer. Note that |K| dominates this memory foot-
print, since |B| << |K|.

On GPU devices, the memory allocated on-device is released
following the completion of each phase and kernel, except for the
hash table. Since copies of the keys and values are inserted into
the hash table as pairs, the original arrays can be released from
GPU memory following the insertion phase. Then, during the
querying phase, the query keys and values arrays must be trans-
ferred into GPU memory. Due to the isActive, tempKeys, and
tempVals arrays (Listing 1), the insertion phase has a peak GPU
memory usage of (in bytes):

memgpu = (9+12.6 f )|K|+8|B|, (2)

which is similar to memcpu minus the allocation for the query keys
and values arrays.

Experimental Overview

In this study, we assess the performance of HashFight across
several different factors, comparing its performance to that of
best-in-class comparator implementations. Our primary mea-
sure of hashing performance is the throughput of insertions and
queries, which is calculated as the number of key-value pairs in-
serted or queried per second. The different experimental factors
are outlined as follows, each factor consisting of multiple options.

• Algorithm (5 options)
• Platform (3 options)
• Dataset size (29 options)
• Hash table load factor (10 options)
• Query failure rate (10 options)

Since some of the configurations are not compatible together,
We do not test the cross product of all configurations. For exam-
ple, some algorithms cannot be executed on a CPU platform, and
several dataset size and load factor combinations would exceed
available on-device memory of certain GPU platforms. The de-
tails of each factor and configuration are discussed in the follow-
ing subsections.

Algorithms
We compare the performance of HashFight with that of four

different parallel hashing and search-based implementations from
well-known open-source libraries:

• HashFight (CPU+GPU): DPP-based implementation with
a single code base for both CPU and GPU platforms.

• Thrust-Sort/Search (CPU): Quick sort and vectorized bi-
nary search implementations written in TBB and contained
within the Thrust library.

• CUDPP (GPU): Cuckoo hash table implementation written
in CUDA and packaged within the CUDPP library.

• Thrust-Sort/Search (GPU): Radix sort and vectorized bi-
nary search implementations written in CUDA and provided
in the Thrust library (Section ).

• TBB-Map (CPU): Lock-free, unordered map hash table im-
plementation written in TBB and packaged within the TBB
library of parallel algorithms (Section ).

HashFight is written with the open-source VTK-m library
(v1.2), which is C++-11/14 compliant and provides a set of
generic data-parallel primitives (e.g., Reduce, Sort, Scan, Copy,
and LowerBounds) that can be invoked on both GPU and CPU
devices with a single algorithm code base [26]. For NVIDIA GPU
execution, primitives from the CUDA Thrust library are invoked;
for CPU execution, primitives from the Intel TBB parallel algo-
rithms library are invoked. Thus, HashFight can be mapped to
either CUDA- or TBB-compliant code, via the back-end imple-
mentations of the primitives inside of VTK-m.

The Thrust Sort and Search comparators are meant to pro-
vide a baseline measure of throughput performance for a search-
based task such as hashing. The combination of sorting key-value
pairs and then querying them via binary search is an alternative to
constructing and querying a hash table.

Platforms
To assess the cross-platform performance of HashFight, we

conduct experiments on the following two GPU devices and one
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CPU device, each residing on a single node:

• K40 GPU: NVIDIA Tesla K40 accelerator with 11.4 GB
on-board memory.

• V100 GPU: NVIDIA Tesla V100 accelerator with 32.5 GB
on-board memory.

• Xeon Gold CPU: 2.3 GHz Intel Xeon Gold 6140 (Skylake
generation) CPU with 36 physical cores (72 logical) and
370 GB DDR4 memory.

All CPU code was compiled using GCC with flags for -03
optimization and the C++-11 standard. Additionally, the TBB
scalable allocator was used for dynamic memory allocation with
the TBB concurrent unordered map, which resizes itself as new
key-value pairs are inserted. All GPU code was compiled using
NVCC with GCC as the host compiler.

Dataset Sizes
In this study we focus on the task of hashing unique, un-

signed 32-bit integer key-value pairs into the hash table. Each
key and value is randomly-generated by the Mersenne Twister
pseudo-random number generator, using a state size of 19937 bits
(mt19937). This generator has been extensively used in the sim-
ulation domain and theoretically-proven to possess a long period
(219937 � 1 generated values without repetition) and high equi-
distribution. Any duplicate keys are removed, and the remaining
unique keys are shuffled. To construct a hash table, a batch of k
unsigned integer keys and k corresponding unsigned integer val-
ues are provided as input from two separate datasets. To query
the hash table, a batch of k randomly-generated, unsigned integer
keys is provided as input from a separate dataset. These query
keys may contain duplicates and are not necessarily equal to any
of the keys previously inserted into the table.

