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Abstract
We consider the problem of wavelet compression in the context of portable performance over multiple architec-
tures. We contribute a new implementation of the wavelet transform algorithm that uses data parallel primitives
from the VTK-m library. Because of the data parallel primitives approach, our algorithm is hardware-agnostic
and yet can run on many-core architectures. We also study the efficacy of this implementation over multiple archi-
tectures against hardware-specific comparators. Results show that our performance is portable, scales well, and is
comparable to native implementations. Finally, we argue that compression times for large data sets are likely fast
enough to fit within in situ constraints, adding to the evidence that wavelet transformation could be an effective in
situ compression operator.

1. Introduction

As supercomputers get larger and larger, a consistent trend
has been that the ability to generate data is increasing faster
than the ability to perform I/O. This trend jeopardizes the tra-
ditional paradigm for visualizing computer simulation data.
In this paradigm, simulations advance and save their states
at regular (or irregular) intervals. Each save is effectively a
snapshot in time, or “time slice” of what is happening in
the simulation. Importantly, these time slices have typically
been stored at their native resolution, meaning that the sim-
ulation mesh is not modified, and every field value on that
mesh is stored (at least for the fields that are stored).

In response to reduced I/O capabilities, there are three
main strategies. First, save data less often. As trends worsen,
this strategy may become unpalatable for many application
domains, since temporal sparsity can result in lost science.
Second, do visualization in situ. This strategy is increasingly
being preferred for the cases where domain scientists know
what they want to see a priori. However, for data exploration-
oriented use cases, where new science is often discovered,
there often is no a priori knowledge of what to look for. This
observation motivates the third strategy, which is to use a
combination of in situ and post hoc techniques. In the in situ
phase, data is transformed and reduced, with hopes that the
reduction will be sufficient to meet I/O requirements. In the
post hoc phase, the transformed and reduced form is avail-
able for exploration-oriented use cases. That said, the as-

sumption from the traditional paradigm that data be stored
at full resolution and all field values are stored, essentially
equates to lossless compression, which limits how much re-
duction can be achieved. So research in this third strategy
often assumes that domain scientists will accept lossy tech-
niques when I/O constraints preclude their traditional work-
flow. This assumption is important, since allowing for some
loss in data integrity enables the strategy to be practical.

There have been many interesting ideas for operators that
enable explorative visualization with the in situ+post hoc
strategy, including the following. Cinema’s [AJO∗14] main
strategy is to transform the data to images, with the idea be-
ing that many, many images will still be smaller than simu-
lation data, and that exploration can happen by loading suc-
cessive images as if they were being generated by a tradi-
tional visualization program. The idea with Lagrangian ba-
sis flows [ACG∗14] is to transform vector field data into
pathlines in situ, and then interpolate new pathlines post
hoc from the extracted ones. This technique was shown to
be more accurate than saving vector field data, and used
less storage as well. As some final examples, Analysis-
Driven Refinement [NWP∗14], or ADR, prioritized the data
to save based on the analyses that would be performed, while
Lehmann et al. [LJ14] explored a multi-resolution technique
in both space and time. With our study, we consider a differ-
ent operator, wavelet based compression, partially because
of its outstanding compression capabilities known in im-
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age processing communities. In fact, wavelet compression
is the underlying technology of the JPEG2000 still image
compression standard [AT04]. The broader applications of
wavelet transform go even beyond compression, with exam-
ples being signal denoising, boundary detection, and texture
analysis, to name a few.

We specifically focus on efficient execution of wavelet
compression over multiple architectures. It connects to the
overall theme of in situ+post hoc exploration, in that we are
studying how to design wavelet compressors that could be
run in situ on many-core architectures. We do not study the
resulting tradeoffs between compression and data integrity,
since that issue has already been investigated [LGP∗15].

A particular emphasis of this study is designing code that
will be hardware-agnostic and yet still be performant on each
architecture it runs on. Ideally, this approach can “future-
proof” our code to run not just on today’s architectures,
but also tomorrow’s. Recent research has demonstrated that
designing code using “data parallel primitives” (DPPs) as
building blocks is a promising direction for achieving this
goal. Therefore, the research involved with this work — and
the contribution of this paper — is to re-think wavelet trans-
forms using data parallel primitives and to demonstrate the
efficacy of the resulting algorithm.

