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Abstract—Data reduction through compression is emerging
as a promising approach to ease I/O costs for simulation codes
on supercomputers. Typically, this compression is achieved by
techniques that operate on individual time slices. However, as
simulation codes advance in time, outputting multiple time
slices as they go, the opportunity for compression incorporating
the time dimension has not been extensively explored. More-
over, recent supercomputers are increasingly equipped with
deeper memory hierarchies, including solid state drives and
burst buffers, which creates the opportunity to temporarily
store multiple time slices and then apply compression to
them all at once, i.e., spatiotemporal compression. This paper
explores the benefits of incorporating the time dimension into
existing wavelet compression, including studying its key pa-
rameters and demonstrating its benefits in three axes: storage,
accuracy, and temporal resolution. Our results demonstrate
that temporal compression can improve each of these axes,
and that the impact on performance for real systems, including
tradeoffs in memory usage and execution time, is acceptable.
We also demonstrate the benefits of spatiotemporal wavelet
compression with real-world visualization use cases and tai-
lored evaluation metrics.

I. INTRODUCTION

Post hoc processing is the dominant paradigm for visualiz-
ing data from scientific simulations. In this paradigm, a sim-
ulation code periodically outputs data to disk as it advances,
and a visualization program loads this data from disk, applies
algorithms, and renders the results. Each individual output
to disk by a simulation code typically represents the state
of the simulation at a moment in time, often referred to as
a “time slice.” The policy for when to store a time slice
to disk varies by simulation code, with examples such as
“every 100th cycle,” “every five seconds of simulation time,”
and “every one hour of computation time.” Despite different
policies, the result is a temporal sampling of the simulation’s
state, most typically saved at a frequency coarser than the
model’s internal time increment. The output frequency is
often a compromise between providing sufficient temporal
coherence in the model outputs for subsequent analysis,
and what is possible within the limitations of the compute
system’s I/O performance and/or storage capacity.

Recent trends, especially on high-performance comput-
ers, show that computational power is increasing quickly,
whereas disk speeds are increasing relatively slowly. As a
result, a simulation’s ability to generate data is increasing

faster than its ability to store it. There are multiple strate-
gies for addressing this trend, including in situ processing,
decreasing temporal frequency, and reducing the size of the
data to store. This latter approach can be done via subsetting
(only storing pieces of the data, for example certain regions
of the mesh or certain variables but not others) or via
compression (both lossy and lossless).

With this research, we consider lossy compression. To
date, lossy compression has been frequently investigated as a
potential means to combat the I/O problem. In a typical case,
a compression operator is inserted as the simulation saves its
state, such that the operator is applied to single time slices
one by one. This compression can be quite effective, since
neighboring data points in a mesh are often coherent (very
smooth) and many compression operators perform best on
coherent data. Simulation data is often temporally coherent
as well, and thus our research looks at compression across
time as well as space. This alternate approach, referred
to as “spatiotemporal compression” in this paper, enables
compression operators to exploit temporal coherency while
continuing to take advantage of spatial coherency.

Spatiotemporal approaches were not feasible previously
on supercomputers, since simulation codes have tradition-
ally been memory-constrained and thus only had room to
operate on a single time slice. But emerging changes in
architecture now make it reasonable to consider multi-time
slice compression, specifically architectures with deeper
memory hierarchies including solid state drives and burst
buffers. These additional memory hierarchies often have
much more storage than primary memory and much faster
I/O than the parallel filesystem, creating opportunities to
temporarily store multiple time slices as a “window” and
apply spatiotemporal compression on this window.

This research explores the benefit of including the time
dimension for wavelet-based compression. While other
techniques besides wavelets could be considered, we find
wavelets to be an excellent operator for our evaluation,
since the reference point of spatial-only compression is
so well studied. Moreover, the feasibility of wavelet-based
spatiotemporal compression was previously impractical due
to the relatively wide temporal “window size” required. Our
results show that spatiotemporal (4D) wavelet compression
is superior to spatial (3D) wavelet compression for each of



the following propositions:
• P1: Improve accuracy, while maintaining temporal res-

olution and storage costs.
• P2: Reduce storage costs, while maintaining temporal

resolution and accuracy.
• P3: Increase temporal resolution, while maintaining

storage costs and accuracy.
Our study consists of two phases. First, we evaluate the ef-

ficacy of the approach with respect to our three propositions,
as well as the performance impacts of operating on multiple
time slices jointly. This phase also includes the study of
multiple available parameters with particular relevance to
wavelet transforms in the time domain, and helps inform
their best combinations in practice. Second, we consider
real-world visualization use cases which demonstrate how
spatiotemporal compression improves analyses by providing
more information per byte.

II. BASICS OF WAVELET COMPRESSION

This section provides an abbreviated description of the
wavelet transform from the standpoint of compression ap-
plications. Excellent and more detailed introductory descrip-
tions are available in [1], [2].

A. One-dimensional Wavelet Transform

It is often advantageous to express a function or signal
x(t) as a linear expansion about a set of basis functions. In
the case of wavelet bases, such a decomposition is given by:

x(t) =
∑
k∈Z

∑
j∈Z

aj,kψj,k(t), (1)

where aj,k are real-valued coefficients, and ψj,k(t) are
wavelet functions typically forming an orthonormal basis.
Conceptually, the coefficients, aj,k, measure the similarity
between the input signal and the basis functions. For finite,
discrete x[n] under a “non-expansive” wavelet transform, the
number of coefficients aj,k has the same size as x[n]. If x[n]
exhibits sufficient coherence, and ψj,k(t) is suitably chosen,
then many of the coefficients aj,k will tend toward zero
with only a fraction of the remaining non-zero coefficients
containing most of the energy or information content of the
signal.