Among the four tested GPU and CPU platforms, we generate
and experiment with datasets containing between 50 million and
1.45 billion unsigned integers (k), in increments of 50 million.
This results in 29 different sizes of key-value pairs and query keys.
The maximum size that can be executed on a given platform is a
function of the maximum on-device memory of the platform and
the hash table load factor (see Equations 1 and 2). Thus, holding
the load factor constant, we are able to insert and query larger sets
of key-value pairs on platforms with larger memory.

Hash Table Load Factors
We measure the effect of the insertion and query throughput

as the hash table load factor, f , is varied between 1.03 and 2.0,
inclusive. Overall, 10 different values of f are tested: 1.03, 1.10,
1.15, 1.25, 1.40, 1.50, 1.60, 1.75, 1.90, 2.0. A load factor of 1.03
was selected as the minimum value because the CUDPP cuckoo
hash table implementation is only designed and tested for load
factors of at least this value. Traditionally, a load factor of 2.0 has
served as the conservative upper-bound for constructing a hash
table [6]. The smaller load factors reduce the memory footprint
of the hash table, but at the expense of an increase in the number
of hash collisions.

Query Failure Rates
For a dataset size of k query keys, we randomly-generate

10 different sets of k query keys, each with a different percent-
age of keys that are not contained within the hash table; that is,

“failed” queries that return empty query values. The rate of fail-
ure of query keys is varied, in increments of 10 percent, from 0
percent (all query keys exist in the table) up to 90 percent. This
failure rate factor is meant to assess the worst-case querying abil-
ity of hash table implementations.

Results

In this section, we present and analyze the findings of our
GPU and CPU hashing experiments. For each experiment, we
assess the insertion and query throughput of three search-based
techniques (HashFight compared to a benchmark hash table and
sorting-based technique) as the dataset size, load factor, and query
failure rate are varied. Each configuration, or data point, is run 10
trials, with each trial using a different randomly-generated data
set of unique, 32-bit unsigned integer keys and values. The result
of each configuration is reported as the average throughput of the
10 different runs, with the operation being an insertion or query.
For a given configuration, the same 10 data sets are used by each
hashing implementation, in order to provide a fair comparison.

GPU Experiments
We conduct three different GPU experiments, each run on

both the NVIDIA K40 and V100 GPU devices. The results and
analysis of these experiments are as follows.

Vary Data Size
Our first GPU experiment assesses the throughput perfor-

mance of each hash table as the number of key-value pairs is in-
creased and the load factor is held constant. We display results for
constant load factors of 1.03 and 1.50, since they reveal the per-
formance of both higher-capacity and lower-capacity hash tables.

Figure 1 displays the results for both the K40 and V100
GPUs, each testing a different maximum number of key-value
pairs due to on-device memory limitations. From these results,
we observe that HashFight achieves scalable and leading query
throughput for the largest numbers of key-value pairs on both
GPU devices, while remaining within a factor of 1.5 of the
CUDPP cuckoo hash table for all other data sizes. For inser-
tions, both hash table approaches maintain comparable through-
put, with HashFight demonstrating more-stable throughput for
both of the tested load factors, and CUDPP performing its best
for the 1.50 factor. Overall, both HashFight and CUDPP achieve
higher throughput for queries than for insertions, which is a de-
sirable property for hash tables that are used primarily as look-up
structures, particularly in real-time applications.

With the 1.03 load factor, HashFight attains a consistently-
higher insertion and query throughput than CUDPP on both de-
vices, and matches the query throughput of CUDPP for the small-
est and largest data set sizes on the V100 device. With the 1.50
load factor, CUDPP sees an increase in query throughput and
outperforms HashFight within a factor of 1.5 until 950 million
key-value pairs. However, when the number of key-value pairs
exceeds 1 billion, CUDPP experiences a drop in throughput and
nearly matches the throughput of HashFight at 1.45 billion pairs.
This trend can also be observed for CUDPP queries on the K40
device at both 150 million key-value pairs (1.03 load factor) and
250 million pairs (1.50 load factor).