2. Related Work

2.1. Parallel Wavelet Transforms on CPUs

Domain decomposition is a popular yet effective approach
for achieving parallel processing on CPUs. Using this ap-
proach, an entire domain is decomposed into smaller sub-
domains and each subdomain is processed individually.
For 2D matrices, the JPEG2000 standard employs this ap-
proach [AT04]. A similar application on multi-node set-
tings is also reported in [Uhl95]. For 3D volumes, VA-
POR [CR05, CMNR07], an open-source visualization pack-
age with a wavelet compression component, decomposes in-
coming volumes into 643 cubes by default and then pro-
cesses them in parallel. Although domain decomposition has
the advantage of simplicity, the technique can suffer from
blocking effects along subdomain boundaries, which arise
from wavelet artifacts on finite-length input boundaries.

More complicated parallel approaches treat the entire do-
main as a whole while performing wavelet transforms in par-
allel. These approaches eliminate blocking effects, but intro-
duce inter-processor communications. Nielsen et al. [NH00]
developed a parallelization strategy that eliminates a time-
consuming distributed matrix transpose, and demonstrates
strong scalability. Chaver et al. [CPPT01] partitioned 2D
matrices into stripes and studied the performance differences
between X-partitioning and Y -partitioning. Chadha et al.
[CCC02] further developed a partitioning strategy where in-
termediate information exchanges are restricted to neigh-
boring processors. Though proven to be effective on multi-

core CPUs and distributed systems, it is unclear how similar
strategies would perform on many-core architectures. Also,
these strategies seem to have, for the most part, not consid-
ered 3D volumes.

2.2. Parallel Wavelet Transforms on GPUs

Parallel wavelet transforms on GPUs have been predomi-
nantly conducted within the CUDA [NBGS08] framework.
Natural parallelization strategies on GPU include row-based
and column-based processings, which use a GPU thread to
process a row or column of an image at a time [AMN14,
EALM15]. Domain decomposition is also used to get the
CPU and GPU to work together: a CPU sends subdomains
to a GPU to process, and retrieves back the results one-by-
one [FBFU10].

A trend in GPU-based wavelet transforms is to exploit
the many memory hierarchies on GPU devices to achieve
higher speedups, including discussions on the use of shared
memory [FBFU10], texture memory [GS05], and even reg-
isters [EALM15]. While these fine-grained tunings are very
effective in making the most out of the hardware, they usu-
ally require a good amount of GPU programming skills, and
the performance gains are not guaranteed to translate to an-
other version of hardware.

Finally, we point out that an important use of GPU
wavelet transform is to perform on-demand decompression
at rendering time. The idea is to postpone decompression
to the latest possible stage of the rendering pipeline, which
is on GPUs, to reduce the expensive data movement costs.
An example of this use is GST [KPM16], where supercom-
pressed textures are decoded on GPUs. A detailed survey on
this topic is also available at [BRGIG∗14].

2.3. Visualization Algorithms With DPPs

Several studies have investigated how to re-think a spe-
cific algorithm in the framework of data parallel primitives.
They include Maynard et al. with thresholding [MMA∗13],
Larsen et al. with ray-tracing [LMNC15] and unstructured
volume rendering [LLN∗15], Schroots and Ma with cell-
projected volume rendering [SM15], Lessley et al. with ex-
ternal facelist calculation [LBMC16], and Lo et al. with iso-
surface generation [LSA12]. Our own work differs in that we
are considering a different algorithm (wavelet transform).

2.4. Other State-of-the-art Floating Point Compressors

Motivated by the I/O bottleneck on supercomputers, several
schemes are designed to specifically compress the floating-
point data arising from numerical simulations. Some repre-
sentatives include FPZip [LI06], ZFP [Lin14], SZ [DC15],
and ISABELA [LSE∗11]. However, the ability of these
schemes to perform well on multiple architectures is still
not clear, and this work focuses on how to obtain portable
performance for wavelet compression.



