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Abstract

Data reduction is increasingly being applied to scientific data for numerical simulations, scientific visualizations, and data
analyses. It is most often used to lower I/O and storage costs, and sometimes to lower in-memory data size as well. With this
paper, we consider five categories of data reduction techniques based on their information loss: 1) truly lossless, 2) near lossless,
3) lossy, 4) mesh reduction, and 5) derived representations. We then survey available techniques in each of these categories,
summarize their properties from a practical point of view, and discuss relative merits within a category. We believe, in total, this
work will enable simulation scientists and visualization/data analysis scientists to decide which data reduction techniques will

be most helpful for their needs.

1. Introduction

Scientific visualization and data analysis most often use the post
hoc paradigm, where simulation codes store data to a file system
and where visualization programs read this simulation data at a
later time. File I/O is increasingly a bottleneck for this paradigm,
both for transfer rates and for storage capacity.

Slow I/O rates create problems for both simulation and visual-
ization scientists. Simulation scientists, as data producers, can opt
to write data less often. However, this approach can be problem-
atic, as the resulting temporal sparsity may prevent proper analysis
of the data. Visualization and data analysis scientists, as data con-
sumers, need reasonable turnaround times for processing data with
exploratory tasks. The majority of time to perform these tasks is
typically spent both on reading data from disk and on computa-
tions that produce meaningful visualizations and statistics. As the
ability to read data goes down, turnaround times go up.

Data reduction is a means to tackle I/O-related difficulties for
both simulation and visualization scientists. For simulation scien-
tists, reduced data sizes translated to less transfer time to disk and
smaller storage space on disk. For visualization scientists, reading
in fewer bytes also means a shorter turnaround time, improving in-
teractivity. Each data reduction technique has varying tradeoffs be-
tween magnitude of reduction, processing time, and integrity. As a
result, selecting a data reduction technique requires finding a mid-
dle ground between these tradeoffs, as well as considering the in-
tended use case.

This paper mainly surveys data reduction techniques developed
for scientific data arising from numerical simulations, and, to the
best of our knowledge, this is the first all-in-one survey paper on
this topic. In most cases, this type of data consists of floating-point
values on certain mesh structures. The broader data reduction re-
search community has developed a range of techniques for different
types of data, primarily multimedia data such as audio and video.
Many of these techniques can be applied to scientific data with lit-

tle or no modification. We include these techniques in our survey
provided there have been applications reported in the literature.

The rest of the introduction explains this survey’s categoriza-
tion of information loss associated with data reduction, which is
arguably the most important property scientists care about in prac-
tice. Following that discussion is an explanation of other relevant
properties of data reduction techniques, formalization of terminol-
ogy, and some examples of of visualizations after data reduction.
The introduction concludes with a roadmap for finding the most
relevant sections of the paper.

1.1. Information Loss During Data Reduction

The classic view on information loss during data reduction is a bi-
nary choice: lossy or lossless. This view fails to capture differences
between a wide range of data reduction techniques used by simu-
lation and visualization scientists, whose application requirements
are diverse from each other. Instead, we consider a five-category
classification to qualify the information loss of a data reduction
technique:

. truly lossless compression;
. near lossless compression;
. lossy compression;

. mesh reduction; and

. derived representations.
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While mesh reduction techniques and derived representations are
both technically types of lossy compression, we classify them sep-
arately because they are outside the scope traditionally considered
by the compression community — these two techniques tend to be
even more lossy than what the compression community considers.
Therefore, our classification could be viewed as a spectrum, with
one end being strictly lossless (truly lossless) and the other being
very lossy (derived representations), to the point that the original
data often cannot be reconstructed. Looking from the perspective
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of reduction factors, the two ends of the spectrum are modest re-
duction (truly lossless) and aggressive reduction (derived represen-
tations). Considering both information loss and reduction factors,
scientists with extreme data problems may be willing to accept a
certain level of information loss in exchange for the benefits of
large reduction factors. In the rest of this subsection, we explain
these five categories and survey their corresponding techniques in
the rest of this paper.

Truly lossless compression: Truly lossless compression means
data reconstructed after compression has exactly the same value on
every bit as the original data, i.e., bit-for-bit identical. Scientists do
not need to worry about this type of data reduction techniques with
regard to data integrity, since any visualization and analysis out-
come will not be altered. Many general-purpose compression tech-
niques fall within this classification, and some have mature tools
that realize their approaches, for example, gzip.

Near lossless compression: Near lossless compression means
no information is discarded deliberately during data reduction,
but floating-point rounding errors are introduced during arithmetic
operations. Another way of understanding this property is that
the techniques are lossless in mathematics but not in practice,
with rounding errors being intrinsic for floating-point arithmetics.
Though data is altered, scientists might accept these rounding er-
rors, since they are theoretically at the same magnitude as the nu-
merical models that generated the data. Many transformation-based
techniques fall into this category.

Lossy compression: Lossy compression means that there is no
requirement that reconstructed data points match the original data
set. As a result, lossy techniques usually achieve a much more
significant data reduction than lossless methods. The acceptable
amount of information loss is highly application dependent, and
scientists often need to examine the integrity of the resulting data
and tune the reduction parameters on a case by case basis.

Mesh reduction: Mesh reduction techniques reduce the scale
of a mesh (i.e., number of vertices and cells), thus reducing the
amount of storage. Mesh reduction contrasts with lossy compres-
sion in that the underlying mesh is subject to reduction, while lossy
compression does not touch the mesh itself. There are multiple
ways to accomplish this goal. One way is to make meshes that
resemble the original ones, but coarser. One benefit of a reduced
mesh is that it also requires less memory to process, which benefits
interactivity.

Derived representations: Derived representation techniques
discard the original data entirely, enabling extreme data reduction.
Instead, alternative representations are calculated and stored, so
analysis routines can produce results similar to those when oper-
ating on the original data. The techniques in this class are often
tailored toward specific visualization and analysis tasks. Scientists
could be motivated to accept this class of techniques because of the
potential for data reductions beyond what the other classes can of-
fer. An example here is Cinema [AJO™ 14], which saves images of
tens of thousands of visualizations across a wide range of parame-
ters for further visual analytics; these images can still be orders of
magnitude smaller than the simulation data.

1.2. Additional Properties of Data Reduction Techniques

Beyond information loss, additional properties are important to de-
ciding which techniques to use. This section briefly explains these
properties. Note that some properties apply to only some of the cat-
egories of data reduction technologies from Subsection 1.1.

Fixed error: With this property, an error tolerance can be spec-
ified as input to the reduction operator. The form of error tolerance
can be an absolute deviation, a relative offset, or any pre-defined
metric based on the application and/or technique. Fixed error al-
lows scientists to carry out their analysis with more confidence,
since they are assured of a limit in the amount of deviation. How-
ever, the downside is that the final size after reduction is often hard
to predict, because not all data sets are equally amenable to com-
pression. Truly and near lossless compression have fixed error, as
the former has absolutely zero error, and the latter has floating-
point rounding errors. That said, fixed error can be applicable to
lossy compression and mesh reduction techniques as well.

Fixed size: This property is complementary to fixed error, i.e.,
the property where the maximum size of the data after reduction is
guaranteed. That said, while the size after reduction can be set in
advance, the resulting error is often unknown. We note that while
some techniques could support fixed error and fixed size at the same
time (e.g., uniform quantization), most advanced lossy techniques
have to choose between them. Fixed size also applies to lossy com-
pression and mesh reduction. Derived representations may have
fixed size as well, since the final size of their representations is
often user-settable.

Reduced memory footprint: With this property, the recon-
structed form of the data set is smaller in size than the original ver-
sion, meaning it takes less system memory for analyses. A reduced
memory footprint speeds up both I/O time and execution time for
algorithms, making this property very desirable for interactive ap-
plications. Lossy compression, mesh reduction, and derived repre-
sentations can all have the reduced memory footprint property; with
lossy compression, each data point is represented with fewer bits;
with mesh reduction, a mesh is reduced to have fewer vertices; and
with derived representations, the representations themselves usu-
ally take less memory.

Progressive data access: With this property, reduced data can be
accessed in a progressive fashion, i.e., accessing part of the reduced
data for a coarse reconstruction, and progressively accessing more
data to obtain finer reconstructions. Progressive data access can be
very helpful to alleviate I/O constraints during post hoc analysis,
so it is also desirable for interactive applications. This property is
most often available from lossy compression and mesh reduction
techniques, with the former providing progressively increasing ac-
curacy for individual data values, and the latter providing progres-
sively increasing resolution for the underlying mesh or data do-
main.

1.3. Terminology

This section clarifies some terminology used in this paper. The
scope of this survey is data reduction fechniques. While many data
reduction techniques are compressors (as in the lossless and lossy
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Figure 1:  An isosurface
visualization on uncom-
pressed data (ground truth).
This isosurface is on the
temperature field from a
simulation of Hurricane
Isabel [KWB*].

compression categories), there are reduction techniques that are not
compressors in the traditional sense, for example, mesh coarsening
and topology representations. Coders are types of compressors that
specifically apply an encoding algorithm to a data stream, and are
often used as components of compressor products.

These techniques reduce the size of the data, also known as com-
pressing the data in the case of compressors. The inverse process is
then referred to as either decompression or reconstruction. When
describing coders, these processes are also referred to as encode
and decode. Reduction factors and compression factors are then
the ratios between the original and the reduced forms of the data.
For example, a reduction factor of four (4X, or 4:1) means that the
reduced form is a quarter of the original form in size. Finally, the
ability of a technique to perform data reduction is referred to as
its efficiency or effectiveness. In lossless cases, the smaller the re-
sulting data size, the more efficient a technique is. In lossy cases, a
more efficient technique results in smaller size with the same level
of error, or less error with the same target size.

1.4. Visualizing Compression Results

This section illustrates the effects of data reduction for a repre-
sentative visualization. Specifically, an uncompressed data set is
compared with reconstructed data from different reduction strate-
gies. The data reduction strategies come from three different cat-
egories and represent the potential reduction differences between
each strategy.

The data used for the visualizations is from a simulation of Hur-
ricane Isabel, which was used for the inaugural IEEE Visualization
contest in 2004 [KWB™]. The visualizations are of isosurfacing the
temperature variable. All data are 32-bit floating-point values on a
regular grid of 500 x 500 x 100. Figure 1 shows this visualization
on the uncompressed (original) data, plotted using the Vislt visual-
ization package [CBW*12].

We picked three data reduction techniques from three cate-
gories: 1) lossy compression achieved by wavelet transform + coef-
ficient prioritization (Subsection 4.4), 2) multi-resolution achieved
by wavelet transforms (Subsection 5.2), and 3) mesh decimation
(Subsection 5.1). VAPOR [NC12] and Vislt [CBW*12] were the
tools we used to perform reduction.