B. Wavelet Transforms for Compression

Compression may be achieved by simply discarding and
treating a subset of the coefficients as zero in Equation 1.
If the discarded coefficients are already zero, then the
compression is lossless. However, non-zero coefficients may
be discarded as well, resulting in lossy compression, which
is the focus of our study.

Certain wavelet kernels (orthogonal and a few biorthogo-
nal) concentrate information into a relatively small number
of coefficients, where the information content of each co-
efficient is proportional to its magnitude. Thus, a sensible

approach to compression using wavelet transforms is to
retain only coefficients with the largest magnitudes. Efficient
coding and storage of these high-information coefficients
is a sizable area of research that we do not address here.
Interested readers can consult other sources for SPECK [3],
SPIHT [4], and EBCOT [5], for example, and their corre-
sponding high-dimensional derivatives.

Most useful wavelet decompositions exhibit “multireso-
lution”; coefficients parameterized by different values (or
levels) of j in Equation 1 capture features at different
scales. As a result, more available levels may lead to further
information compaction. However, the length of the input
data array imposes a limit on the reasonable numbers of
levels. We discuss our handling of this limit in Section IV-B.

C. Multi-dimensional Wavelet Compression

The one-dimensional wavelet transform can be extended
to multiple dimensions by successively applying a one-
dimensional transform along each axis, i.e., output coeffi-
cients of one transform become the input of the next trans-
form along a different axis. This practice takes advantage of
data coherence along all dimensions, including the temporal
dimension. The ordering of axes to apply transforms on
may differ though, as discussed in more details in [1], [2].
Nevertheless, after applying multi-dimensional transforms,
compression is still achieved by discarding coefficients with
the smallest magnitudes.

We note, however, that the amount of coherence is likely
to differ along spatial and temporal axes of a scientific data
set. In the case of numerical simulations, the spatial grid
resolution is typically fixed by the properties of governing
numerical equations. Thus the nature of the problem to be
solved determines how strongly correlated samples are along
a given spatial axis. The simulation scientist, however, may
often easily control the output sampling rate — typically
much coarser than the internal model time stepping —
making the degree of temporal data coherence a parameter
that can be readily adjusted.

III. RELATED WORK

A. Spatiotemporal Wavelet Compression

The benefits of wavelet-based, spatiotemporal compres-
sion are not well explored for scientific data, especially
compared to studies considering only the spatial domain.
Some of the earliest work on spatiotemporal wavelets was
performed by Villasenor et al. [6] and Trott et al. [7],
who both applied a one-dimensional wavelet filter bank
over all four dimensions on seismic reflection and fluid
dynamics data, respectively. Zeng et al.[8], [9] established
the feasibility of spatiotemporal wavelet compression of
time-varying echocardiography images. In their earlier work
[8], the authors pointed out that the degree of coherence
present may differ between dimensions, and thus warranted
different handling. Lalgudi et al. [10], [11] evaluated 4D



spatiotemporal compression on functional MRI (fMRI) data
obtained as a time series of 3D images of the brain. Wang
et at. [12] employed multi-resolution representations from
4D wavelet transforms in their visualization framework for
time-varying data.

In all of the preceding work the authors found significant,
albeit varying, benefit to 4D spatiotemporal compression
over 3D spatial compression. Our work differs in the fol-
lowing ways: 1) our application domain is floating point
data arising from numerical simulation; 2) we evaluate
information loss with respect to key visualization algorithms,
including algorithms that are sensitive to cumulative errors
over time; 3) we evaluate the impact of various parameters of
wavelet transforms in the context of temporal compression;
and 4) we provide an evaluation of how 4D compression
works with Solid State Drives (SSDs) now found on HPC
systems. All these differences target simulation data on HPC
systems, which is a less studied space.

B. Other Temporal Compression Techniques

Motion compensated prediction (MCP) is a family of
techniques stemming from video compression, such as the
MPEG standard [13]. Researchers have explored the use of
MCP on time-varying scientific data, for example, in [14],
[15], [16]. In theory, MCP could be useful for Eulerian type
flow computations, since the fields move through the grid
rather than the grid following the flow. However, it is not
well understood how MCP’s premise that pixels are moving
in groups affect its application on scientific data.

Recent visualization research has also looked at spa-
tiotemporal compression techniques specifically designed
for scientific data. Ibarria et al. [15] proposed a “Lorenzo
predictor” that operates on arbitrary dimensions, and a com-
pression scheme based on it. Lakshminarasimhan et al. [17]
introduced ISABELA as a lossy spatiotemporal compression
technique. ISABELA sorts data sequences in a window
before performing B-Spline fitting to reduce fitting errors.
Lehmann et al. [18] extended ISABELA by using a snapping
mechanism to further improve the compression rate in
certain cases. Finally, Agranovsky et al. [19] employed a
Lagrangian flow-based approach for vector field data that
results in reduced file sizes and increased accuracy over
spatiotemporal intervals.