Shaomeng Li et al. / Achieving Portable Performance For Wavelet Compression Using Data Parallel Primitives

3. Data Parallel Primitives

In the data parallel paradigm, algorithms are made by com-
posing together so-called data parallel primitives, or DPPs.
A DPP specifies the pattern of how an input array is pro-
cessed in parallel to produce outputs, while users take the
responsibility to specify operations applied on each individ-
ual element. This user-specified operation is sometimes re-
ferred to as “functors” or “worklets.” A benefit of using data
parallel primitives is that execution details such as thread
and memory management are abstracted away from gen-
eral users, which in turn allows specific implementations to
optimize for underlying architectures. Algorithm designers
then re-think their algorithms using a relatively small set of
data parallel primitives to harness the massive parallelism in
modern architectures. Here we briefly describe a few data
parallel primitives for demonstration purposes. Readers can
consult work by Blelloch [Ble90] for theoretical foundations
and Nvidia’s Thrust [BH11] for examples in an actual prod-
uct.

Map is a simple yet powerful data parallel primitive — it
maps each data element from the input array to an element
in the output array. The input and output arrays thus have the
same size. Map resembles a traditional for loop if there are
no loop-carried dependencies. Elements are thus processed
in parallel with arbitrary order.

Scan also maps an input array to an output array with the
same size, but resembles a for loop that does have loop-
carried dependencies. Scan can be efficiently executed in
parallel in a bottom-up fashion.

Reduce uses all elements from the input array to produce
a single output value, for example the sum or the maximum
of the input array. Reduce can also be efficiently executed in
parallel in a bottom-up fashion.

Scatter and Gather are data parallel primitives to facil-
itate data movement — individual elements are moved in
parallel to or from designated locations assuming there are
no index conflicts.

In practice, more complex data parallel primitives can be
constructed by composing the basic data parallel primitives.
This process is useful for providing fundamental algorithms,
and an example of this is the Sort algorithm in Thrust.

4. Algorithm Description

Our compression algorithm consists of two primary steps:
wavelet transformation followed by coefficient prioritiza-
tion. In the first step, input data is transformed into coeffi-
cients in the wavelet space using filter banks. In the wavelet
space, the magnitude of each coefficient is correlated to its
information content. Small magnitude coefficients are often
insignificant in reconstructing the original field. Further, in
general, wavelet transformation results in the vast majority
of its coefficients being small. In the second step, coefficients

x[n]

g[n]

h[n]

2

2

Approx.
Coeff.
Detail Coeff.

g[n]

h[n]

2

2

Approx.
Coeff.
Detail Coeff.

Figure 1: Illustration of a filter bank based wavelet trans-
form workflow. The input signal (x[n]) passes through a low-
pass and high-pass filter (g[n] and h[n], respectively), and is
then down-sampled by a factor of two, resulting in approx-
imation and detail wavelet coefficients. This process is re-
peated on the approximation coefficients to create a second
level wavelet transform.

are prioritized based on their information content, and only
the most significant ones are saved on disk, resulting in an
overall lossy process. The following subsections provide de-
tails about our algorithm’s two primary steps as well as our
implementation details.

4.1. Wavelet Transform

Given an input signal, the wavelet transform represents this
signal as wavelet coefficients in the wavelet space. There are
multiple approaches available to perform the wavelet trans-
form, with filter banks [SN96] and lifting schemes [Swe96]
being most popular. We adopted the filter bank approach in
this study because of its flexibility; different wavelets can
be handled using different filter banks without dramatical
changes to the program.

With the filter bank approach, the core operation to cal-
culate wavelet coefficients is discrete convolution. More
specifically, we use a two-channel filter bank to perform
wavelet transforms, with each filter convolving with the in-
put array (signal) to produce wavelet coefficients. The first
channel is a low-pass filter, and the resulting “approxima-
tion” coefficients provide a coarsened representation of the
signal. The second channel is a high-pass filter, and the re-
sulting “detail” coefficients contain the missing information
from the low-pass filtering. The total number of output coef-
ficients is doubled by convolving with two filters. A down-
sampling step with a factor of two then restores the same
number of coefficients to the input array. Despite downsam-
pling, it is still possible to retain all information accord-
ing to the Nyquist’s rule: half frequencies passed through
a filter, thus only half coefficients were needed to represent
them [Nyq28].