Figure 2 shows visualizations of the same variable but on data
that has gone through reduction. In Figure 2a, the grid remains at
500 x 500 x 100 but the data is compressed at 8:1, 64:1, and 512:1
levels. For Figure 2b with multi-resolution, the grid resolution is
lowered to be 250 x 250 x 50, 125 x 125 x 25, and 62 x 62 x 12.

(b) Reduction: wavelet + multi-resolution (Subsection 5.2.3).

Figure 2: Contrasting two different reduction techniques. Both sets
of images are isosurfaces applied to reduced data, with reduction
levels 8:1, 64:1, and 512:1 from left to right.

i
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Figure 3: Close-up view of a portion of the triangle mesh of the
isosurface. The ground truth is on the left. The mesh is reduced
through mesh decimation (Subsection 5.1) with reduction levels 8:1
in the middle and 64:1 on the right.

With less grid points, the data size is reduced to 8:1, 64:1, and 512:1
levels respectively.

Figure 3 shows the effects of mesh decimation on the same iso-
surface. In this case, an isosurface was extracted on the original
data, and then two separate mesh decimations were applied to the

. . th
isosurface. The total number of triangles was reduced to % and

th _ ;
also to 6—14 of the original contour mesh, corresponding to reduc-
tion levels of 8:1 and 64:1, respectively.

Overall, the lossy compression shows the best visualization qual-
ity: the contour only suffered subtle changes at 64:1 compression
level, and still retained many details at 512:1. The multi-resolution
and mesh decimation results suffered from more deterioration, with
the 64:1 results already losing many details. On the other hand, the
multi-resolution and mesh decimation results both reduce memory
footprint, which is a desirable property for interactive applications.
Of course, the best choice for reduction technique varies over use
case and data set.
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1.5. Guide to Reading This Paper

This paper surveys data reduction techniques based on the spectrum
of information loss, spanning from zero information loss (truly
lossless) to some information loss (lossy compression) to com-
pletely discarding the original data (derived representations). A to-
tal of five categories along this spectrum are described in their own
sections, from Section 2 to Section 6. Some data reduction tech-
niques span categories. In these cases, we describe the technique in
depth in the most appropriate category section.

The paper was designed so that a reader could skip directly to
the section(s) of most interest:

e For use cases where reconstructed data must be bit-for-bit accu-
rate, the only applicable works in this paper can be found in Sec-
tion 2. These techniques, on the whole, produce the least amount
of data reduction.

e For use cases where accuracy within floating-point rounding er-
ror can be accepted, the reader should also consider Section 3.

e For lossy compression use cases, the reader should skip Sec-
tions 2 and 3 and proceed directly to Section 4, as the techniques
in Section 4 provide significantly more data reduction than those
in the preceding two sections.

e For use cases where the reconstructed data set needs to be much
smaller in size than the original data, the reader should consult
Sections 5 and 6. For the most part, Section 5 presents techniques
that produces reduced forms of the original data (i.e., smaller
memory footprint) that can be used for arbitrary visualizations
and analyses, while Section 6 presents techniques that optimized
only for specific visualizations and analyses.

2. Truly Lossless Compression

Truly lossless compressors are used in almost every area of com-
puter science. These compressors work much better on text and
integer data than on floating-point data. This is because a large por-
tion of the bits in floating-point representations are effectively ran-
dom, making lossless compression very difficult. The rest of this
section surveys two families of classic coders in a relatively brief
fashion, and then discusses a few truly lossless compressors that
are specifically designed for floating-point scientific data.

2.1. Entropy-based Coders

We begin with a brief introduction to information theory, which
gives a theoretical lower bound on the number of bits needed to en-
code each symbol from a source. According to Shannon [Sha01],
for a source S made up of independent and identically distributed
(iid) symbols ay, ...,an, where each symbol has a respective proba-
bility of occurrence py, ..., pn, the information content, or entropy,
of §, is given by:

H=—) pilog,(p;). 1

n
i=1

H provides an optimal lower bound on the expected number of bits
needed to represent each a;. Note that H is maximized when all

symbols occur with equal probability (p; = 1/n), and minimized
when the probability of a single symbol is one and the rest are zeros.

Thus, the entropy of a source determines a theoretical lower bound
on the number of bits needed to represent the iid symbols without
information loss.

The goal of entropy-based coders is to achieve the optimal bit
representation as indicated by Equation 1. That is, entropy cod-
ing methods attempt to represent the symbols a; by a set of code-
words, c;, in a way that minimizes the average number of bits per
codeword with a lower bound given by H. These techniques are
typified by the use of variable length codewords. That is, shorter
codewords are assigned to represent symbols with higher proba-
bilities of occurrence, and longer codewords are assigned to repre-
sent symbols with lower probabilities of occurrence. This strategy
is used by Huffinan coding [Huf52] and the more complex arith-
metic coding [WNC87]. In practice, Huffman coders are best suited
for cases when probabilities of occurrence are powers of 1. while
arithmetic coding encodes more efficiently in general. The textbook
by MacKay [Mac03] provides good discussions of Shannon theory
and entropy-based coding. Finally, the bzip2 [Sew96] compression
utility program uses Huffman coding internally, and in general it
achieves better compression ratios than gzip.

2.2. Dictionary-based Coders

Dictionary-based coders work by matching symbols to a dictio-
nary so only the matching information, but not the actual symbols,
are stored. As an illustrative example, if we were to compress the
current paragraph of text, a coder could store the page and index
numbers of each word in a standard English dictionary. To achieve
better efficiency, a dictionary-based coder usually constructs a dic-
tionary for each compression task by using phrases occurring in the
file to compress. This custom dictionary, in turn, must be stored as
part of the compressed representation; smart ways to construct and
store this dictionary can minimize this overhead.

Lempel and Ziv are pioneers in developing dictionary-based
coders with their algorithms LZ77 [ZL77] and LZ78 [ZL78]. These
two algorithms have inspired many variants that enjoy very wide
usage today for general compression purposes. One of the derived
algorithms, DEFLATE [Deu96], is used by both utility program
gzip [gzi] and compression library z/ib [zli].

Compared to entropy-based counterparts, dictionary-based
coders tend to have a faster throughput, which is favorable for
large scientific data compression. The fast throughput also leads
to wide usage of dictionary-based coders in I/O middleware and
filesystems to provide transparent compression. HDF5 [FCY99]
and ADIOS [LKS*08] are two I/O middleware solutions that sup-
port transparent compression with z/ib among others as plug-
ins [BLZ*14]. Two filesystems, Btrfs [RBM13] and ZFS [BM] on
Linux and Solaris operating systems respectively, also natively sup-
port transparent compression through dictionary-based coders such
as zlib and gzip [btr, OS12].

2.3. Lossless Coders for Scientific Data

Researchers have also developed lossless compressors specifically
for scientific data. These compressors often exploit coherence (i.e.,
adjacent data points have similar values) between data points from
scientific data, which is not common in a general binary file.


Samuel Li



Shaomeng Li et al. / Data Reduction Techniques for Simulation, Visualization, and Data Analysis

Predictive coding is the dominant approach to exploit data coher-
ence in a lossless setting. That is, the use of predictors to predict fu-
ture values based on previously encountered ones. Predictive cod-
ing involves two steps: prediction and compression. In the predic-
tion step, a good predictor would produce small residuals, i.e., the
difference between the predicted and actual values. In the compres-
sion step, these small residuals are then much more friendly to com-
pression, because they exhibit significantly lower entropy [ILS05].
‘We note that predictive coding is used in lossy settings as well, as
we will describe in more detail in Subsection 4.3. That said, this
subsection focuses exclusively on the lossless options.

FPC [BR09] is a predictive lossless compressor for double-
precision floating-point values. After linearizing multi-dimensional
data, it uses two hash table-based predictors, FCM [SS97] and
DFCM [GVDBO1], to predict each incoming value. FPC then picks
the more accurate predictor for each individual value. The residu-
als are produced by applying an XOR operation between the pre-
dictions and the true values, resulting in zeros at the common bit
positions. With predictions close enough, these residuals will have
all zeros at the most significant bits. A run-length compression is
then used to effectively compress each residual. Compared to gen-
eral purpose compressors like gzip and bzip2, FPC achieves higher
compression ratios on most data sets, and consistently is at least
one order of magnitude faster.

Both MPC [YMHBI15] and FPcrush [BMYH16] chain multiple
“algorithmic components” together in their compression pipeline.
These algorithmic components include pre-conditioners to facil-
itate compression (e.g., mutators, shufflers, etc.), predictors, and
compression modules. As a result, both MPC and FPcrush are ca-
pable of achieving higher compression ratios than gzip and bzip2.
MPC and FPcrush differ in their target usage scenarios. MPC was
designed for massive parallelism on GPUs, so it uses algorithmic
components that require almost no internal state. The GPU im-
plementation of MPC has one to two orders of magnitude higher
throughput than parallel gzip and bzip2 on CPUs. FPcrush was de-
signed for real-time usages, so it employs algorithmic components
that are all of linear complexity. FPcrush also uses an asymmetric
design, meaning that it is much faster to decompress than to com-
press. As a result, it achieves compression throughput on par with
parallel gzip and bzip2, but its decompression is one order of mag-
nitude faster.

Research for the topic of lossless scientific data compression
has advanced in a few interesting directions. Fpzip [LIO6] used a
Lorenzo predictor [ILRSO03] that is able to take advantage of data
coherence along multiple dimensions (the Lorenzo predictor is de-
scribed in more details in Subsection 4.3.1). Fout and Ma [FM12]
proposed an adaptive compression framework that switches be-
tween five individual predictors — polynomial, Lorenzo, FCM,
DFCM, and Mean — to achieve significantly better rates at a
cost of slower performance. ISOBAR [SJS™12] pre-conditions data
by picking only “compressible” bytes to feed into a compressor,
so the achieved throughput is much higher. BLOSC [bloa] and
SPDP [Bur] are two compressors that are also available as filters
for HDF5 data format, with BLOSC featuring a very fast through-
put.

2.4. Discussion on Truly Lossless Techniques

With respect to the reduction properties from Section 1.2, truly
lossless compressors provide fixed error (i.e., no error at all), but
not fixed size. They do not reduce memory footprint, nor provide
any progressive data access. Since this topic is relatively mature,
very good references exist with more information, namely text-
books by Salomon [Sal04] and Sayood [Say12].

Truly lossless compression is most often used to reduce the I/0
and storage costs when saving data. It can also be used to archive
data for future use without any fear of possibly losing science. The
compression efficiency of different techniques is easy to compare:
whichever one that gives the smallest file size is the best. When
compressing scientific data, which is usually very big in size, the
processing speed is also vital. BLOSC stands out in this regard,
with a throughput sometimes surpassing plain memory copy [blob].