C. Burst Buffers

The idea of burst buffers has been proposed to cope
with the exploding data pressure from scientific applications.
Scientific applications typically have well defined execution
phases. For example, they alternate between computation
and I/O phases, which results in bursty and non-overlapping
I/O. This is one of the fundamental motivations for designing
burst buffers. The majority of research on burst buffer
usage is recent. Liu et al. [20] designed a simulator of the
burst buffer for the IBM Blue Gene/P architecture. Bing et
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Figure 1: Our spatiotemporal compression work flow. For a
window size of T , a simulation code writes T raw time slices
to a buffer space. Then, for each variable, a compressor
reads in the variable from the T time slices and applies
spatiotemporal compression. The resulting compressed data
is written to permanent storage. The process then continues
for the next temporal window.

al. [21] characterized output burst absorption on Jaguar and
furthered quantitative models of storage system performance
behaviors. BurstMem is a prototype burst buffer system de-
veloped by Teng Wang et al. [22]. It is built on top of Mem-
cached which is an open source, distributed caching system.
BurstMem enhances Memcached by using a log-structured
data organization with AVL indexing for fast I/O absorption
and low-latency, semantic-rich data retrieval, coordinated
data shuffling for efficient data flushing, and CCI-based
communication for high-speed data transfer. BurstMem is
able to speed up I/O performance of scientific applications
by up to 8.5X on leading supercomputers. In total, these
works demonstrate that the burst buffer is a viable element
for spatiotemporal compression, especially since they are
being incorporated into many newer supercomputers.

IV. METHOD

A. Processing in Windows

Incorporating spatiotemporal compression into a simu-
lation’s output process requires careful consideration of
memory. The length of the time dimension can vary widely
from tens to thousands depending on the application. For
simulations that may already be memory constrained, even
with the availability of aforementioned, emerging deep
memory hierarchies, retaining large numbers of time steps
in memory may be challenging-to-impossible, thus limiting
possibilities for temporal wavelet transform.

To address this issue in our implementation, we partition
all time slices into “windows” and apply spatiotemporal
compression on each window independently. Figure 1 il-
lustrates our work flow.

At its peak, a buffer space will contain T ×S×N bytes,
given a window size T , a single variable of S bytes, and N
variables computed by the numerical simulation. We note
that S reflects the number of grid points in this equation.
Since each of the N variables can be compressed one at



a time, the required available system memory is smaller,
specifically T × S. We believe many simulations can spare
this much memory provided T is small, since simulations
often allocate buffers for temporary usage, and these buffers
can be used for our compression.

Wavelet transforms within each window involve two steps:
first spatial and second temporal. The forward wavelet
transforms, which we have not yet discussed, and the inverse
wavelet transform (Equation 1) are implemented as recur-
sively applied filter banks [2]. Each pass of the filter bank
corresponds to the multiresolution level parameter j. The
coefficients resulting from a single pass of the filter bank are
evenly divided into so-called “approximation” and “detail”
coefficients. Subsequent filter passes are applied only to the
“approximation” coefficients.

In the spatial step we perform what is referred to in
wavelet literature as the “non-standard decomposition” [1],
[2] to extend the one-dimensional transform to three dimen-
sions. A single pass of the one-dimensional forward wavelet
transform is applied first along the X axis, then Y, finally
Z. The process then repeats filtering only the approximation
coefficients from the previous pass. The filter bank is iterated
up to J times, where allowable values of J are determined
by properties of the filter bank and signal length described
later.

In the second step, coefficients resulting from the first step
are first partitioned temporally into chunks of fixed size that
we term the window size. We then apply a one-dimensional
wavelet transform in time at each grid point location for each
window. For a N3 grid, N3 temporal wavelet transforms are
applied per window for example. We note that the relatively
smaller window size compared to the lengths of spatial
domains limits the levels of wavelet transform that can be
applied.

After a time window is spatially and temporally trans-
formed a third step then takes place to compress the co-
efficients. Given a target compression ratio n : 1, (n > 1),
we find the coefficient with the (num of coefficients)/n
largest magnitude, and discard coefficients with magnitudes
smaller than the threshold (i.e., they are treated as zeros in
our study) to achieve a n : 1 compression ratio.

B. Temporal Domain Considerations

We consider two spatiotemporal compression parameters
that require extra care: the aforementioned window size and
wavelet kernel. The choice of window size is connected
to the wavelet kernel choice; they need to be reconsidered
under the premise that the window size is limited by the
number of time slices that can fit in computer memory.

Larger window sizes allow more levels of wavelet trans-
form to be performed before boundary conditions dominate
the calculation. In turn, more levels of wavelet transform
are favorable because they can exploit coherence at multiple
scales. In our implementation, for a given window size, we

set the number of levels J of wavelet transform to perform
following the equation:

J = blog2
window size

filter size
c+ 1, (2)

where filter size is determined by the wavelet kernel. The
two parameters, window size and wavelet kernel, interact in
such a way that a smaller window size limits the available
levels of wavelet transform to perform, while a wavelet
kernel with a smaller filter size can potentially increase the
level of wavelet transforms possible.

In terms of wavelet kernel choices, the Cohen-
Daubechies-Feauveau (CDF) wavelet kernel [23] has proven
to be a suitable choice for scientific data compression as well
as virtually all compression applications involving aperiodic
data such as image compression [24], [5], [25], [26]. The
CDF family of biorthogonal wavelets are the only compactly
supported wavelets besides the Haar that preserve symmetry
across scales, and thus allow for a non-expansive transform
of finite signals when the signal boundaries are similarly
symmetrically extended [27]. A potential difficulty with the
CDF 9/7, however, is that its relatively wide filter size (nine)
may limit the levels of transforms that are practical with
small window sizes. For example, with a window size of ten,
CDF 9/7 is only able to do one level of transform. Another
kernel from the same wavelet family and having satisfactory
compression performance, the CDF 5/3 kernel, has a filter
size five, and thus permits two levels of transform. The best
practice is thus not trivial. Section V-B1 presents evaluation
results on different combinations of wavelet kernels and
windows sizes.