The approximation coefficients are recursively trans-
formed in the same manner — iterating through the filter
banks — until a stopping criterion is reached. This prac-
tice further decorrelates the approximation coefficients to
achieve a better compression. Figure 1 illustrates a two-level
wavelet transform workflow.

Wavelet transformation does not directly result in data re-
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Figure 2: Illustration of one level of wavelet transforms for
a three-dimensional cube. Approximation and detail coeffi-
cients are denoted using “L” and “H,” respectively. From
left to right are the original cube, and the resulting coef-
ficients after wavelet transforms in the X, Y , and Z axes,
respectively.

duction. Rather, it “compacts” most information to a few co-
efficients so coefficient prioritization can effectively reduce
the data size. Wavelets with better information compaction
capabilities are better suited for lossy compression usage.

4.1.1. Higher Dimensional Wavelet Transform

Using filter banks, wavelet transforms of higher dimensional
data can be composed of individual one dimensional trans-
forms along each axis. Consider the three dimensional case
as an example. First, each row goes through a wavelet trans-
form pass in the X direction, resulting in approximation and
detail coefficients with respect to the X axis. Second, these
coefficients then go through wavelet transforms in the Y di-
rection as columns, resulting in approximation and detail co-
efficients with respect to the Y axis. Third, the output coeffi-
cients from the second set of transforms go through wavelet
transforms in the Z direction, resulting in approximation and
detail coefficients with respect to the Z axis. The motivation
of this practice is to decorrelate the signal in each direction
for the best compression results. This process is illustrated
in Figure 2. This ordering of multidimensional transform is
referred to as “non-standard decomposition” in some litera-
tures, and is adopted by all softwares in this study. The pros
and cons of “non-standard decomposition” and a few other
options are beyond the scope of this paper, and interested
readers should consult [SDS95, KP98].

Higher dimensional wavelet transform could also be ap-
plied in a recursive fashion. Building on the example in Fig-
ure 2, an even coarser version of the data set can be gener-
ated by applying additional wavelet transforms to the small
cube labeled “LLL.” Again, note that the total number of co-
efficients is constant, regardless of the number of levels of
wavelet transforms.

4.1.2. Practical Considerations

Discrete convolution requires special care on the boundaries
for finite-length input data. In the general case that the data is
not periodic, the data array needs to be extended by half the
filter length on both ends, so discrete convolution can per-
form as usual on the real data. Usually, the extension past the
boundary uses the last few elements of the input data array.

With an appropriate choice of convolution filter pairs, and
careful boundary extensions, mathematically perfect recon-
struction is possible with the number of wavelet coefficients
matching the number of orginal samples.

The down-sampling step in Figure 1 leaves opportuni-
ties to eliminate unnecessary calculation of coefficients, i.e.,
to skip calculation of coefficients that are meant to be dis-
carded. This is achieved by performing discrete convolution
with the low-pass filter on even indexed elements, and the
high-pass filter on odd indexed elements.

4.2. Coefficient Prioritization

The second step of wavelet compression is to prioritize all
coefficients and keep only the ones with the most informa-
tion content. The heart of this process is a “sort” routine
based on the magnitudes of the coefficients. After sorting,
a decision is made (typically as input to the compression
process) about how many coefficients to save. These coef-
ficients are the largest values. The remaining coefficients are
not saved, and treated as zeroes during data reconstruction.

4.3. Implementation Specifics

We implemented our algorithm within the VTK-m frame-
work [MSU∗16]. VTK-m provides an infrastructure with
platform-agnostic data parallel primitives to algorithm de-
velopers, and architecture-specific parallelism mechanisms
under the hood. Its handling of data parallel primitives
means that users can avoid thread scheduling details. Cur-
rently, VTK-m has two optimized parallelization mech-
anisms for its DPPs: CUDA [NBGS08] and Intel TBB
[Phe08]. Also, because of the high-level nature of VTK-m,
some architectural specifics, such as the different kinds of
memories on an Nvidia GPU, are not exposed to its users.