Despite the availability of general purpose compressors, the
compressors with scientific data in mind are often better options.
Among them, fpzip is widely used for its overall excellent per-
formance in both compression efficiency and speed. When it was
tested on the Rayleigh-Taylor simulation data from the Miranda
code, fpzip achieved a 3.7X data size reduction. Further, in terms of
overall throughput — which included time spent on both compres-
sion and actual I/O — it achieved a 2.7X improvement compared
to a simple fwrite () of raw data [LI06].

3. Near Lossless Compression

Techniques in this family rely on some form of discrete mathe-
matical transforms to map a signal from the spatio-temporal do-
main into a new domain, typically expressed as coefficients of a
set of basis functions. With transforms that possess the properties
of information compaction and decorrelation, the signal’s informa-
tion content can be concentrated into a relatively small number of
coefficients, i.e., coefficients that are significantly more important
than others. After the transformation, the number of resulting co-
efficients typically matches the number of samples from the orig-
inal signal (thus no data reduction), but the resulting coefficients
are more easily compressed than the original signal. In addition to
decorrelation and energy compaction, it is essential that the trans-
forms are invertible, allowing mathematically perfect reconstruc-
tion of the original input from the transformed values. Common
transformations used in this step include the Fourier transform,
wavelet transforms [SN96], and cosine transforms [ANR74]. More
specifically, the high dimensional forms of these transforms (2D,
3D, etc.) are mostly used for scientific data, which are often in 2D
and 3D structured grids.

For integer values, a selection of transformations exist that are
specifically designed to be invertible and map integers to inte-
gers using only integer arithmetic, thus avoiding rounding er-
rors [CDSY98]. With floating-point values, which is the focus of
this survey, arithmetic operations generally introduce rounding er-
rors. While not necessarily bit-for-bit lossless, these errors are of
the same magnitude as rounding errors from numerical simulations.
Hence we refer to techniques in this family as “near lossless.” We
survey a few near lossless compressors in the remainder of this sec-
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tion, and discuss lossy encoding and compression of coefficients
from transformations further in Subsection 4.4.

3.1. Mitigating Rounding Errors in Practice

To minimize floating-point rounding errors, a transformation could
use higher precision floating-point representations to carry out cal-
culations, provided the memory and computational resources al-
low for it. As an example, Trott et al. [TMM96] converted sin-
gle precision floating-point values to double precision to perform
wavelet transforms. The authors then used a data-specific statistics
file to facilitate Huffman coding on the resulting coefficients, ul-
timately achieving moderate compression ratios on 3D curvilinear
grids. A handful of researchers have explored more sophisticated
ways to reduce or eliminate the introduction of rounding errors.
Usevitch [Use07] explored mapping floating-point values into 278-
bit integers to completely eliminate rounding errors, and applied
JPEG2000 encoding to the wide-precision integers. However, the
memory and computational overhead was significant. Lindstrom
mapped small blocks of floating-point values to fixed-point rep-
resentations in his zfp compressor [Linl4], and devised a custom
transform to efficiently operate on the fixed-point values. Zfp then
uses a custom encoder that better takes advantage of the properties
of the transform, achieving compression ratios on par with some of
the best lossless compressors.

3.2. Discussion on Near Lossless Compression Techniques

Near lossless compression has similar properties as truly lossless
compression: fixed error (at floating-point rounding error magni-
tude) but not fixed size. It does not reduce memory footprint nor
provide progressive data access.

Near lossless compression is rarely the sole objective of a com-
pressor. Rather, it is often an optional mode with lossy compres-
sors. For example, the above mentioned zfp was designed for lossy
compression, and its near loss compression mode does not show
a clear advantage in compression when compared to fpzip, which
achieves bit-for-bit lossless compression [Lin14]. A wavelet-based
lossy compressor from the VAPOR [NC12] package also supports
near lossless data reconstruction, but it does not reduce data size in
this mode. In short, for use cases involving near lossless compres-
sion, the lossless solutions from Section 2 should also be consid-
ered.

4. Lossy Compression

This section surveys lossy compression techniques. With these
techniques, the reconstructed data values approximate, but do not,
in general, exactly match the original. The rationale behind this
approach is that some visualization and analysis tasks can be rel-
atively unaffected by using lossy compression; this contrasts with
numerical simulations which cannot tolerate such inaccuracies.

The techniques in this section do not reduce the size of the recon-
structed data set. If the original data set contains N entries, then the
reconstructed data set will have also have N entries. The only way
that the memory footprint can be reduced is if the reconstructed
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Figure 4: Illustration of the seven levels of detail for a double-
precision floating-point value in MLOC [GRJ*12]. The first level
consists of two bytes, and each successive level uses an additional
byte. This illustration is inspired by [GRJ*12].

data set has a reduced precision (e.g., from 64- to 32-bit represen-
tation). As a result, this section’s techniques are mostly oriented
around reducing storage size.

4.1. Truncation

Truncation is a widely used and simple technique for reducing data
precision. For example, it is very common for numerical simula-
tions to use double precision (i.e., 64-bit floating point values) in
computation to maintain accuracy, while outputting single preci-
sion (i.e., 32-bit floating-point values) to save space.

MLOC [GRJ*12] truncates 64-bit floating-point values into mul-
tiple precision levels by dividing the eight bytes of a 64-bit value
into seven groups, as Figure 4 illustrates. The first group of two
bytes contain the exponent part and four most significant bits of the
mantissa. These two bytes provide a very coarse approximation of
the original value. Each additional byte increases the precision of
the mantissa, thus improving the overall value precision. In fact,
this organization provides a precision-based level of detail repre-
sentation, which supports progressive data access.

Truncation has the advantage of being extremely simple and fast,
and also provides fixed error and fixed size. It has the potential
to reduce memory footprint, if the data type is changed. However,
truncation is usually less effective at compressing data than other
more complicated precision reduction techniques.

4.2. Quantization

Quantization reduces precision by mapping floating-point values to
a finite set of approximations, which has a much smaller cardinality.
We describe two flavors of quantization here: scalar quantization
and the more complicated, yet powerful, vector quantization.

Scalar quantization: In its simplest form, scalar quantization
provides an n-to-m (n >> m) mapping for scalar values. An exam-
ple is to represent all real numbers between 0.0 and 1.0 with a 256-
step scale, which is often used for images: all values between ﬁ
and % (0 < i < 256) are represented by the i step. Note that
the binning scheme in this example uses the same width for every
bin (step), which is effective for data with an uniform distribution.
When the underlying data is non-uniform, the binning scheme can
be adjusted to reflect the distribution, improving the distinguish-
ing power between bins. In this regard, truncation can be seen as a
form of non-uniform quantization, since floating-point representa-
tions have much more precision at small-magnitude values.
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Figure 5: Vector quantization on vectors of size two (left) and four
(right). The input vectors are pixels from a notional gray-scale im-
age. The left illustration also includes gray-scale values of pixels.

Scalar quantization is often used to quantize coefficients coming
out of transformations, such as the ones surveyed later in Subsec-
tion 4.4, since these coefficients tend to exhibit clear distribution
patterns. Iverson et al. [IKK12] developed a compression technique
for scientific data that has the same spirit of scalar quantization: sets
(or regions) of the data that stay within an error bound are carefully
chosen and represented by the mean values of those sets.

Vector quantization: Vector quantization extends scalar quanti-
zation to work on vectors. In this setting, a vector is not only from
vector-valued data, such as velocity, tensor fields, or hyperspectral
data, but also from groupings of adjacent values of the same field.
For example, a 10 x 10 image could be organized into 25 vectors,
each consisting of a 2 x 2 square of pixels.

Vector quantization operates by grouping vectors with similar
values together, which means it takes advantage of similar patterns
exhibited from vectors. All the vectors within the same grouping
are then quantized to have the same value, which is the representa-
tive value of the group. The representatives are called codewords,
and the mapping scheme is called a codebook. Figure 5 illustrates
vector quantization of vectors of size two and four; they are pairs
and quads of adjacent pixels from an artificial gray-scale image.
In both cases, three similar vectors are mapped to a single vector,
the codeword. That said, different vector sizes result in different
compression ratios: a codeword encodes six pixels in the case of
two-sized vectors, and twelve pixels for four-sized vectors.

In an n-dimensional vector space (for vectors of length n), input
vectors are most likely distributed non-uniformly, thus a good bin-
ning scheme (codebook) non-uniformly allocates more codewords
to dense regions. The process of finding a good codebook is then
very much like finding a Voronoi-diagram-like partition for a space,
and such algorithms including the LBG algorithm [LBGS80] and
Lloyd’s algorithm [L1o82].

The computation for the encoding and decoding steps of quan-
tization is usually asymmetric. Encoding is typically computation-
ally heavy (finding a good codebook), and decoding is typically
light (looking up a codebook). This property makes quantization
suited for encode-once-and-decode-many-times use cases, for ex-
ample, direct volume rendering [NH92]. Here contiguous blocks
of size I X J x K serve as individual vectors for quantization, and
the decoding overhead was measured to be 5%. To achieve even

faster rendering speed, the same authors pre-computed shading and
ray tracing information for each of the I x J x K blocks, and also
applied vector quantization to compress them [NH93]. Overall, vol-
ume renderings from vector quantization have shown a significant
advantage over scalar quantization results.

In general, quantization guarantees a fixed size after compres-
sion, but not a fixed error, although uniform scalar quantization
guarantees both size and error. The decoded data is not reduced
in memory footprint, nor is progressive data access supported.
Though carefully designed codebooks improve its compression
efficiency, quantization is most likely still not as good as some
more complicated schemes. As a result, quantization is more of-
ten used as a component in other techniques. Finally, Gersho and
Gray [GG91] have a good reference book on vector quantization,
and Fowler has an open-source library, QccPack [Fow00] that sup-
ports many flavors of quantization.

4.3. Predictive Coding Schemes

The predictive coding schemes described in Subsection 2.3 can also
be used for lossy compression. In principle, residuals from a pre-
dictor can be safely discarded if they are smaller than a pre-defined
error tolerance, or get encoded otherwise. Since most predictive
compressors also need to take into consideration cascading errors,
predictions are made from previous approximations and residuals
are calculated accordingly; this practice naturally results in a “fixed
error” compression. To achieve efficient compression, the choice of
predictors is often critical. The rest of this subsection surveys a few
different classes of predictors.

4.3.1. Linear Prediction

A linear predictor is defined as a linear combination of previous
values. In its simplest case, a linear predictor exhibits similarities
to particle simulations where a particle remains at a fixed location,
or travels along a straight line [EGM04].