V. OUR STUDY

This section explores spatiotemporal wavelet compres-
sion, aiming to identify best practices regarding various
parameters, as well as to quantify benefits gained from
exploiting temporal coherency. The baseline results we use
for comparisons are from 3D wavelet compression with
CDF 9/7 wavelet kernels, which was found to be a top
choice for compression in an earlier study [25]. CDF 9/7 is
also what we used for the spatial step of our spatiotemporal
wavelet transform (see Section IV-A). Section V-A describes
the experiments, Section V-B describes the results, and Sec-
tion V-C describes performance impacts. Section V-D relates
these results back to our three propositions for domain
scientists. Finally, Section V-E discusses the limitations we
observed regarding spatiotemporal compression.

A. Overview of Experiment Parameters
We varied five parameters to study:
• Wavelet kernel: “CDF 9/7” and “CDF 5/3”;
• Window size in the time domain: 10, 20, and 40;
• Data set and variable: 7 variables from 3 simulations;
• Temporal resolution: 3 or 4 options for each variable;
• Compression ratio: 4 or 5 steps from 8:1 to 128:1.



1) Wavelet Kernel and Window Size: Wavelet kernel and
window size together determine how many levels of the
wavelet transform can be performed in the time dimension,
which has a direct impact on the compression result (see
Section IV-B). We consider two wavelet kernel candidates on
the temporal domain: CDF 9/7 and CDF 5/3 with filter sizes
nine and five, respectively. Though CDF 9/7 yields better
compression results in most settings, the narrower width of
CDF 5/3 is also compelling. We also consider three window
sizes: 10, 20, and 40. With these window sizes, CDF 9/7
is able to perform 1, 2, and 3 levels of wavelet transform,
respectively, and CDF 5/3 is able to perform one more level
at each window size (i.e., 2, 3, and 4 levels) due to a shorter
filter size.

2) Temporal Resolution: Compression in the time domain
relies on the data coherency between available time slices,
which is a direct result of available temporal resolution. A
higher temporal resolution provides more data coherency,
and thus is more suitable for temporal compression. This
experiment quantifies how temporal resolution affects spa-
tiotemporal compression accuracy.

We focus on results from a forced incompressible hydro-
dynamic turbulent flow simulation from the Ghost simula-
tion code to study temporal resolution in this subsection.
Details of the physics of a similar Ghost simulation are
given by Mininni et al. [28]. We ran the simulation and
saved time slices at a base temporal resolution: every 100th

simulation cycle. We denote this base resolution as “1.”
When experimenting with various temporal resolutions, we
reduce this base resolution by using every 200th cycle and
using every 400th cycle. We denote the lowered temporal
resolution as “1/2” and “1/4,” respectively.

These chosen temporal resolutions are required for certain
analyses on the finer structures in a turbulent flow. For ex-
ample, the sampling frequency needs to be high enough that
a complete rotation of an eddy is captured by approximately
4 samples, otherwise the eddy may deform substantially.
Smaller scale eddies take less time to make a complete
rotation, so they require the simulation code to save time
slices more frequently to enable a meaningful study.

3) Data Sets and Variables: In addition to the Ghost [29]
data set, which simulates a homogeneous turbulent flow, we
also used two other simulation outputs in our evaluation:
CloverLeaf3D and Tornado. Tornado [30], [31] simulates
the dynamics of an F5 tornado, and CloverLeaf3D [32]
solves the compressible Euler equations in hydrodynamics
settings. We focused our study on temporal regions of
interest for the simulations being carried out. In the case
of Ghost and Tornado, we used only the later portion of
the simulation when interesting phenomena occur for both,
which actually imposes greater challenge for compression.
For CloverLeaf3D, we used the entire life span of this
simulation.

We used two or three different data fields from each of

these simulations. For the CloverLeaf3D data sets, we used
energy and the X-component of velocity, since these are
important, dynamic variables with distinct physical char-
acteristics. For the Ghost and Tornado data sets, we used
enstrophy and again the X-component of velocity, for the
same reasons. We also used the cloud ratio scalar for the
Tornado data set, since this variable determines what the
clouds look like to human eyes. In terms of grid size, the
two fields from Ghost are on 5123 grids; the three fields
from Tornado are on 4902 × 280 grids with 280 in the
Z direction; and CloverLeaf3D X-velocity has a size of
973 while CloverLeaf3D energy has a size of 963, since
the latter is a cell-centered field. We note that the tornado
domain analyzed in this paper is significantly smaller than
the full model domain, and yet is also typical of what tornado
researchers would use. This is because for studies of tornado
morphology, features dozens of kilometers away from the
tornado are not of primary interest.

We ran our experiments on these variables using multiple
temporal resolutions with the same notations described in
Section V-A2. The base resolution (res=1) differs from
simulation to simulation though: every simulation cycle in
CloverLeaf3D; every one simulation second in Tornado;
and every 100th simulation cycle in Ghost. We note that
the twice coarser resolution (res=1/2) for Tornado data
is essentially the common practice of our collaborating
scientist, who normally uses every two simulation seconds
in his research.

4) Compression Ratios: Our implementation of wavelet
compression works by retaining a portion of the wavelet
coefficients and discarding the rest. We refer to the parameter
that determines the size of the retained portion as compres-
sion ratio. With our notation, 8:1 means one eighth of the
total coefficients are retained, and so on.

When compressing multiple time slices, the process of
discarding coefficients happens on each time slice individ-
ually with spatial compression, and on the entire group of
time slices with spatiotemporal compression. Given a certain
compression ratio, the total number of retained coefficients
stays the same no matter spatial or spatiotemporal compres-
sion. We use compression ratios 8:1, 16:1, 32:1, 64:1, and
128:1 in most of the following tests.

B. Results

The results considered in this section are error measure-
ments from comparing a wavelet-compressed data set (either
3D or 4D) with its original version in a point-wise fashion.
We use two statistical metrics: normalized root mean square
error (NRMSE) and normalized L∞ norm. NRMSE provides
an average error across all vertices in the volume a user
could expect, while the normalized L∞ norm captures the
largest deviation introduced to a single data point.