With regards to memory organization, our implementation
keeps data in a row-major one-dimensional array regardless
of its logical dimensionality. This design means we must
face less-than-ideal memory access patterns when accessing
data in columns or frames. One potential work-around is to
transpose the matrix (or volume) to the desired orientation
before performing wavelet transforms along that axis. How-
ever, in-place transposition for a matrix (or volume) with dif-
ferent sizes along each dimension is not trivial by itself. We
did not choose this optimization for simplicity.

Our implementation supports four wavelets: three mem-
bers from the CDF [CDF92] wavelet family (CDF 9/7,
CDF 8/4, and CDF 5/3), and the Haar wavelet. We used the
CDF 9/7 wavelets in this study because it is arguably the
best for lossy compression usage (e.g., JPEG2000 in lossy
compression mode).

Finally, we note that our 1D and 2D wavelet compressors
are already merged into the open-source VTK-m repository,
and the 3D case is in the process of being merged.
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Algorithm 1 Worklet for 3D Wavelet Transform in the X
Axis
Input: signal, workIndex {Assigned by VTK-m}
Output: coe f f icients

(x,y,z)← GetLogicalIndex( workIndex )
if x is even then

arr← ComposeX( signal, le f tExt,rightExt,x,y,z )
sum← DiscreteConvolution( arr, lowWaveletFilter )
outIdx← GetOutputIndexApproximationCoeff(x,y,z)
coe f f icients[ outIdx ]← sum

else
arr← ComposeX( signal, le f tExt,rightExt,x,y,z )
sum← DiscreteConvolution( arr,highWaveletFilter )
outIdx← GetOutputIndexDetailCoeff( x,y,z )
coe f f icients[ outIdx ]← sum

end if

4.3.1. Wavelet Transform with DPPs

We used the “Gather” data parallel primitive to perform sig-
nal extension. Gather naturally fits in here since it retrieves
elements from designated locations of the signal to exten-
sions (just like gathering). We use specific worklets to guide
Gather to correctly handle different dimensionalities and ex-
tension directions (e.g., left, right, etc.). Though extending a
signal is computationally light because of the small sizes of
extensions, implementing them using a data parallel prim-
itive has the additional benefit of avoiding potential data
transfers between different computing environments (e.g.,
between the host and a GPU). This is because DPPs can usu-
ally be scheduled to run on designated devices, which allows
us to schedule them in the environment where data resides.

Wavelet transforms are carried out using a “Map” data
parallel primitive. Details of the transforms, such as wavelet
banks and convolution operations, are passed in as worklets.
We implemented individual worklets for wavelet transforms
in each dimensionality and direction; each worklet result-
ing in a slightly different Map that performs wavelet trans-
form for one particular case. This practice reduces execu-
tion branches inside a worklet, which helps maximize the
GPU performance. Algorithm 1 outlines a worklet perform-
ing 3D wavelet transforms along the X axis. It assumes that
each row of the three-dimensional input is properly extended
with an extension on both left and right side (leftExt and
rightExt, respectively), and receives its own work index
(workIndex) from the VTK-m scheduler, so each instance
of the worklet performs convolution on one index: (x,y,z).

4.3.2. Coefficient Prioritization with DPPs

For coefficient prioritization, we used the “Sort” data
parallel primitive provided by VTK-m. VTK-m exposes
platform-optimized sort when possible. Specifically, it ex-
poses the parallel merge sort from Thrust [BH11] on GPUs,
and the parallel quick sort from TBB on CPUs.

5. Study Overview

5.1. Experiment Overview

We performed our experiments in two rounds. The first
round focused on evaluating our own algorithm, while the
second round focused on comparing with hardware-specific
implementations.

5.1.1. Round 1: Evaluation of the VTK-m Approach

This round was designed to better understand the basic per-
formance of wavelet compression across multiple platforms.
It varied two factors:

• Hardware architecture: multi-core CPU and GPU.
• Data sizes: 2563, 5123, 1,0243, and 2,0483.