Compvox [FY94] is a linear predictor that takes additional neigh-
bor values into consideration. In the three-dimensional case, the
following equation predicts a value at location (x,y,z):

V(x,y,2) = apv(x — 1,y,2) +axv(x,y — 1,2) +azv(x,y,z— 1). (2)

The linear coefficients (aj,a»,a3) are constantly updated as the
scheme processes data to improve prediction accuracy. Further, the
prediction errors in Compvox are efficiently coded with Huffman
coding. In the lossless compression mode, Compvox achieves, on
average, a 2:1 compression rate with several test data sets, improv-
ing on the widely used lossless compression tools gzip and zip.

The Lorenzo predictor [ILRS03] was proposed to compress sci-
entific data of arbitrary dimensionality. This predictor works in
units of n-dimensional cubes (squares in 2D, cubes in 3D, etc.).
It uses known cube vertices to predict an unknown vertex:

EW) =Y (=)™ F(u). 3)
ueC

Here, the vertex v is predicted to have value E(v) using known val-
ues F(u) from vertices of the same cube C. The degree between
two vertices (i.e., the number of edges needed to traverse to reach
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Figure 6: A Lorenzo predictor uses known values in a cube (green
or red) to predict an unknown value (blue) for the 2D and 3D cases.
Green vertices have +1 weight and red vertices have —1 weight.
This figure is inspired by [ILRSO03].

each other in a cube) is denoted as dyy, and this degree determines
the weight of each neighbor to be either +1 or —1. Figure 6 illus-
trates the weights for the 2D and 3D cases. The authors prove that,
“the Lorenzo predictor is of highest possible order among all pre-
dictors that estimate the value of a scalar field at one corner of a
cube from the values at the other corners.” Fpzip [LI06] uses the
Lorenzo predictor and arithmetic coding for residuals. It is opti-
mized to perform bit-for-bit lossless compression, as discussed in
Subsection 2.3, though it supports lossy compression as well.

SZ-1.4 [TDCCI17] is another compressor that utilizes a predic-
tion model. It generalizes the Lorenzo predictor to larger cubes,
i.e., cubes of size 3", 4", etc., where n is the dimensionality of the
data. SZ-1.4 includes a quantization step when encoding predic-
tion residuals, so it performs only lossy compression. The study by
Tao et al. [TDCC17] showed that the compression efficiency and
performance of SZ-1.4 are superior to fpzip.

4.3.2. Spline-fitting Prediction

Spline-fitting prediction tries to fit data points to a spline, and then
uses this spline to predict future values. ISABELA [LSE*11] is a
compressor that uses B-splines as predictors. ISABELA also in-
cludes a sorting step before prediction, with the reasoning being
that a sorted array better fits a B-spline. This however requires in-
dexing information for the sorted arrays to be decoded in their orig-
inal ordering.

ISABELA naturally supports temporal compression by consid-
ering values over time at each location as its own data array to com-
press. It has then shown high performance in a storage framework
to perform in situ compression [LSE*13]: each CPU core took less
than one second to process ten million data points. Finally, IS-
ABELA is also flexible enough to provide either fixed error or fixed
size for compression.

4.3.3. Combination of Prediction Schemes

Multiple prediction schemes may be combined together to use in a
single compressor product. Such compressors explore several pre-
diction schemes for each prediction, and choose the best one for the
corresponding data point. SZ [DC16] is a good example, using three
prediction schemes: it predicts the next value from a linearized data
stream to be 1) identical to the preceding one, 2) changing along a
straight line, and 3) fitting a quadratic curve. A few compressors
surveyed in Subsection 2.3 also adopt the strategy of combining
multiple predictors, such as FPC [BR09] and the work by Fout and
Ma [FM12]. To facilitate multiple predictors, these schemes often
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Figure 7: Wavelet coefficients from one (left) and two (right) levels
of wavelet transform using the CDF 9/7 [CDF92] wavelet kernel.
The X-axis is the index of each coefficient from 1 to 20, and the
Y-axis is the actual value of each coefficient. The input array was a
sine wave with length 20: y = sin[x] + 1 (0 < x < 20).

require reordering high-dimensional data into a linear fashion. So-
phisticated data reordering can introduce storage overhead or oth-
erwise lose information (e.g., the sorting used in ISABELA), but
simple reorderings, such as using the intrinsic memory sequence
adopted by SZ, does not have this concern.

4.4. Transform-based Compression Schemes

Transform-based lossy compression has the same spirit as near
lossless compression (discussed in Section 3), where a transform
is applied to compact information, followed by encoding the co-
efficients to achieve compression. In the transformation step, most
techniques from this group require a structured grid as input, en-
abling 2D or 3D transforms to be applied. This subsection specifi-
cally considers lossy encoding. Most often these lossy coders take
in a target size as input, then identify and keep the most important
information until reaching the size budget. This results in a “fixed
size” compression, with only a few exceptions.

After a transform, one of the most popular coding steps is to
quantize floating-point coefficients to integers. Since the trans-
formation concentrates coefficients, their integer representations
will exhibit much less entropy. Classic lossless compressors can
then be used to effectively compress these integers, for exam-
ple, the entropy-based Huffman and arithmetic coding (see Sub-
section 2.1) and compression libraries gzip and zlib. Many ap-
plications, especially volume renderings, operate in a such fash-
ion, using transforms such as cosine transform [YL95], wavelet
transform [SSEM15, GSO1, IP98a, KS99], and Fourier transform
[TL93, WRO00, CYH*97]. The rest of this subsection will discuss
a few more modern compressor products in detail.

4.4.1. Wavelet Transform + Coefficient Prioritization

Wavelet transformations map input data (considered to be signals
by wavelet theory) into the wavelet domain. With certain kinds of
wavelets (orthogonal and near-orthogonal), the magnitudes of co-
efficients are proportional to their information content. The combi-
nation of these two properties, information concentration and mag-
nitude proportional to content, means that only few wavelet coef-
ficients will have large magnitudes, and the majority of the coeffi-
cients will be close to zero.

Figure 7 illustrates this information concentration property, by
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plotting wavelet coefficients resulting from the transform of a sine
wave (y = sin[x] + 1). The example used 20 data points as input,
yielding 20 wavelet coefficients. The left subfigure plots wavelet
coefficients produced by applying a wavelet transform directly to
the sine wave samples, and the right subfigure plots coefficients
produced by a second application of the transform, but this time
applied to the coefficients resulting from the previous application.
As is typical, each application exhibits more small-magnitude co-
efficients.

Coefficient prioritization is an approach for achieving data re-
duction; it prioritizes and saves the coefficients with the most in-
formation content, and discards the remaining ones (treated as as
zeros). The coefficients are stored verbatim, thus any coefficient
that is not discarded is preserved exactly. Coefficient prioritization
essentially reorders the coefficients by sorting, which in turn incurs
storage overhead to preserve the indices of the surviving coeffi-
cients. This can be done by a so-called “significance map,” which
faithfully records the index of each surviving coefficient.

VAPOR [NC12] is an open-source visualization package for the
geoscience community that adopts the wavelet transform + coeffi-
cient prioritization strategy to achieve compression. This strategy
has been shown to be effective in compressing turbulent flow data,
as meaningful visual analytics can still be carried out even with
a 256:1 compression ratio [LGP*15]. Performance-wise, VAPOR
takes 14.2 seconds to compress a 4GB data set, and 3.8 seconds to
decompress it on a 20-core machine [LGP*15]. Though simple to
implement, this encoding scheme is somewhat expensive because
of the need to sort all coefficients. Further, an approach to com-
pute wavelet transform + coefficient prioritization using data paral-
lel primitives achieved portable performance on multiple hardware
architectures [LMC™*17]. This approach demonstrated wavelets to
be viable as an in situ compressor, with improved overall I/O (i.e.,
computational + actual I/O cost) on simulations taking more than
512 compute nodes [LLCC17]. Finally, the storage overhead intro-
duced by significance maps is a factor that varies depending on the
compression ratios, and can take up to 35% space of the reduced
data format [LGP*15].

Wavelet compressors can also naturally accommodate time-
varying sequences. This is because wavelet transforms are es-
sentially one-dimensional operations and are easy to apply along
every dimension, including the time dimension. Villasenor et al.
[VED96] was among the first to apply this technique: they applied
the CDF 9/7 one-dimensional wavelet filter bank over all three spa-
tial dimensions and the temporal dimension to compress seismic
reflection data. Li et al. [LSO*17] also applied 4D wavelet com-
pression to scientific simulation data, and demonstrated an approx-
imately 2X benefit over 3D wavelet compression with respect two
visual analytics tasks. Finally, interested readers can learn more
on wavelet transforms from the textbook by Strang and Nguyen
[SN96].

4.4.2. Wavelet Transform + Advanced Coders

A handful of coders are specifically designed to encode wavelet
coefficients. These coders represent the latest and most advanced
development in this domain; they consistently achieve the highest
compression ratios at a given accuracy (usually expressed as aver-

age errors) among all wavelet-based compression techniques. This
section introduce how these coders work at a high level.

Wavelet transform + advance coders work in three steps: 1)
wavelet transform, 2) quantization, and 3) encoding. In the first
step, these techniques typically use a particular kind of wavelet ker-
nel, namely the CDF 9/7 [CDF92] wavelet kernel. This is because
the CDF 9/7 kernel possesses a number of properties that make
it well suited for compression on a variety of data. In the second
step, the real-valued wavelets coefficients are mapped to integers
via quantization. The integer representations not only exhibit much
less entropy, but also enable the concept of bit planes, whereby
the most significant bits from all coefficients are represented in the
most significant bit plane; all second most significant bits are rep-
resented in the second bit plane; and so on. In the third step, these
coders encode bit plane by bit plane, rather than coefficient by co-
efficient. There is no storage overhead introduced by any of the
three steps, thus the advanced coders achieve high compression ef-
ficiency. Also, this class of techniques are strictly lossy because of
the intrinsically lossy nature of quantization in step 2.

Specific data structures are used to encode bit planes from the
most to the least significant ones. These data structures exploit the
spatial self-similarities of coefficients to achieve a high encoding
efficiency. The encoded results are in the form of bitstreams, where
the more significant bit planes are at the beginning, and the less sig-
nificant bit planes are at the end. Note that, due to the compaction
properties of wavelet transforms, only a few coefficients will have
non-zero bits in the more significant bit planes. The address of each
coefficient is implicit in the encoding scheme and does not require
explicit recording. Starting from the beginning of the bitstream, any
number of bits is able to reconstruct the data, enabling progressive
data access. The reconstruction quality varies too: the more bits
passed to the decoder, the more accurate the resulting reconstruc-
tion.