A further analysis reveals that these dropoff points directly
coincide with the points at which the total memory of the hash
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Figure 1. GPU insertion and query throughput as the number of key-value pairs is varied on the K40 and V100 devices. For both HashFight and CUDPP, hash

table load factors of 1.03 and 1.50 are presented separately.

table exceeds the size, or coverage, of the translation lookaside
buffer (TLB) of the last-level cache (L3 cache on K40 and L2
cache on V100). According to the micro benchmarking of Jia et
al., the V100 and K40 have TLB sizes of approximately 8.2 GB
and 2 GB, respectively [12]. On the K40 and V100, these last-
level caches use physical memory addresses and so the virtual
addresses of thread read and write requests must first be trans-
lated into physical addresses via one of the page tables cached in
the TLB. Once the pages tables of the TLB are full, TLB misses
induce page faults (or swaps) that increase the latency of mem-
ory transactions, regardless of whether the memory requests hit or
miss the last-level cache. Recently, Karnagel et al. microbench-
marked a suite of modern NVIDIA GPUs and discovered that ir-
regular memory accesses for data sets larger than 2 GB on the
K40 result in latency increases, due to inefficient accesses to the
L3 TLB [13]. Lai et al. expand upon this finding by modeling a
multi-pass scatter and gather scheme that splits a batch of TLB-
exceeding memory accesses into smaller chunks of accesses that
each fit within the size of the TLB [14].

HashFight draws from these findings and performs the
Fight, CheckWinner, and Probe kernels (Listings 2, 3, and 5)
in a multi-pass fashion that, as seen in Figure 1, does not suffer a
drop in throughput after the TLB size is exceeded. Once the hash

table memory size reaches the TLB size, the hash table is logi-
cally broken into chunks of locations, each of roughly equal size
and smaller than the TLB size. Then, a kernel is invoked for each
chunk in order, and only the threads with memory accesses into
the current chunk are allowed to insert or query their key. The
minimization of TLB page faults more than offsets the overhead
of invoking each kernel multiple times per HashFight iteration,
resulting in more stable throughput than CUDPP for large data
sizes and hash tables. This multi-pass feature maintains platform-
portability, since TLB-specific constant values are only used when
HashFight is compiled in GPU (CUDA) mode.

On the V100 GPU device, both tables realize a considerable
improvement in insertion and query throughput, reaching approx-
imately 1 billion pairs per second for insertions and at least 2
billion pairs per second for queries. This increase in through-
put can be attributed to several hardware improvements over the
older-generation K40, including increased global memory band-
width and decreased latency for global memory atomic instruc-
tions. These improvements play a role in the absolute throughput
differences observed between the devices, as CUDPP uses CAS
atomic operations during insertions and both CUDPP and Hash-
Fight resolve a very high percentage of their memory transactions
from global memory.
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Figure 2. GPU insertion and query throughput as the hash table load factor,

or capacity, is varied on the V100 device. The number of key-value pairs

inserted and queried is set equal to the maximum number that can satisfy

on-device memory constraints for all load factors.

Finally, Figure 1 reveals that, for both K40 and V100, sort-
ing the input key-value pairs with the Thrust radix sort is sig-
nificantly faster than inserting the pairs into either of the two
hash tables. However, this comes with a tradeoff of significantly
slower queries via the Thrust binary search, which suffers from
uncoalesced and random-access query patterns into the sorted ar-
ray. The hash tables enable each query to complete within a con-
stant fixed number of uncoalesced probes through the hash table,
whereas the binary search must make a logarithmic number of
probes in the worst case.

Vary Load Factor
Our second GPU experiment measures the performance of

the hash table approaches as the load factor is varied between 1.03
and 2.0, and the number of key-value pairs is held constant. We
hold 300 million and 900 million pairs constant for the K40 and
V100 devices, respectively, as these are the maximum numbers
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Figure 3. GPU query throughput as the percentage of failed, or unsuccess-

ful, queries is varied on the K40 and V100 devices. For both HashFight and

CUDPP, separate plots are presented for hash table load factors of 1.03 and

1.50, which are queried with the maximum number of query keys (millions)

permitted within on-device memory limits.

for which all load factors can be tested within on-device memory
limits. We also plot the throughput of the Thrust radix sort and
binary search for both of the tested number of key-value pairs;
since the load factor is hash table-specific, the Thrust performance
does not vary.