We tested all data sizes on CPU, but skipped the 2,0483 data
size on GPU due to the GPU memory capacity limitation.
We also tested 1D and 2D data inputs for evaluation pur-
poses, and their results yielded similar patterns to 3D inputs.
Since 3D data sets are most relevant to HPC applications
including simulations and scientific visualizations, we only
report 3D results here. We report results from artificial data
sets with Gaussian distributions, although the actual data
values do not impact performance significantly, because the
number of floating point operations and function invocations
remains constant for each test size.

5.1.2. Round 2: Comparison with Platform Specific
Implementations

This round compared the VTK-m implementation with plat-
form specific implementations for multi-core CPUs and
CUDA GPUs, namely VAPOR [CR05,CMNR07] for multi-
core CPUs, and a native CUDA implementation for GPUs.
These implementations represent the best practices on re-
spective architectures, so they are good comparators for the
VTK-m implementation. The total number of configurations
for this round is four: VTK-m and VAPOR on multi-core
CPUs, and VTK-m and CUDA on GPUs. Again, we opt to
only report 3D test results as representatives, and each test is
run with multiple problem sizes.

5.2. Software Specifications

There are three software packages used in our study: our
VTK-m implementation, VAPOR, and a native CUDA im-
plementation. Details about the VTK-m implementation are
in Subsection 4.3, so this section focuses on VAPOR and the
CUDA implementation.

VAPOR is an open-source software framework consist-
ing of multiple components, including a GUI for post hoc
exploration of wavelet-compressed data. For this study, we
made use of the standalone wavelet compression utilities in-
cluded with VAPOR. This program achieves parallel pro-
cessing through domain decomposition, i.e., a large volume
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would be decomposed to fixed-sized blocks, and multiple
blocks are processed individually and simutaneously using
pthreads. Coefficient prioritization (described in Subsec-
tion 4.2) is performed individually within each block as well
using the C++ STL sort.

The native CUDA implementation was written for
our study. It followed implementation decisions discussed
in [SR16] with adaptations to our GPU. For example, we
maxed out the number of threads per block on our GPU to
be 1,024 for larger throughput. Wavelet transforms in each
direction (X , Y , and Z) are implemented as separate CUDA
kernels for parallel processing. Data is always organized as
one-dimensional arrays in the global memory on the GPU
without explicit use of shared memory. Thrust sort was used
here during coefficient prioritization. Overall, this CUDA
implementation has a very similar structure to its VTK-m
counterpart, minus the platform-agnostic infrastructure from
VTK-m.

Both CPU softwares (VTK-m+TBB and VAPOR) are
compiled using GCC, and both GPU softwares (VTK-
m+CUDA and native CUDA implementation) are compiled
using NVCC with GCC. We turned on -O2 optimization for
all compilations.

5.3. Hardware Specifications

To support the tests described in Subsection 5.1, we used the
following test systems; both systems are used in both rounds
of our testing.

• CPU System: Dual socket Intel Xeon Haswell CPUs run-
ning at 3.2GHz. There are 16 cores in total, and each core
is hyper-threaded to have 2 threads.
• GPU System: Nvidia Tesla K40 GPU. There are 2,880

cores in total, each running at 745MHz. This GPU also
has 12GB on-board high speed memory.

6. Results

The results are organized following the two rounds of our ex-
periments: Subsection 6.1 analyzes the performance of our
algorithm over multiple architectures, and Subsection 6.2
compares our performance to hardware-specific implemen-
tations.

6.1. Performance Analysis of the Algorithm

We separately analyze multi-core CPU performance (6.1.1)
and GPU performance (6.1.2).

6.1.1. Multi-core CPU Performance Analysis

Our first set of experiments studied strong scaling of the
VTK-m implementation. We ran a baseline of a single core,
and then ran additional tests with sixteen cores. In both
cases, the compressed volume was the same size. Table 1

Table 1: Strong scaling study of VTK-m on 16 Xeon CPU
cores. For each problem size, computation time is reported
for both transform (shortened as XForm) and sort subrou-
tines (see Section 4) in seconds. The achieved speedup is
reported in the last column.