Common advanced encoding algorithms include ZeroTree
[Sha93], Set Partitioning in Hierarchical Trees (SPIHT) [SP93],
Set Partitioned Embedded bloCKs (SPECK) [IP98b, PINS04],
Subband-Block Hierarchical Partitioning (SBHP) [CSD*00], and
Embedded Block Coding with Optimized Truncation (EBCOT)
[Tau00]. Among them EBCOT is the coder that was adopted by
the JPEG200 standard. Though originally proposed to code 2D im-
ages, most of these coders are extended to higher dimensions, in-
cluding 3D versions of ZeroTree [CP96], SPIHT [KP97], SPECK
[TPMO03], SBHP [LP06], and EBCOT [XXLZO01], and 4D ver-
sions of ZeroTree [ZJM*02], SBHP [LP07], and SPIHT [ZLMS04,
LBMNOS5]. Wavelet coefficient coding is a big topic itself, and this
survey includes only some representative and well-studied tech-
niques. Other similar techniques are reported in [NSO1, Rod99].

QccPack [Fow00] is an open-source package that implements
the 2D and 3D versions of two of the advanced wavelet coders:
SPIHT and SPECK. A study [BXH*17] on a climate data set with
hundreds of variables confirmed that QccPack with SPECK has a
superior efficiency to fpzip. The study found that, for most vari-
ables, SPECK achieves higher compression ratios than fpzip.

A few JPEG2000-compliant libraries are also available for
floating-point compression tasks. This includes three reference im-
plementations: OpenJPEG [ope], JasPer [jas], and JJ2000 [jj2].
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Another JPEG2000-compliant library, Kakadu [kak], was used by
Woodring et al. [WMB*11] on POP (Parallel Ocean Program) data.
Here, the standard two-dimensional JPEG2000 compression was
applied on individual 2D layers of 3D variables, meaning coher-
ence along the third axis was not exploited. This study demon-
strated that JPEG2000 was effective in trading accuracy for smaller
sizes to transmit data through the Internet.

4.4.3. Custom Transform: Zfp

Zfp [Lin14] is a newly emerging compressor, designed specifically
for floating-point data. It uses a custom orthogonal block transform,
which operates on blocks of 44 in size (where d is the dimension-
ality), and makes use of a lifting scheme [DS98] in its implemen-
tation. Coefficients produced by this transform are then encoded
from the most to the least significant bit planes, sharing the similar
idea as coders surveyed in Subsection 4.4.2.

Zfp has a few unique characteristics. First, zfp has better ran-
dom access capabilities because of its relatively small opera-
tional blocks: 4° in 3D cases. Many types of transform, including
wavelets, would be ineffective on blocks this small. Second, calcu-
lations in zfp are relatively simple and thus inexpensive. It is re-
ported to achieve 400MB/s in raw throughput [Lin14], and 3X to
6X 1/0 improvement when used as an in situ compressor, compared
to writing/reading raw data [LCL16]. Finally, the newest release of
zfp has the ability to operate in a “fixed error” mode in addition to
the more traditional “fixed size” mode (as reported in [LCL16]).

4.4.4. Karhunen-Loéve Transform

The Karhunen-Loéve Transform (KLT) [Loe78] can be optimal in
terms of both its energy compaction properties and its ability to
decorrelate. Its basis functions are the eigenvectors of the covari-
ance matrix X of its input signal. However, the basis functions are
data dependent, and require recomputation for each new set of data.
Moreover, the computational complexity of the eigenvalue prob-
lem of the covariance matrix is 0(N3), while the complexity for
other orthogonal transforms with a fixed set of basis functions ma-
trix is at most O(Nz). Though most likely impractical to use for
general-purpose compression, it is used in specific settings such as
hardware-accelerated volume rendering [FMO07]. Also, it serves as
a benchmark for comparison with other transforms. A detailed de-
scription of the KLT and its properties is available in the book by
Wang [Wan12].

4.4.5. Tensor Decomposition

For the purpose of tensor decomposition, tensors are generaliza-
tions of higher order matrices (e.g., a 3D volume). Using matrix
singular value decomposition (SVD), tensors can be decomposed
into smaller approximations. One such tensor approximation is the
Tucker decomposition, which is the focus of this subsection. The
treatment by Kolda and Bader [KB09] has more detail on other
forms of decomposition.

Tucker decomposition considers the input data, X of N-
dimensions with N > 3, a tensor. The algorithm computes a least
squares fitting of X, resulting in a set of N basis factor matrices
and an N-dimensional core tensor, G. As an example, let N = 3 and

=
Q
=

Figure 8: A 3D illustration of the Tucker decomposition. Given the
input data/tensor X, the least square fittings results in a core tensor
G, and three basis factor matrices A, B, and C. G is considered an
approximation of X'. Image inspired by [KB09].

let the input data X’ have the dimensions R x S x 7. Tucker de-
composition produces three basis factor matrices, .4, B, and C, of
sizes R x L, S x M, and T x N, respectively, and a core tensor
G of size L x M x N. Figure 8 illustrates this decomposition. If
L<R, M<S,and N < T the core tensor G can be considered a
compressed version of X.

The basis factor matrices are the mapping to and from the orig-
inal and reduced data. Unlike other tensor-based approaches with
pre-defined basis factors, the Tucker decomposition results in basis
factors that are data dependent.

The work by Ballester-Ripoll and Pajarola [BRP16] aimed to im-
prove the the standard Tucker decomposition. They first presented
core truncation, where they discarded the least significant ranks,
or segments of the basis function matrices, and corresponding seg-
ments of the reduced core tensor. Alternatively, the authors also
presented core thresholding, where only core coefficients with the
smallest norm are removed, instead of the entire slices of the core
tensor. This approach results in an improved compression ratio, but
at the expense of longer reconstruction time. For parallel applica-
tions, Austin et al. [ABK16] were the first to utilize Tucker de-
composition in a distributed-memory environment. Their method
avoids data redistribution both locally and globally, and achieves
performance improvements for both weak and strong scaling.

4.5. Discussion on Precision Reduction Techniques

Lossy compression is versatile enough to support many application
scenarios, including both reducing I/O and storage cost for simula-
tions and mitigating I/O constraints for visualizations and analysis
(through progressive data access). There are many available lossy
techniques to choose from. To help inform tradeoffs between dif-
ferent lossy compressors, we summarized their key properties in
Table 1. Note this table only reports on properties found in pub-
lic software; if a technique is reported in a research paper but not
released for public availability, then we do not include it here.

Table 1 could help narrow down compressor options. For exam-
ple, mesh type is an important factor to consider: while all these
techniques support structured meshes, only five of them also sup-
port unstructured meshes (the first five). Requirements of either
fixed error or fixed size, and whether progressive data access and
lossless option are desired, could also help locate a compressor.

Recommending a method is difficult. A few rules of thumb
are: 1) transform-based techniques (Subsection 4.4) are likely to
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Table 1: Summary table of lossy compressors surveyed in Section 4.

Lossless Fixed Fixed Progressive Supported Compression .
Software Package Option Error Size Data Access Grid Type Speed Efficiency Section
MLOC Yes® Yes Yes Yes (Un)structured | Fast Low 4.1
Quantization No No Yes No (Un)structured Varies? Low 4.2
Fpzip Yes® Yes No No (Un)structured | Fast High 4.3.1
ISABELA No Yes No No (Un)structured | Medium | Medium 432
SZ No Yes No No (Un)structured | Fast High 433
SZ-14 No Yes No No Structured Fast High 4.3.1
VAPOR? Yes® No Yes Yes Structured Fast High 4.4.1
QccPack® No No Yes Yes Structured Slow High 442
JPEG2000 No No Yes Yes Structured Varies High 442
Zfp Yes Yes Yes® Yes Structured Fast High 443

4 This occurs when VAPOR uses the coefficient prioritization strategy, and when QccPack uses wavelet transform + advanced coders.
> MLOC and fpzip support truly lossless data reconstruction, while VAPOR and zfp supports near lossless data reconstruction.

¢ Zfp has the option to work on either fixed size or fixed error mode.

d Decompression is much faster than compression. Quantization is available from many libraries, including QccPack in this list.

yield the least average error (i.e., in terms of root-mean-square er-
ror (RMSE)) at a given compression level; 2) predictive coding
schemes (Subsection 4.3) are good at providing a relative or ab-
solute error guarantee; and 3) quantizations are useful primarily for
very aggressive reduction to a small number of bins. Even with
this knowledge, a user would almost certainly need to choose the
technique on a case-by-case basis, depending on the specifics of
the data and requirements of the intended analysis. This is because
there are numerous factors to consider. For example, even if one
transform-based technique yields the least RMSE, it may introduce
large deviations to a small number of data points (i.e., large L>°-
norm). Moreover, factors such as the specific data and even a com-
pressor’s parameters can all have an effect on its performance. For
example, high-dynamic range data may be treated better by one
method than by another.

Besides the properties discussed above and those from Table 1,
other considerations might include:

e will it work with “missing data” indicators that are present in
many scientific data sets;

how well does it support random data access;

does it have restrictions on data sizes (e.g., powers of two);
does it well support acceleration devices (e.g., GPUs); and

how much parameter tuning is required for a “good” result?

Finally, for two specific uses: compressed GPU direct vol-
ume rendering and in situ systems, the survey papers by Ro-
driguez et al. [RGG*13] and Bauer et al. [BAA*16] provide more
insights.

5. Mesh Reduction

This section surveys techniques that reduce data size by changing
the underlying mesh to have fewer vertices and polygons. These
techniques reduce the mesh in different fashions, but they all aim to
remove redundancies or unimportant regions but keep the essence
of the mesh or certain regions of interest. Most mesh reduction

techniques benefit data consumers (e.g., visualization and analy-
sis scientists), with the exception of temporal sampling which is
mostly used by simulation scientists.

‘When operating on individual time slices, these techniques pro-
duce results that consume less memory when doing post hoc analy-
sis, which is often desirable by visualization and data analysis sci-
entists. This contrasts with the precision reduction techniques from
the previous section, which mostly produced results that consumed
the same amount of memory. In addition, many techniques in this
section support progressive data access, so meshes are accessible
with different reduction levels. Both properties are important for
interactive data explorations. Mesh reduction can be viewed as pro-
viding fixed size, since the reduced size can be known in advance.
With some techniques we also know what is lost during a reduction,
so they can also be viewer as providing fixed error too. Finally, the
reduced mesh typically has its data values at their full precision.
That said, mesh reduction can also be used together with precision
reduction on data values.

5.1. Mesh Decimation

Mesh decimation operates on unstructured meshes. Typically, it
uses various criteria to eliminate vertices, edges, or cells, result-
ing in a new mesh with similar geometric and/or topological struc-
tures that is simplified has fewer vertices. After reduction, a re-
duced mesh can be evaluated using several different criteria, and
some error metrics describing the differences after reduction have
been captured in [CCM*00]. In the literature, triangle and tetrahe-
dral meshes are considered most often. The rest of this subsection
surveys a few techniques to achieve mesh decimation; among them
edge collapse (Subsection 5.1.2) methods tend to provide the high-
est quality and finest granularity. A separate survey that covers this
topic in more detail is available at [WDF11].
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Figure 9: A candidate vertex (in
blue) for removal is evaluated by
its distance to the average 2D
plane of its neighboring trian-
gles. This illustration is inspired
by [SZL92].