To understand the effects of our study parameters, we
ran experiments in three phases, varying some factors and



(a) Evaluation on the enstrophy field of the
Ghost simulation.

(b) Evaluation on the X-component of ve-
locity of the Ghost simulation.

(c) Evaluation on the enstrophy field of the
Ghost simulation.

Figure 2: Normalized Root Mean Square Error (NRMSE, top row) and normalized L∞-norm (bottom row) evaluation
on data from the Ghost simulation. Error values are normalized by the range of the data. Purple bars with line patterns
represent spatial-only compression (3D), and bars with solid colors represent spatiotemporal compression (4D) with different
parameters combinations for temporal compression. Subfigure (a) and (b) examines two wavelet kernels (CDF9/7, CDF5/3)
and three window sizes (win=10, 20, 40). Subfigure (c) examines three temporal resolutions (res=1/4, 1/2, 1/1).

holding the rest constant for each phase. The study results
are reported in the following three subsections, and will be
revisited as we consider the three propositions for domain
scientists in Section V-D.

1) Wavelet Kernel and Window Size: This phase looks at
the relationship between wavelet kernels and window sizes,
with a goal of finding favorable combinations of the two. The
experiments run were on data from the Ghost simulation,
with the base temporal resolution.

Figure 2a and 2b plot the evaluation results. Compression
ratios are grouped together; spatial-only compression (3D)
is leftmost within a group, and to its right are spatiotempo-
ral compression with different parameters. All evaluations
clearly show a decrease in error when comparing spatiotem-
poral to spatial-only compression.

The CDF 9/7 and CDF 5/3 wavelet kernels perform
differently with different window sizes. CDF 9/7 yields
lower errors than CDF 5/3 with window sizes 20 and 40, but
CDF 5/3 is superior with window size 10. This is because,
with a window size of 10, the CDF 9/7 kernel only permits
one level of wavelet transform, while the CDF 5/3 allows
for two levels.

In terms of the window size, a larger window increases
accuracy in almost every test. That said, the expected im-
provement from a larger window size varies. Errors drop
more significantly when moving from window size 10 to 20
than moving from 20 to 40. Given the potential limitation
from available memory, we consider the combination of
windows size 20 and the CDF 9/7 wavelet kernel to be a

“sweet-spot.” A choice of CDF 5/3 and a window size of
10 for memory sparse situations would also make sense.

2) Temporal Resolution: This phase looked at the effects
of temporal resolution. The experiments were run with the
“sweet-spot” combination of wavelet kernel and window size
from Section V-B1, again on the Ghost simulation.

Figure 2c plots the results from this phase’s experiments
using NRMSE and normalized L∞-norm metrics. Its 3D
results are from all time slices at the base temporal resolution
from the entire studied period of simulation. They serve as
a baseline result to compare with. The 4D results are from
multiple temporal resolutions (res=1, 1/2, 1/4). The 4D and
3D results cover the same period of simulation in each test.

In terms of results, we see that the benefit of spatiotempo-
ral compression improves as temporal resolution increases.
At the finest resolution tested (res=1), spatiotemporal com-
pression leads to substantial decrease in error compared
to spatial compression. In most cases, both NRMSE and
normalized L∞-norm are cut by half when incorporating
temporal compression. However, at the coarsest resolution
tested (res=1/4), temporal compression brings modest ben-
efit. In fact, at the compression ratios of 8:1 and 64:1,
normalized L∞-norm is even higher than the 3D baseline
results. We believe this is partially due to a lack of temporal
coherence, and also partially due to the nature of L∞-norm
being more sensitive to single extreme values.

3) Results on Multiple Data Sets: This final phase of the
initial study looked at the effectiveness of spatiotemporal
compression on multiple data sets. The experiments were



(a) Evaluation on the X-component of ve-
locity from the Ghost simulation.

(b) Evaluation on the X-component of ve-
locity from the CloverLeaf3D simulation.

(c) Evaluation on the energy field from the
CloverLeaf3D simulation.

(d) Evaluation on the X-component of ve-
locity from the Tornado simulation.

(e) Evaluation on the enstrophy from the
Tornado simulation.

(f) Evaluation on the cloud ratio field from
the Tornado simulation.

Figure 3: Normalized Root Mean Square Error (NRMSE, top of each subfigure) and normalized L∞-norm (bottom of each
subfigure) evaluation on data sets and variables described in Section V-B3. Error values are normalized by the range of
the data. The purple bar with line patterns represents only spatial compression (3D), and the bars filled with solid colors
represent spatiotemporal compression (4D) with different temporal resolutions.

again run with the “sweet-spot” combination of wavelet
kernel and window size from Section V-B1. Varying in this
phase were both data set (see Section V-A3) and temporal
resolution (see Section V-A2).

Figure 3 plots the results from this phase’s experiments
using NRMSE and normalized L∞-norm metrics. These
results confirm the effectiveness of spatiotemporal compres-
sion in most test cases, but also show that the amount of
benefit relies on the temporal frequency of the data.

C. Performance Impacts

Table I reports on performance impacts for spatiotempo-
ral compression, as well as measurements for spatial-only
and no compression. The column “Buffer W+R” indicates
writing and reading time spent on the buffer space, “Perm.
Write” indicates writing time spent on the permanent stor-

Table I: Performance impacts of spatiotemporal compression
(4D) and spatial-only compression (3D) compared to no
compression (Raw). Error values are indicated by NRMSE
that is reported in Figure 2c.