From Figure 2 we see that HashFight maintains very stable
throughput performance across all load factors, never deviating
by more than 200 million pairs per second. CUDPP, as an open-
addressing method, achieves faster insertions, as the load factor
and hash table capacity increase, particularly on the V100 GPU.
On the K40 GPU, CUDPP fails to increase its insertion through-
put for 300 million pairs beyond a load factor of 1.10 (the K40
plot is not shown due to similar findings as in V100 chart). At
this point, the hash table memory usage reaches the maximum L3
TLB capacity of the K40 and, as noted before, CUDPP is unable
to further increase its insertion throughput due to excessive TLB
page faults. Also, as seen in Figure 1, HashFight performs com-
parably or better than CUDPP for the smallest load factors and
highest-capacity hash table sizes.
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Vary Query Failure Rate
Our third and final GPU experiment assesses the query

throughput of HashFight and CUDPP as the percentage of failed,
or unsuccessful, query keys is varied between 0 and 90 percent,
while holding the number of query keys and load factor (1.03 and
1.50) constant.

Figure 3 reveals that CUDPP and HashFight are modestly af-
fected by an increase in unsuccessful queries on both the K40 and
V100. On the V100, CUDPP begins with a slightly higher query
throughput than HashFight for the 1.50 load factor, but then sees
a 43 percent decrease in throughput until it nearly matches the
throughput of HashFight at the 90 percent failure rate. A similar
pattern appears for the 1.03 load factor. On the K40, both hash ta-
ble approaches realize slightly larger decreases in query through-
put as compared to the V100 runs. For the 90 percent query failure
rate and 1.50 load factor, HashFight and CUDPP realize decreases
in throughput by 33 and 43 percent, respectively. For the 1.03 load
factor, HashFight and CUDPP observe decreases in throughput by
48 and 47 percent, respectively, until the 90 percent failure rate,
at which point the throughput of both tables is equivalent.

The K40 findings can be largely explained by the TLB
caching limit and HashFight’s TLB-oblivious design, as observed
in the previous experiments, whereas the V100 findings are more
indicative of algorthmic properties, such as increase in worst-case
probes per thread and memory load transactions per warp. As
an optimized cuckoo hash table, CUDPP only requires at most h
lookup probes per query, where h is the number of cuckoo hash
functions or possible table locations for a key to be inserted. Since
this value is typically small (4 in this study), CUDPP does not
have to perform too many extra global memory loads to determine
that a query key does not exist within the hash table. HashFight is
even less affected by the failed queries, as most threads can deter-
mine in the first iteration whether their active query key resides in
the table, and rarely will need to exceed 6 iterations to determine
failure.

CPU Experiments
We conduct three different experiments on the Intel Xeon

Gold CPU, comparing the throughput of HashFight with that of
the TBB concurrent unordered map (TBB-Map) and the Thrust
sort and binary search primitives. HashFight and Thrust are com-
piled and run in TBB mode, without any code changes from the
equivalent GPU experiments. The results and analysis of the CPU
experiments are presented as follows.

Figure 4 shows that HashFight achieves a significantly
higher throughput than the TBB-Map for both insertions and
queries across all data sizes. In particular, for the largest batch
of key-value pairs, 1.45 billion, and smallest load factor, 1.03, the
throughput of HashFight exceeds that of TBB-Map by approxi-
mately 30X and 3X for insertions and queries, respectively. From
Figure 5, as the load factor, or table capacity, is increased from
1.03 up to 2.0, HashFight continues to increase its insertion and
query throughput by 1.3X and 1.4X, respectively. However, TBB-
Map maintains relatively the same throughput for insertions (8.5
million pairs/sec) and queries (137.5 million pairs/sec) until a load
factor of 1.60. After this point, TBB-Map realizes a noticeable
6.3X decrease in insertion throughput and a 1.35X decrease in
query throughput, instead of expected increases. Also, the aggre-
gate runtime of performing a Thrust sort followed by a vectorized
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Figure 4. CPU insertion and query throughput as the number of key-value

pairs is varied on the Xeon Gold device. For both HashFight and the TBB

unordered map, hash table load factors of 1.03 and 1.50 are presented sepa-

rately.

binary search is actually faster than that of TBB-Map, yet still
considerably slower than the aggregate runtime of HashFight.