Figure 10: An illustration of edge collapse. In the original mesh
(left), an edge candidate, indicated by two blue vertices, is selected
to collapse down to the black vertex, and then the edges adjacent to
the candidate are merged (right).

5.1.1. Vertex Removal and Tessellation

Vertex removal and tessellation is a classic mesh decimation algo-
rithm that deletes vertices and then performs local tessellations to
fill in the resulting holes. There are several criteria to select vertices
to remove. One notable criteria is “distance-to-plane,” as described
by [SZL92]. The intuition behind this approach is to eliminate ex-
traneous vertices that form flat planes, because they do not con-
tribute much to the geometry of the mesh. For example, if a vertex
is surrounded by a cycle of triangles, and it is “reasonably” close to
the average plane of this group of triangles, this vertex can be pri-
oritized for removal. Figure 9 illustrates this case. There are other
vertex removal criteria that apply to higher dimensions as reported
in [RO96].

5.1.2. Edge Collapse

Edge collapse works by repeatedly collapsing edges to vertices,
and merging the resulting coincident edges. Figure 10 illustrates
a basic edge collapse. Trotts et al. [THIW98, THJ99] picked can-
didate edges based on predicting the resulting deviations of local
triangles and tetrahedra if they were collapsed. Garland and Heck-
bert [GH97] used quadric-based error metrics (QEM) to guide the
edge collapse process that has provided low mean error mesh de-
viation. They then later extended this work to higher dimensions
[GZ05]. Lindstrom and Turk [LTOO] proposed image-driven sim-
plification, which uses images of the original model against those
of a simplified model to determine the cost of an edge collapse.
This approach is particularly helpful for applications that require
the simplified model to be visually similar to the original one.

Mesh decimation through edge collapse was explored as an out-
of-core method by Wu and Kobbert [WKO03] and by Vo et al.
[VCL*07]. Both applications read the mesh from disk in a stream-
ing fashion following a reasonably coherent ordering. Then the
edges are examined against an error tolerance, and they are col-
lapsed provided doing so will not introduce error beyond the tol-
erance. The latter approach [VCL*07] adds an additional property

that the stream order of the mesh is preserved from input to output,
which can be useful for additional processing afterwards. Finally,
Pajarola and Rossignac [PR0O0O] proposed a compressed progressive
mesh (CPM) format, which encoded and transmitted refinement in-
formation in batches. The authors demonstrated that the encoding
algorithm used in CPM format yielded higher compression ratios
than many other formats.

View-dependent rendering in visualization is enabled by pro-
gressive meshes via edge collapse. The idea is to include the cur-
rent view as one of the criteria to decide if an edge gets col-
lapsed or not, for example, a “zoomed out” view would trigger
edge collapse to speed up rendering. This technique is used in ter-
rain rendering [Hop97, Hop98] as well polygonal model render-
ing [XV96,KLK04,CGG™*04].

5.1.3. Vertex Clustering

Vertex clustering simplifies a mesh by merging a cluster of vertices
into one. Rossignac and Borrel [RB93] used a single representa-
tive vertex to replace multiple mesh vertices within a cell, using a
uniformly subdivided volume to partition a 3D mesh. Shaffer and
Garland [SGO1] proposed an improvement to this method by using
adaptive space partitioning based on the analysis of the mesh.

Vertex clustering-based out-of-core mesh decimation was ex-
plored by Lindstrom and Silva [Lin00, LSO1]. In their first work,
the authors applied the quadric error metric to guide vertex clus-
tering. The benefit was both better positioning of vertices, and the
requirement of only a single pass over the input mesh to generate
the simplified version. While this approach initially required the
system memory to hold the simplified version of the mesh, their
second work removed this requirement. This new version of the
algorithm compactly stored auxiliary information on disk instead,
and managed to avoid expensive random accesses on disk.

5.2. Multi-resolution Techniques

Multi-resolution approaches build a hierarchy of data with differ-
ent resolutions. Each version in the hierarchy is often referred to
as a level. Typically, the finest level captures the native resolution
of the data, and all other levels have successively lower (coarser)
resolutions. Each of the lower resolution levels is an approximation
of the original data, as they have fewer data points. We distinguish
this category from the previous multi-resolution mesh decimation
techniques because the methods in this subsection do not focus on
preserving topology or connectivity, such as reducing point cloud
data.

5.2.1. Sample Sets

Sampling is the easiest technique for providing a multi-resolution
hierarchy. This approach treats the data set as a population and sta-
tistically samples points or cells from it. If the multi-resolution hi-
erarchy has n levels, then the data set is sampled n — 1 times, once
for each lower-resolution level. Pre-calculating and storing sam-
ple sets (resolution levels) separately introduces significant storage
overhead, which is referred to as “redundant” multi-resolution in
some literature. As a result, some applications have opted to dis-
card the native resolution level to reduce storage size [WAF*11].
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Figure 11: An example of several hierarchical Z-order curves
traversing a 8 X 8 plane, providing three resolution levels. In each
subfigure, data points in blue squares indicate the start of a Z-curve,
and each turning point of that Z curve contributes to the current res-
olution level. From left to right, the three resolution levels are 2 x 2,
4 x 4, and 8 x 8. This illustration is inspired by [Cly12].

Smarter sampling can be more effective than simply uniform
sampling. For example, Woodring et al. [WAF*11] used statisti-
cal sampling for interactive visualization and analysis. However,
storage overhead is still a significant concern, which motivates the
multi-resolution techniques discussed in the following sections.

5.2.2. Hierarchical Space-filling Curves

Hierarchical space-filling curves share the spirit of sampling for
multi-resolutions but do not repeat any data point between reso-
lution levels, resulting in “non-redundant” multi-resolution. Math-
ematically, space-filling curves are connected line segments that
visit every data point in an n-dimensional space exactly once to
create an index map that maps the n-dimensional space to a lin-
ear, one-dimensional curve. Given this linear mapping, data points
along the curve can be hierarchically segmented into various multi-
resolution levels. This allows data points from the same resolution
level to be linearly organized together to achieve data locality, and
also contribute to the reconstruction of higher resolution levels to
avoid storage overhead. The most prominent space-filling curves
include Z-curves (also known as Morton curves) [Mor66] and
Hilbert curves [Hil91]. Data reordering using space-filling curves
usually does not incur storage overhead, nor does it cause any in-
formation to be lost.

Figure 11 illustrates how Z-order curves traverse a 2D space to
provide multiple resolution levels. These Z-shaped curves traverse
a matrix to create lower resolution levels, and the curves are hierar-
chically organized such that data points from the coarser levels will
automatically contribute to the finer multi-resolution levels, result-
ing in the same storage size as the original data. More details of
how high-dimensional Z-order curves are segmented and mapped
into hierarchical representations is discussed in [PFO1].

Space filling curves are often used for progressive data access.
MLOC [GRJ*12], which was described in Subsection 4.1 for its
use of truncation, also uses Hilbert curves to organize data in a
multi-resolution fashion to increase system interactivity. Pascucci
and Frank [PFO1] used Z-curves in an out-of-core scenario, where
finer resolution levels were accessed as needed from disk. In this
work, the authors demonstrated real-time interactions on a single
server with a slicing operation on an 8, 192} grid. This work was
later integrated into the ViSUS visualization framework [PSS™12].
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Figure 12: Hierarchical representation of wavelet coefficients after
three passes of wavelet transform. Blue blocks are coefficients to be
saved; in total they take the same amount of storage as the original
data. Reconstruction goes from bottom to the top, and could stop at
any intermediate level to get an approximation.
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5.2.3. Wavelet-based Multi-resolution

Wavelet transforms are also frequently used to construct multi-
resolution hierarchies. This is possible because wavelet transforms
use band-pass filtering to transform input signals to the wavelet
domain, and low frequency components can be used to recon-
struct an approximation at a lower resolution. At the same time,
low frequency components and high frequency components can be
combined together to reconstruct a higher resolution level, result-
ing in “non-redundant” multi-resolution. In general, this strategy
also achieves superior lower-resolution approximations compared
to those from space-filling curves, since each data point is gener-
ated with consideration of its neighbors.

The wavelet transforms discussed here are the same as those in
Subsection 4.4, although they are being used in a different fash-
ion: to construct multi-resolution hierarchies. Multi-resolution hi-
erarchies with wavelets work as follows. Wavelet transforms take a
signal (data set) and represent it as a linear combination of a set of
basis functions. The basis functions have two types: scaling func-
tions, which capture the low frequency signal, and wavelet func-
tions, which capture the high frequency signal. Coefficients with
these two types of functions are approximation and detail coeffi-
cients, respectively. As their names suggest, they capture an ap-
proximation and the deviations of this approximation from the orig-
inal data.

The wavelet transform is recursively applied to the approxima-
tion coefficients from the previous application of the transform, cre-
ating a hierarchy of coefficients, and resulting in a multi-resolution
representation of the input signal. In the 1D case with a discrete
signal x[n], the following equation represents the linear combina-
tion of several basis functions with J lower-resolution levels:

J—1
x[n] =Y ag;- 00+ Y Y dji-vjiln]. )
7 =07

Here, j = 0 denotes the coarsest level, while j = J denotes the finest
level, which has the original resolution of x[n]. Scaling and wavelet
basis functions are denoted as ¢ ;[n] and ; ;[n], respectively. The
respective approximation and detail coefficients are a;; and d; ;.
Figure 12 illustrates a multi-resolution hierarchy after three passes
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of the wavelet transform (J = 3). The approximation coefficients
— ay;, ay;, and ag ; — represent three different resolutions. Only
ap,; needs to be kept in storage, while a; ; and ay ; are calculated
on-demand from stored detail coefficients dy ; and d; ;. This hierar-
chical fashion of storing coefficients and reconstructing the origi-
nal signal enables progressive data access for wavelet-based multi-
resolution.

Multi-resolution representations are especially useful in inter-
active visualization scenarios. Ihm and Park [IP99] evaluated the
interactive use of their wavelet-based technique on the Visible
Human data set [Ack98]. Guthe et al. [GWGSO02] then achieved
frame rates adequate for practical interactive use on this data set
with multiple optimizations. Both LaMar et al. [WWH*00] and
Weiler et al. [LHJO00] explored the idea that interactive visualiza-
tion uses finer resolutions to render objects closer to the viewpoint,
while using coarser resolutions for objects further from the view-
point. Guthe and Strasser [GS04] applied different resolution lev-
els to different data blocks when rendering, aiming to use higher
resolution levels on blocks that are more error sensitive. Further,
Brix et al. [BMMBI11] and Gao et al. [GWLSO05] applied multi-
resolution representations from wavelets on distributed systems.
Both works use space-filling curves to achieve a better load bal-
ance among compute nodes. In another example, Weiss and Lind-
strom [WL16] developed a method for level-of-detail surface gen-
eration, that preserves CO (crack-free) continuity, using wavelet and
octree data hierarchies. Finally, a wavelet-based multi-resolution
technique is also adopted by VAPOR, an open-source package for
scientific visualization and analysis, to provide better user interac-
tivity [CMNRO7, CRO5].