Tech. Buffer
W+R

Perm.
Write

Total
I/O

File
Size

Comp.
Time Error

4D 6.78+6.5s 1.20s 14.48s 625MB 57.49s 5.18e-5
3D 0 1.20s 1.20s 625MB 55.34s 1.47e-4

Raw 0 18.90s 18.90s 10GB 0 0

age, and “Total I/O” indicates the sum of the buffer and per-
manent I/O costs. “Comp. Time” provides the computational
cost. Our test system was a compute node with 2 Xeon CPUs
at 3.2GHz (16 cores in total), 256GB main memory, and a
2TB SSD serving as a buffer space. The test data is 20 time
slices of the enstrophy field from the Ghost simulation at the



base temporal resolution (res=1/1). With each time slice at
a 5123 resolution, the total data size is approximately 10GB
in raw format, and 625MB after a 16:1 compression (see the
“File Size” column). Spatiotemporal compression here used
the “sweet-spot” settings. Finally, note that for a specific
grid resolution and number of time slices, the buffer I/O
and computation cost numbers are independent of the data
set and compression ratio — meaning that the results are
applicable to data sets aside from Ghost and compression
ratios aside from 16:1.

Compared to spatial-only compression, spatiotemporal
compression introduces extra I/O time for buffer operations,
and a modest amount of extra computation. In return, it
encodes more information per byte. Compared to no com-
pression, spatiotemporal compression introduces reconstruc-
tion errors and additional computational burden. In return, it
significantly reduces the size of data to save on permanent
storage, and also saves on total I/O time (14.48s, compared
to 18.90s).

D. Examining the Three Propositions

Section 1 introduced three propositions. These proposi-
tions are related, in that spatiotemporal compression pro-
vides more information per byte. That said, they attract
domain scientists for different reasons. We examine each
of these propositions separately here.

P1: improve accuracy, while maintaining temporal reso-
lution and storage costs. P1 is supported by Figure 3. For
example, take the grouping for 128:1 compression in Sub-
figure 3a. In this grouping, the NRMSE for 3D compression
is 1.47e-3, while 4D compression with sparse temporal sam-
pling has NRMSE of 1.04e-3, and dense temporal sampling
has NRMSE of 4.50e-4. In this case, then, 4D compression is
anywhere from 40% more accurate to 200% more accurate
for the same storage cost. The rest of the figure provides
similar results, except for the Tornado data set, which shows
that the most sparse temporal sampling sometimes leads to
slightly worse results (there is more discussion on the effect
of temporal coherence in Section V-E).

P2: reduce storage costs, while maintaining temporal
resolution and accuracy. P2 is also supported by Figure 3.
Again consider an example from Subfigure 3a. The NRMSE
with 64:1 compression with 3D wavelets is comparable to
the error with 128:1 compression with 4D wavelets with
“1/2” temporal resolution. In this case, a domain scientist
could maintain accuracy and temporal resolution, but use
half the storage. Similar examples are visible throughout
the table. However, the table is oriented around powers-of-
two compression ratios, and P2 does not always hold for
2X reductions in storage. Sticking with the example from
Subfigure 3a, the NRMSE with 64:1 compression with 3D
wavelets is more accurate than the 128:1 compression with
“1/4” temporal resolution, which is coarser. In this case
where time slices are sampled less frequently, a 2X reduction

in storage was not obtained, but a smaller reduction (such
as 1.5X) likely would be possible.

P3: increase temporal resolution, while maintaining stor-
age costs and accuracy. Proposition P3 follows directly from
P2: if it is possible to reduce storage costs and maintain
accuracy, then it would also be possible to use the difference
in storage to increase the temporal resolution. Revisiting
the comparison between 3D+64:1 and 4D+128:1, a domain
scientist could, instead of halving storage costs, opt to keep
storage costs constant and double temporal resolution.

E. Discussions and Limitations

While we saw “factor of two” benefit in many cases
(compared to spatial compression alone), other cases were
below this amount. We believe limitations stem from an
inadequate amount of temporal coherence between time
slices to achieve a good compression. On the one hand,
the physical model and simulation implementation dictate
the amount of coherence in the spatial domains. This means
errors are lower in some applications, but higher in others.
On the other hand, the output data frequency also plays
an important role in temporal coherence. This means for
the same application, spatiotemporal compression is more
beneficial if time slices are sampled more frequently. Our
tests across multiple data sets exhibit these limitations.

Among three tested simulations, we notice that Ghost
and CloverLeaf3D have significantly less errors with the
same spatial compression settings. For example, looking at
the X-velocity fields from three simulations, (Subfigure 3a,
3b, and 3d), both Ghost and CloverLeaf3D have NRMSE
less than 5e-5 at 8:1 ratio with spatial compression, but
Tornado has NRMSE greater than 5e-4. That is one order
of magnitude difference. Tornado has significantly larger
normalized L∞ norm values at all spatial compression cases
as well. Since there is no temporal compression involved, we
observe that it is the characteristic of the Tornado simulation
that less coherence is present. In this case, wavelet-based
compression techniques perform more poorly.

The accuracy increase from spatial to spatiotemporal
compression also differs in the three simulations. Ghost
and CloverLeaf3D see more than 2X accuracy increase
(less than half of the error) at each compression level with
the base temporal resolution (res=1/1). However, none of
the three fields from Tornado see this amount of accuracy
increase. We believe that this difference in accuracy gain
is due to the difference of available temporal coherence:
Ghost and CloverLeaf3D had enough temporal coherence
to demonstrate a 2X accuracy gain, while Tornado was too
sparse to do so. In fact, Subfigure 3e and 3f reveals that 4D
compression even increases NRMSE errors at the coarsest
resolution level (res=1/4). We suspect this is because the
benefit from spatiotemporal compression is so modest in
this instance that the floating point arithmetic errors from the
additional calculations begin to dominate. More discussions



on this topic could be found in [33] and [34]. That said,
spatiotemporal still shows benefit over spatial compression;
the extra accuracy from spatiotemporal compression can still
make a significant difference in real-world analyses, as we
demonstrate in Section VI-A.