The significantly lower insertion throughput of TBB-Map is
largely due to the underlying linked list design of the hash table
and its construction under large magnitudes of key-value pairs,
such as those tested in this experiment. As an extensible hash ta-
ble, TBB-Map must frequently resize and allocate new memory
segments as more and more key-value pairs are inserted in an un-
ordered fashion [31]. Each insertion of a key-value pair has to
follow multiple layers of pointer indirection to access a segment
bucket, and the insertion must be synchronized via a lock-free
atomic primitive, which adds additional overhead above that of
HashFight.

Moreover, the slight drop in throughput for TBB-Map above
a load factor of 1.50 is a combination of excessive TLB cache
thrashing and the use of separate-chaining for collision resolu-
tion. A hash table with a load factor of 1.50 requires at least
16 GB of memory to insert 1.45 billion pairs. This memory foot-
print just exceeds the aggregate coverage of the L1 and L2 TLBs
on the Xeon Gold CPU, and, since page entries are of smaller
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Figure 5. CPU insertion and query throughput as the hash table load factor

is varied on the Xeon Gold device.

4KB and 2MB sizes, pages are frequently swapped in and out
of a TLB by concurrent threads during random-access insertions.
As observed in our GPU experiments, memory latency increases
and insert throughput decreases as more hash table address map-
pings reside outside of the TLB. HashFight obviates this issue
by means of its multi-pass gather and scatter procedure, and its
use of open-addressing collision resolution, whereby the number
of memory accesses typically decreases as the hash table size in-
creases. However, TBB-Map is vulnerable to TLB memory lim-
itations and does not benefit as well from a larger hash table due
to multiple layers of pointer indirection and linear probing within
buckets. A possible direction towards alleviating the TLB issue
is to use huge 1 GB page entries. This permits more virtual-to-
physical memory mappings in a single TLB access, but requires
modifying the system configuration with root permission; due to
the latter reason, we were unable to perform this experiment.

In order to validate the results of TBB-Map, we also tested
the same CPU experiments with the TBB concurrent hash map,
which is based on an underlying array structure as opposed to
a linked-list. The concurrent hash map produced nearly identi-
cal insertion and query throughput as the concurrent unordered
map. Additionally, by conducting multiple trials per configura-

tion (10), we verified that the resulting runtimes were not affected
by “cold” threads, whereby some threads are not yet active and
need a warmup phase.

Finally, we conducted the third experiment of varying the
query failure rate and observed that, unlike in the GPU experi-
ments, the query throughput of HashFight and TBB-Map is only
marginally decreased as the rate is increased. Since there are
many buckets in the TBB-Map hash table and a relatively light
load per bucket, the cost of performing an unnecessary or failed
query is non-increasing, contrary to extra probing required by
CUDPP cuckoo hashing for failed queries on the GPU. Due to the
small variation in throughput, we have omitted the corresponding
chart for this experiment.

Conclusion and Future Work

This study demonstrates the viability of HashFight as a
platform-portable approach that can support the implementation
of visualization and data analysis algorithms within the VTK-m
framework. In particular, HashFight contributes the following:

1. Hash table data structures can be implemented in platform-
portable visualization frameworks, such as VTK-m.

2. Provides important evidence that the DPP approach can
still lead to competitive performance compared to hardware-
specific implementations.

3. Leading insertion and query throughput to best-in-class
GPU- and CPU-based implementations for compact hash ta-
bles and hash tables that exceed the TLB coverage. Hash-
Fight demonstrates comparable performance for large hash
tables and the largest data sets of up to a billion integer key-
value pairs on a single device.

4. Platform-portable, DPP-based design that does not use hard-
ware atomics or locking for collision-resolution. Based on
this design, HashFight maintains competitive performance
across different GPU platforms, which differ in such prop-
erties as device memory size and memory bandwidth.

5. Provide evidence of the significant GPU performance
penalty incurred by the CUDPP hash table implementation
as the TLB cache coverage is exceeded. HashFight mitigates
this performance issue via a multi-pass routine.

Future work includes adding support for 64-bit unsigned in-
teger keys and values, and assessing the performance of Hash-
Fight with spatial point-coordinate keys. This latter experiment
can be coupled with the Morton curve hash function, which seeks
to map spatially-close points to similar-valued unsigned integer
hash values. In this case, the hash values would be nearby indices
in the hash table and could offer coalesced memory loads when
queried in an ordered fashion.
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