5.2.4. Miscellaneous

There are several other techniques for providing multi-resolution
data. Laplacian pyramids, which is a redundant multi-resolution
representation, have been used for direct rendering of computed
tomography data [GY95]. Curvelets [CDDY06] and surfacelets
[LDO7] are newer multi-resolution representations, similar to
wavelets. They attempt to capture higher-dimensional features at
lower resolutions, such as edges for curvelets and signal singular-
ities for surfacelets, at the cost of introducing redundancies. The
evaluation of these two techniques, as applied to turbulence data,
can be found in [PLW*16]. Further, there are additional coding
and processing schemes for multi-resolution processing with GPU-
based direct volume rendering; these schemes are surveyed by Ro-
driguez et al. [RGG™13].

5.3. Subsetting

Subsetting is a simpler approach to change the mesh: it uses a por-
tion rather than the entirety of the mesh. Subsetting is lossy when a
subset of data is saved and the rest discarded. However, subsetting
most often happens at the data retrieval phase, where subsets are
read from disk for processing. We survey two types of subsetting:
domain subsetting and query-based subsetting.

5.3.1. Domain Subsetting

Large simulation data is often divided into many domains (also
known as blocks or pieces), with each domain separately acces-

Figure 13: An example data flow
network. Prior to execution, a
contract that contains a list of do-
mains to process is generated us-
ing all network constraints. The
initial version of the contract, VO,
comes from the renderer. VO is
then an input to the contour fil-
ter, which modifies the contract V1
to make V1, and so on. V2 con-
tains the intersection of the do-
main lists from the slice and con-
tour filters. These domains are the VO
only ones used during execution
(thick gray arrows). This figure is
inspired by [CBB*05].
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sible on disk. For example, a space with 4,0963 grid points could
be divided into 64 domains of size 170243. Domain subsetting then
allows algorithms to read and operate on only the subset of do-
mains needed for a given analysis. Typically, the metadata for each
domain can help decide if that domain is needed without actually
reading the domain’s content. Examples of domain subsettings in-
clude using per-domain scalar ranges to choose domains for isosur-
face calculations, and using per-domain spatial extents when slicing
a volume.

Vislt [CBW™12], an open-source visualization system for scien-
tific data, uses domain subsetting for its visualization pipeline. VisIt
introduces a concept of a contract, which enables every filter in a
pipeline of visualization operations to specify the list of domains
that component requires [CBB*05]. When an update is issued at
the sink of a pipeline, the contract travels upstream, from filter to
filter, to inform each filter of the downstream filters’ requirements,
and allow the current filter to add its own requirements. Finally, the
source at the beginning of the pipeline receives a contract contain-
ing all filters’ requirements, and then reads in only the required do-
mains. Figure 13 illustrates a visualization pipeline with four com-
ponents. After each filter has updated the contract (upward arrows),
the visualization pipeline starts execution (downward arrows) using
only the subset of domains indicated by the contract. The benefits
from reduced data size then propagate downstream to every filter.

5.3.2. Query-Based Subsetting

Query-based subsetting uses queries to find pieces of data that meet
specific criteria. Queries are a form of subsetting, in that they en-
able loading portions of data rather than the entirety. Query-based
subsetting borrows fast query techniques from database manage-
ment systems to enable data access in a query style, and they are
often employed in analysis scenarios where explorations are based
on ad hoc queries.

An important note on query-based subsetting is that the query-
enabled data set, which includes the original data and auxiliary in-
formation for querying, actually incurs storage overhead. Data is
reduced during the data retrieval steps, with the reductions benefit-
ing post hoc visualization and analysis (and not data storage).
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Figure 14: A basic bitmap for
a variable A that can take four
distinct values: {0, 1, 2, 3}.
Each row represents an oc-
currence of A; there are five
occurrences in total. Queries
can be answered by bitwise
operations, for example, the
query “A < 27 is answered
with a bitwise OR on bits b
and b;. This figure is inspired
by [WAB*09].
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Bitmap [O’N89, CI98] is an indexing technique that enables fast
queries. With this technique, all of the values in a data set are or-
ganized by their corresponding bits. Queries are performed via bit-
wise logical operations, which are very fast on modern processors.
Figure 14 illustrates a basic bitmap for a data set with four values:
{0,1,2,3}. A limitation of bitmaps is that they are most effective
on variables with low cardinality, i.e., a small number of distinct
values.

Tree-based schemes from the database management commu-
nity are also used for multi-dimensional data query. Such schemes
include R-tree [Gut84], with its variant R*-tree [BKSS90] and
R+-tree [SRF87], and B-tree [BM72], with its variant BBIO tree
[CFSWO1]. B-trees have been reported to have better performance
for indexing unstructured tetrahedral meshes [PAL*06].

Bin-Hash [Gos08] is a data structure that aims to utilize mas-
sive parallelism for fast querying. Queries on this data structure
are designed to favor GPU devices by consuming less memory
at the cost of incurring extra computation. Bin-Hash has been
used in query-driven visualizations (QDV) including an applica-
tion on time-varying adaptive mesh refinement data [MGA™08]
and another on extending QDVs with statistical analysis capabil-
ities [GGA™* 11].

FastBit [IWAB*09] is an open-source library for performing fast
queries on scientific data. Its core querying technology is Bitmaps.
In one application, FastBit was used to track the evolution of igni-
tion kernels in a combustion simulation over three steps [WKCS03]
— finding individual points that meet the conditions for ignition,
grouping those points into connected components, and tracking the
evolution of ignition over time. A separate application of FastBit,
histogram-based parallel coordinates, proved to have good perfor-
mance in exploring extremely large data (= 1.5TB) on distributed-
memory systems [RWC*08]. In this study, interactive query tasks
and particle tracking tasks both saw significant speedups from Fast-
Bit. Finally, FastBit was also used to provide a query interface
to the popular scientific data format HDF5, resulting in HDF5-
FastQuery [GSS™06]. Data stored with HDF5-FastQuery then sup-
ported queries for certain data points using query criteria like
“Temperature > 32” and “CO, > 0.1.” Performance-wise, HDF5-
FastQuery has demonstrated a consistent advantage over the R*-
tree query, another query technology available from HDFS.

5.4. Temporal Sampling

Temporal sampling is used to reduce I/O cost for numerical simu-
lations — all available time slices are sampled so only a subset of
them get saved to disk. Sampling strategies are highly dependent
on applications and analyses, with common ones including “save
every i time slice,” “save one time slice for every #| units of time
simulated,” and “save one time slice for every #, minutes of time
running on a computer.” Temporal sampling is used in almost all
numerical modeling settings.

Recent research has also proposed techniques to choose time
slices intelligently, rather than at evenly-spaced intervals. One idea
is to save all time slices temporarily, and then choose the most rep-
resentative ones from them [TLS12]. Though capable of choos-
ing globally optimal time slices, this approach incurs significant
I/0O and computational burden. Another idea is to detect interesting
events in situ as the simulation runs, and save the time slices when
these events occur. Myers et al. [MLF*16], Ling et al. [LKA*17],
and Salloum et al. [SBP* 15] have used statistical methods, machine
learning algorithms, and a sampling-based approach to trigger time
slice savings, respectively. The specific event detection approach
most likely needs to be tailored to each simulation, and the com-
putational overhead that is imposed on the simulation needs to be
carefully considered [SBP*15, LKA*17].

Temporal sampling is distinct from other mesh reduction tech-
niques surveyed in this section in two ways. First, while previous
techniques are mostly used by data consumers, i.e., visualization
and data analysis scientists, temporal sampling is mostly used by
data producers, i.e., simulation scientists. Second, while previous
techniques mostly operate on spatial domains of single time slices,
temporal sampling operates on the temporal domain with a series
of time slices. In fact, time slices from temporal samplings can go
through additional data reduction operators, maximizing the reduc-
tion factor. That said, temporal sampling fits as a mesh reduction
technique, since it results in a coarser resolution, albeit in the time
dimension.

5.5. Discussion on Mesh Reduction Techniques

In selecting a mesh reducing technique, the dimensions to consider
are: time to reduce (latency on write), time to reconstruct (latency
on read), total storage size (I/O bandwidth required on read and
write), capability for progressive writing, capability for progressive
reading, reconstruction error (lossy or lossless), and mesh type. In
many cases, techniques are not suitable because they do not match
user requirements. We organize our discussion for this topic around
two considerations: reduction/reconstruction and resources.

How the data set will be reduced and how the data set will be
reconstructed are important considerations for choosing a mesh re-
duction technique. In situ scenarios will likely place higher priority
on the total time to reduce the data (the sum of compute plus I/O) to
minimize the time taken away from the simulation. Alternatively if
post hoc interactivity is a more important factor, then higher times
can be tolerated in preparing the reduced data, such as reorganiz-
ing data to enable progressive reads (mesh decimation and wavelet-
based multi-resolution) and generating auxiliary data structures for
query-based subsetting (FastBit). That said, some uses cases put
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Table 2: Summary table for mesh reduction techniques surveyed in Section 5.

Technique Lossless Fixed Fixed Progressive Speed Mesh Section | Tools

4 Support Error Size Data Access P Type
Mesh Decimation No Yes Yes Yes Varies Unstructured 5.1
Sample Sets No No Yes No Fast Structured 5.2.1
Space-filling Curves Yes® No Yes Yes Fast Structured 522 ViSuS
Wavelet Multi-resolution || Yes® No Yes Yes Medium | Structured 52 VAPOR
Domain Subsetting Yes? Yes Yes No Fast (Un)structured | 5.1.1 Vislt
Query-based Subsetting Yes® Yes Yes No Medium | (Un)structured | 5.3.2 FastBit
Temporal Sampling No Yes Yes No Fast (Un)structured | 5.4

2 While wavelet multi-resolution achieves near lossless reconstruction, others achieve bit-for-bit lossless reconstruction.

a premium on minimizing the total storage size, regardless of re-
duction and reconstruction times. These use cases include remote
transmission and long-term storage.

The minimum resources required on both reconstruction and re-
duction are also important considerations. For example, in situ sce-
narios will want to limit the amount of memory footprint required,
where data sampling methods are viable. On the user end, if thin
clients are desired, such as web browsers, this will bias the reduc-
tion methods to progressive and level-of-detail capable methods,
such as progressive mesh decimation and multi-resolution. Alter-
natively, batch analysis scenarios have no need for progressive en-
coding and may not be concerned with memory footprint on read.