Lastly, random access to individual time slices is easily
lost during spatiotemporal compression. Specifically, during
reconstruction of data from the compressed form, in the
first step where inverse wavelet transforms are performed
along the temporal domain, it needs to read in coefficients
of other time slices that also belong to the same window.
One can regain the ability of random access by employing
smart coders on the resulting coefficients, for example, the
one reported in [35].

VI. APPLICATIONS TO REAL-WORLD ANALYSES

In this section, we compare spatiotemporal (4D) wavelet
compression with spatial-only (3D) wavelet compression
on two real-world analyses. Both are representatives of
regularly performed analyses by domain scientists, and they
both operate on the Tornado simulation data set previously
described in Section V-A3 The first analysis studied com-
pression effects on pathlines across multiple time slices,
while the second studied the effects on isosurfaces of a single
time slice.

The mesh for the data set was a 490×490×280 rectilinear
grid, covering a geographic space of 14, 670 × 14, 670 ×
8, 370 meters. The pathline analysis used data from 220 time
slices, each stored as its own file. These 220 time slices were
from the latter stages of the simulation when the tornado
was most interesting to study. Each time slice advanced
two seconds of simulation time past the previous one, with
the first time slice being 8502 seconds into the simulation
— i.e., t0 = 8502s , t1 = 8504s, ..., t219 = 8940s.
Note this temporal resolution corresponds to “res=1/2” from
Section V-A3), which is not the finest available. We used this
resolution since it is what our domain scientist collaborator
uses in his own research.

A. Pathline Analysis

Visualization: To better understand the tornado dynamics,
we placed particles at the base of the tornado so that their
trajectories could be observed. These particles are typically
placed in a “rake” setting, i.e., densely seeding along a line
segment. In this example, three rakes with 48 particles each
were seeded, for a total of a 144 seed locations. The particles
were advected using Runge-Kutta 4, with a step size of
0.01s. Velocity values between time slices were calculated
using linear interpolation.

Compression: We worked with a total of nine versions of
the data: the original version and eight wavelet-compressed
versions. The wavelet-compressed versions included both
spatiotemporal (4D) and spatial-only (3D) wavelet trans-
forms over four compression levels (8:1, 32:1, 64:1, and

Table II: Our error metric for each wavelet-compressed data
set, averaged over all 144 seed particles.

Data Set D=10 D=50 D=150 D=300 D=500
8:1, 3D 8.5% 2.3% 1.3% 1.1% 1.0%
8:1, 4D 3.4% 1.3% 1.1% 0.8% 0.6%

32:1, 3D 35.9% 10.3% 4.5% 3.1% 2.4%
32:1, 4D 24.4% 6.4% 3.2% 2.1% 1.6%
64:1, 3D 48.4% 17.3% 7.5% 5.3% 3.9%
64:1, 4D 35.7% 9.8% 5.1% 3.3% 2.7%
128:1, 3D 60.7% 27.8% 10.8% 6.7% 5.2%
128:1, 4D 45.8% 16.3% 7.5% 5.1% 3.9%

128:1). Both transforms used the CDF 9/7 wavelet kernel,
and the spatiotemporal versions used a window size of
18. The three components of velocity were individually
compressed for each wavelet version. We then generated a
pathline for every combination of the 144 seed points and
nine data sets, or 1, 296 pathlines overall. We set the baseline
for each seed point as its pathline from the original version
of the data set.

Evaluation: We defined our evaluation metric incorpo-
rating observations from visually comparing baseline path-
lines with their versions from wavelet-compressed data sets.
Figure 4 visualizes example pathlines. Each image shows
three pathlines generated by the advection of the same
particle using the original and 3D or 4D compressed data
at 128:1. Some particle trajectories would deviate midway
through their courses, but then ultimately end up close to
the correct positions, as the left two subfigures illustrate.
So we designed an error metric that would value the case
where a pathline stays close to its baseline throughout its
entire trajectory, over one that deviates early but later returns.
Specifically, let D be distance, let T be the total time of
advection for a particle, and let T0 be the first time that the
pathline deviates distance D away from its baseline. Then
we defined error as a percentage: (1.0 - T0/T )×100. Taking
an example: if a particle first deviates distance D from
its baseline after six seconds and travels for a total of ten
seconds, then we would score its error as 40%. We asked our
domain scientist collaborator to select a good value for D
and he picked a distance of 150 meters. We ran evaluations
with that threshold, as well as bigger and smaller thresholds
for comparative purposes. Five values of D were tested in
our evaluation: D=10, 50, 150, 300, and 500.

Results: Table II contains the results from our evaluation.
Each evaluation percentage is averaged from all 144 seed
particles. This table shows a clear advantage of spatiotem-
poral compression, and supports both proposition P1 and
P2.

With respect to P1 (improving accuracy while maintaining
temporal resolution and storage costs), every combination
of compression ratio and distance threshold shows the spa-
tiotemporal compressed data to have superior accuracy (i.e.,
less error).