Size Subroutine 1-core 16-core Speedups

2563 XForm 4.72 0.33 14.30X
Sort 1.36 0.22 6.18X

5123 XForm 37.22 2.06 18.07X
Sort 12.23 1.41 8.67X

1,0243 XForm 298.67 16.22 18.41X
Sort 103.75 13.32 7.79X

2,0483 XForm 2512.10 131.40 19.12X
Sort 884.53 93.18 9.49X

Table 2: Factor of computational time increase from a
smaller to a bigger problem size. Values in this table are
derived from the 16-core results in Table 1.

Size Incr. XForm Time Incr. Sort Time Incr.
2563→ 5123 6.24X 6.41X
5123→ 1,0243 7.87X 9.45X
1,0243→ 2,0483 8.10X 7.00X

shows timing values and speedup factors on four prob-
lem sizes. The results show that the transform subroutine
achieves near perfect speedups (around 16X), indicating that
the worklet based approach is able to harness the additional
CPU cores. In some cases, the speedup numbers are even
higher than 16X . We speculate this is due to the hyper-
threading nature of the Xeon CPUs, since VTK-m sees 32
cores through TBB and launches 32 threads for computation.
However, the sort subroutine only has speedups from 6.18X
to 9.49X . This reduced performance is expected, since sort-
ing requires coordination between the cores.

Our second set of experiments looked at the execution
time increase as the problem size grows. We calculate the
ratio of execution times using the sixteen core results and
list them in Table 2. The problem size grows by 8 at each
step. This table shows that both transform and sort subrou-
tines take close to 8X more time to finish processing the next
problem size. This result indicates that this implementation
is not slowing down as we approach data sizes up to 2,0483.

6.1.2. GPU Performance Analysis

Our first set of experiments measure raw performance on the
GPU. Table 3 provides the time the GPU takes to perform
wavelet compression on three data sizes: 2563, 5123, and
1,0243. We did not test the 2,0483 data size because it ex-
ceeded the memory capacity on our GPU. These tests show
a significant performance boost compared to 16-core CPUs.
Given that this is the same code base compiled on two very
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Table 3: Wavelet fransform and sorting time on a Tesla K40
GPU in seconds. The factor of time increase from the previ-
ous problem size is indicated in parentheses.

Size XForm Time Sort Time
2563 0.0463 0.0445
5123 0.3177 (6.86X) 0.3834 (8.62X)
1,0243 2.4419 (7.69X) 3.1766 (8.29X)

Table 4: Theoretical and achieved occupancy of our wavelet
compressor on a Tesla K40 GPU. The transform subroutine
was implemented as a worklet, and the sort subroutine was
a data parallel primitive provided by VTK-m.

Theoretical Occupancy Achieved Occupancy
XForm 75% 70.3%

Sort 50% 49.4%

distinct architectures, it shows that the performance can be
portable. Also, the execution time increase is in line with the
problem size growth: it takes roughly 8X more time to solve
an 8X larger problem.

Secondly we use occupancy reported by the Nvidia Vi-
sual Profiler to assess the efficiency of the VTK-m program.
In Nvidia’s model, adjacent threads are grouped into warps.
There is a maximum number of warps that can be concur-
rently active on a Streaming Multiprocessor depending on
the underlying hardware. Occupancy is then defined as the
ratio of active warps to the maximum number of active warps
supported by the Streaming Multiprocessor. It is not always
possible to achieve a 100% occupancy for a general program
because of limiting factors in compilation and GPU invoca-
tion specifics (more details can be found in Nvidia documen-
tation [Nvi]). As a result, the Nvidia Visual Profiler reports a
theoretical occupancy as well as an achieved occupancy. The
achieved occupancy cannot reach the theoretical occupancy
when the scheduler is not able to issue sufficient instructions
because of data or instruction dependencies. We report both
occupancy metrics in Table 4 for two major subroutines in
our algorithm: wavelet transform and sort.