Finally, Table 2 summarizes mesh reduction techniques from this
section, helping narrow down options to choose from.

6. Derived Representations

Techniques in this section serve the same overall goal of data re-
duction, but do not directly reduce the data set. Rather, they derive
alternate representations from the original data, and then discard
the original data completely. These derived representations are typ-
ically much smaller, effectively creating a data reduction. The de-
rived representations can then be used for subsequent analyses.

Techniques in the derived representation category have some de-
sirable properties. First, memory footprints for these techniques
can be greatly reduced. Second, most techniques can fix the size
of the derived representations, i.e., they can have the fixed size
property. That said, since the original data is gone, the concepts
of fixed error and progressive data access are often not applicable
for these methods. However, it is sometimes possible to provide
error bounds and/or progressive data access on the alternate rep-
resentations themselves, or analyses that use these representations.
The downside of this class of techniques is that they are less flexi-
ble than previously surveyed ones, because derived representations
are usually highly tailored towards specific visualizations or analy-
ses. We survey some popular derived representations that are either
actively used or are actively being researched in the scientific visu-
alization community.

6.1. Lagrangian Basis Flows

Traditionally, post hoc flow visualization techniques operate by
having a simulation code store velocity vectors to disk, and hav-

ing a separate visualization program load this data and advect par-
ticle trajectories via repeated velocity field evaluations. Temporal
sampling on the available time slices reduces the amount of data
to save. This is often referred to as the Eulerian approach in lit-
erature. In contrast, with the Lagrangian approach, advection is
performed in situ during the simulation, and the resulting pathline
data (so-called Lagrangian basis flows) are stored to disk. During
post hoc processing, new pathlines can be generated from the ba-
sis flows. Spatial sampling on the seed points reduces the num-
ber of basis flows, thus reducing the amount of data to save. Re-
search to date [ACG™ 14] indicates that this approach is more accu-
rate than the traditional Eulerian approach while using less storage.
To further improve the accuracy of Lagrangian schemes, C I cubic
composite Bézier curves and cubic Hermite splines can be used to
present pathlines [BJ15].

The fact that Lagrangian basis flows are generated in situ en-
ables these basis flows to take advantage of the native temporal res-
olution of a simulation, which provides highly accurate pathlines.
There are limited applications on Lagrangian basis flows right now.
One noteworthy example includes a data structure that combines
the Lagrangian representation with the traditional Eulerian repre-
sentation [SXM16]. Using an indexing-based data structure, the in-
formation from both representations is combined for complex anal-
yses, as demonstrated in studies of fusion, combustion, and cosmol-
ogy data sets. Further, this combined representation enables out-of-
core operations and efficient sampling of multi-resolution subsets.

6.2. Image Space Visualization

With image space visualization, the basic idea is to run visualiza-
tion algorithms in situ, and save images and/or image-like results. A
visualization scientist then uses the image results to explore the data
as if they were generated in real-time by a traditional post hoc vi-
sualization program. Saying it another way, the results presented to
end users is the same, but the post hoc visualization program is gen-
erating its results using pre-saved images rather than mesh-based
simulation data. This approach reduces data size, among other ben-
efits, at the cost of decreased visualization flexibility.

Proxy images [TCM10] are an images space visualization tech-
nique for volume rendering. Proxy images themselves are not view-
able images, but they contain enough information to generate a va-
riety of volume renderings, allowing for post hoc adjustments of
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settings such as view, transfer functions, and lighting effects. To
make the scheme work, three types of proxy images are needed:
depth images to hold intensity intervals, multi-view perspective im-
ages to contain samples from neighboring viewpoints, and accumu-
lated attenuation images to represent opacity mappings. In terms of
data reduction, high resolution meshes benefit most from this tech-
nique. For example, a study focusing on a 2,0483 grid obtained
two orders of magnitude reduction. Finally, this technique has been
demonstrated in an in situ setting [TYC*11].

Volumetric depth images, or VDIs [FSE13] are another im-
age space visualization technique for volume rendering, this time
specifically focusing on raycasting. With this technique, samples
along a ray are partitioned into segments based on similarity of val-
ues. All segments of a ray — including their color, opacity, and
depth information — are stored in per-pixel lists. Lists for all rays
form a VDI, which can be used to create images that are equiva-
lent to their corresponding volume renderings. This technique was
also been extended to deal with time series of volumes, as reported
in [FFSE14]. Data reduction achieved through VDIs has been re-
ported to be approximately one order of magnitude.

Cinema [AJO*14] is a framework for general-purpose image
space visualization and exploration. The core of Cinema is a spec-
ification for an image database (i.e., a file format), meaning any
program can generate a Cinema database (likely in situ). Post hoc
processing then occurs via a viewer program that enables explo-
ration via images in the database. On the image generation side,
Cinema supports a rich set of features enabling domain scientists
to make decisions on what imagery to save. Cinema exhibits im-
pressive data reduction factors and performance. The authors note
that for simulation data on the order of 103 (petabytes) in size, and
image sizes on the order of 109 (megabytes), many many images
can be saved and still result in a storage reduction.

Additional image-based techniques have also been explored.
Chen et al. [CYBOS] implemented an Internet-based system for
imagery exploration that supported six-dimensional navigation: az-
imuth, polar angle, viewpoint translation, time, and isocontour
level. Ye et al. [YWM™15] used depth maps, which are multiple
layers of isosurfaces in the image space, to perform feature extrac-
tion and tracking. They have also introduced a novel algorithm to
calculate new isosurfaces from existing ones. Ye et al. [YMM13]
also demonstrated a system that explores flow-field visualization
imagery with navigation capabilities, such as changing the view
angle, generating block cutaways, adjusting lighting, and changing
transfer functions.

6.3. Topology-based Representations

Topology-based representations rely on concepts from mathemat-
ical topology to compute simplified or abstracted representations
of scalar data, such as split trees, merge trees, and Morse-Smale
complexes, etc. (see [HLH"16] for an overview). For example, a
merge tree records join events between level set components as the
threshold is increased, and has been shown to provide a good basis
for feature segmentation [LPG*14]. Using this information, data
can be stored in a reduced form, yielding substantial reduction in
some applications [BKL*11, BWT*11, LPG*14]. Further, the re-
duced data still permits a flexible amount of post hoc exploration.

Topology-based data reduction has also been shown to be ef-
fective in combination with image-based storage. Based on a con-
tour tree segmentation, the intersection of an image’s viewing rays
with the non-overlapping segments can be stored in a per-pixel list,
yielding a layered depth image [BG15]. The resulting represen-
tation is compact and also allows post hoc simplification through
merging of ray segments, based on contour tree information that
is stored alongside the image. A particularly useful property of
topology-based data representation is the ability to flexibly and cor-
rectly simplify the representation based on various measures such
as volume or persistence [GNP*05]. This allows fine-grained con-
trol over the amount of reduction and preservation of important in-
formation.

Another approach of topology-based analysis is to determine
features based on local extrema. For combustion analysis, Bremer
et al. [BWT*11] reported an empirical data reduction factor of
approximately 200X with additional compression. Later research
showed the approach to be feasible in situ [BKL*11].

6.4. Histogram and Distribution Representations

Scientific data can be transformed into statistical distribution-based
data sets using histogram and distribution representations. In this
case, points or blocks of data are represented as probabilities of
values in space and/or time, rather than individual point or cell val-
ues [LS15, TLB*11]. In these data representations, the overall data
size may be reduced through aggregation of multiple time steps,
spatial ranges, or ensembles into distributions.

These representations allow for statistical and theoretical calcu-
lations to occur quickly. That said, the resulting visualizations are
less accurate, due to lack of spatial information, aggregation, and/or
distribution precision. This statistical information can also be used
for further data reduction, such as data selection and prioritization.
For example, Biswas et al. [BDSW13] prioritized individual vari-
ables by their contribution to the information entropy in a multi-
variate data set. Finally, visualizations for high-dimensional data
including usage of histograms and distribution representations are
surveyed by Liu et al. [LMW™*15].

6.5. Discussion on Derived Representations

For the most part, techniques in this section make assumptions
about what sorts of visualizations or analyses end users will want to
perform and then optimize specifically for those operations. For ex-
ample, Lagrangian basis flows are only useful if the end user wants
to study particle trajectories or visualization techniques based on
particle trajectories. This contrasts with the previous sections where
the results from reconstructing data could be used for arbitrary vi-
sualizations and analyses. As a result, choosing a technique from
this section is straightforward. If the reduction technique allows for
the desired visualizations and analyses, then it is likely a good op-
tion.

Assessing the computational cost for derived representation
techniques involves considering both the generation of the derived
representation and the usage of the derived representation for visu-
alization and analysis. On the generation side, in situ settings place
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particular emphasis on quick execution times, in order to not slow
down the simulation. On the usage side, however, many of these
techniques are much faster than their traditional counterparts. For
example, both Lagrangian techniques and image space visualiza-
tions are able to provide interactivity that is difficult to achieve with
traditional techniques.

7. Conclusion

Computing trends are likely to make data reduction be an increas-
ingly important topic for simulation, visualization, and data analy-
sis. The ability to generate and observe data is going up faster than
the ability to store data, especially on supercomputers. Further, the
desire to share and/or disseminate data worldwide creates another
motivating use case, as data transmission speeds over the internet
are often slower than disk, and again are not increasing as quickly
as the size of scientific data. As a result, we believe that simula-
tion scientists and visualization scientists will more and more fre-
quently opt to add reduction techniques to their workflows. The
five categories of reduction that we survey provide choices for the
best fit for their workflows. The techniques have significant differ-
ences, with some providing perfect or near-perfect reconstruction
and yet little data reduction and others providing great reductions
but imperfect reconstructions. Other important differences include
the nature of the data they store, the types of analyses they permit,
whether they allow for progressive access, and whether the recon-
structed version is smaller in size than the original (and by how
much).

Reflecting on the techniques in the survey, it seems that the state
of the techniques in each of our five categories vary. The truly loss-
less and near lossless categories are quite mature, including text-
books on their respective techniques and production software that
is used ubiquitously (including non-scientific data use cases). For
the remaining three categories, there appears to be significant op-
portunity. This state of affairs generally makes sense — the first
two categories were well explored since they did not require the
user to make compromises on data integrity, while the the latter
three are now being explored since the state of computing appears
to be requiring compromises. In particular, the category of derived
representations seems to be a very active area of research in the last
few years.

In terms of future work, we feel there is a great need for addi-
tional comparison between techniques. Such comparisons need to
be carefully thought through, as factors such as input data, com-
puting architecture, workflow (i.e., in situ processing, delivering
data over the internet, etc.), parameters into the algorithms, and the
analyses ultimately performed on reconstructed data all can play a
significant role in assessing the benefit of a given technique.
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