With respect to P2 (reducing storage costs while maintain-



Figure 4: Each subfigure visualizes the pathlines for a single seed particle being advected using the original version of the
data, as well as 3D and 4D compressed versions at 128:1 ratio. Black pathlines are from the original data set; red ones
are from the 128:1+4D compression; and blue ones are from the 128:1+3D compression. The left two instances show that
4D (red) and 3D (blue) pathlines have similar ending positions, but the 4D ones closely resemble the baseline (black) for
longer durations. The right two instances show a clear disadvantage of 3D pathlines in terms of both early deviation and
far apart final positions.

ing temporal resolution and accuracy), comparisons between
different compression ratios support this proposition. For
example, for a distance threshold of 150, the 128:1+4D
compression has the same error as the 64:1+3D compression
(both are 7.5%, shown in bold font), meaning that the storage
cost could be cut half. In fact, regardless of the distance
threshold D, the error from 128:1+4D is always comparable
to that from 64:1+3D, and the error from 64:1+4D is
always comparable to that from 32:1+3D, supporting P2 in
a roughly 2X factor.

B. Isosurface Analysis

Visualization: Our domain scientist regularly studies iso-
surfaces in the Tornado data set. He provided us with three
scalar variables that he often studies (pressure perturbation,
cloud mixing ratio, and Z-component of velocity) as well as
key isovalues appropriate for each of those variables.

Compression: We worked with a total of 33 versions of
the data: the original version of three scalar fields as well
as ten wavelet-compressed versions of each. The wavelet-
compressed versions included both spatiotemporal (4D) and
spatial-only (3D) wavelet transformations and five compres-
sion levels (8:1, 16:1, 32:1, 64:1, and 128:1). We again used
the CDF 9/7 kernel, and again the spatiotemporal versions
used a window size of 18.

Evaluation: For each variable, we set the baseline iso-
surface to be the one from the original data set. Inspecting
the isosurfaces visually, we found that the gross features
from the baseline were well preserved within the wavelet-
compressed versions, as Figure 5 shows. So our task shifted
to capturing difference in fine details, and we opted to use
the total surface area of the isosurfaces as our accuracy
metric. That is, let SAB be the surface area for the baseline
isosurface and SA be the surface area for an isosurface
from a wavelet-compressed data set. Then we defined our
error metric again as a percentage: (1.0 - SA/SAB)× 100.
With this metric, 0% represents a perfect fit, with worse

Table III: Our error metric for isosurfaces of each wavelet-
compressed data set, comparing their surface area to the
baseline surface area.

Variable Compression 3D Error 4D Error
8:1 -0.93% 0.35%

Cloud 16:1 -2.46% 0.59%
Mixing 32:1 -4.72% 0.47%

Ratio 64:1 -7.62% -0.16%
128:1 -11.24% -1.34%

8:1 -0.85% 0.31%
16:1 -2.23% 0.65%

Z-Velocity 32:1 -4.69% 0.75%
64:1 -8.85% 0.13%

128:1 -15.320% -1.66%
8:1 -2.4e-4% -6.3e-3%

Pressure 16:1 -2.2e-2% -1.8e-2%
Perturbation 32:1 -4.9e-2% -3.9e-2%

64:1 -0.25% -8.1e-2%
128:1 -0.38% 6.7e-2%

and worse fits moving away from 0 (in either the positive
or negative directions). This metric creates the possibility
for offsetting errors — compression may remove some
features, but introduce others — but we did not observe
this phenomenon in practice. Further, although we could
have considered additional accuracy metrics (i.e., topological
measures), we found that this simple metric corroborated
our findings based on visual inspection, namely that 4D
compression captures more surface details.

Results: Table III contains the results from our evaluation.
Like the analysis from Section VI-A, this table supports
both propositions P1 and P2. With respect to P1 (improving
accuracy while maintaining temporal resolution and storage
costs), the 4D compressed data had less error for every vari-
able and compression level, except for the 8:1 compressed
version of pressure perturbation (which had very small total
error). As an example, for 32:1 compression on cloud mixing
ratio, the isosurface with 3D compressed data was 4.72%
too small (in terms of total surface area), but with 4D



(a) Original data (b) Original data (c) 128:1+3D compression (d) 128:1+4D compression

Figure 5: Renderings of isosurfaces of the z-component of velocity from a Tornado data set. Subfigure (a) is the entire data
set, while (b), (c), and (d) are the same zoomed-in region. Dashed lines in (a) indicate this region.

compressed data was only 0.47% too big. Similar disparities
held with other combinations of cloud mixing ratio and z-
velocity. However, for pressure perturbation, both techniques
seem to capture the isosurface, even at high compression
ratios, and so neither seems superior to the other.

With respect to P2 (reducing storage cost while main-
taining accuracy and temporal resolution), this analysis and
error metric strongly favor 4D wavelet compression over 3D
wavelet compression. For example, our error metric finds
that 128:1 4D compressed data is more accurate than 16:1
3D compressed data for Z-velocity.

VII. CONCLUSIONS

Our study has considered the benefits, costs, and best
practices for spatiotemporal wavelet compression compared
to the traditional spatial-only approach. This direction is
enabled by deeper memory hierarchies now increasingly
available on leading-edge supercomputers. We studied the
benefits of spatiotemporal compression by looking at both
differences in reconstructed fields over a variety of settings
and several real-world analyses in consultation with domain
scientists. In nearly all cases, we found that incorporating
the time dimension led to more “information per byte,”
realized with a variety of error metrics: NRMSE, normalized
L∞, and custom metrics for real-world applications. This
property in turn enabled three propositions that can benefit
domain scientists with their visualization needs — improv-
ing on accuracy, reducing storage, and increasing temporal
frequency. While the magnitude of the benefit varies by
use case, many of the results demonstrated factor-of-two
improvements for their respective metrics.

Finally, unlike spatial coherence, temporal coherence is
a function of how frequently the data is output. Often
output frequency is constrained by storage space, and if too
coarse, benefits from temporal compression may be small.
That said, there are many analyses where higher output
cadence is required, and spatiotemporal compression shows
great promise when faced with constraints of limited I/O
bandwidth and storage capacity.
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