The occupancy results are generally good, with the
wavelet transform worklet achieving a higher occupancy.
This is because of the nature of the wavelet transform that
worklets working on individual convolutions are more in-
dependent with each other than sorting. For both subrou-
tines, the Nvidia Visual Profiler suggests that the occupancy
is large enough that further improvements in occupancy may
not improve performance.

We note that for large-scale simulations on supercomput-
ers, a 1,0243 cube is on a par with problem sizes a sin-
gle compute node normally processes. We argue that the
achieved compression speed on GPUs, e.g., under six sec-
onds for a 1,0243 cube, is likely fast enough to fit within in
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Figure 3: Comparison of execution time (in seconds) be-
tween VTK-m and VAPOR. The purple part is for wavelet
transforms, and green is for sorting.

situ requirements and facilitate the in situ+post hoc strategy
to alleviate I/O constraints.

6.2. Comparisons With Hardware-Specific Software

6.2.1. VAPOR

As previously discussed, VAPOR achieves parallel process-
ing via domain decomposition and pthreads (see Subsec-
tion 5.2). For the tests on different size data sets, we main-
tained the number of total subdomains at 64, allowing VA-
POR to make full use of our 16-core machine. VAPOR pro-
cesses each subdomain following the transform and sort sub-
routines as the VTK-m implementation does. We note that
the local sort within each subdomain actually results in fewer
calculations than the global sort in VTK-m, but for simplic-
ity in comparison, we consider the sort time to be local for
VAPOR and global for VTK-m.

Figure 3 shows the performance comparison between
VTK-m and VAPOR. These results show that VTK-m and
VAPOR have comparable performance with VTK-m being
faster in three of the four test sizes. However, a more promi-
nent difference is how they allocate time differently between
their two subroutines. While VTK-m spends more than half
its time performing wavelet transforms, VAPOR spends less
than a quarter, especially as the problem size grows. This re-
sult is interesting since it shows that our DPP-based wavelet
transform is 3X to 4X slower than the best implementations
on CPU.

We speculate two design choices by VAPOR contributed
to its superior performance: slice-by-slice data processing,
and transposition for cache alignment. Both design choices
aim to better use the caching mechanism on CPUs. First, a
slice from the subdomains that VAPOR processes is most
likely to fit into the last level of cache in modern CPUs. For
example, a slice from 5123 subdomains is 1MByte in 32-bit
float or 2MByte in 64-bit double type, which can easily
fit into the 20MB L3 data cache per CPU socket (40MB in
total) in our test system. Second, VAPOR transposes data to
align arrays in storage to the one dimensional wavelet trans-
forms about to be performed, further increasing cache uti-
lizations in smaller but faster L2 and L1 caches. On the con-
trary, our data parallel primitive based transform schedules
worklets to process arrays as long as one entire volume di-
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Figure 4: Comparison of execution time (in seconds) be-
tween VTK-m and CUDA. The purple part is for wavelet
transforms, and green is for sorting.

mension without certain orderings, hardly making good use
of the caching mechanism.

In terms of the time cost for sorting, the STL sort em-
ployed by VAPOR does not perform as well as VTK-m’s
sort, which is TBB’s sort for CPUs. One might think that re-
placing the STL sort in VAPOR to TBB sort could be a sim-
ple solution to increase VAPOR’s performance. However, it
would not be that easy, since VAPOR is already parallelizing
across cores for the domain decomposition, and thus the sort
for each subdomain can only use a single thread.

6.2.2. Native CUDA Implementation

Figure 4 compares the performance difference between the
VTK-m and native CUDA implementations. Since they
share similar parallelization strategies (see Section 5.2), this
comparison actually quantifies the performance overhead of
VTK-m on GPUs. As the results show, this overhead is al-
ways within 40% of the CUDA performance. In fact, this
overhead has a trend to decrease as data size grows (i.e., from
35% at 2563 to 20% at 1,0243).

7. Conclusions and Future work

This paper explored a new approach to implement a wavelet
compression algorithm, distinguished in its aim to achieve
portable performance over multiple architectures. This new
approach made use of the data parallel primitive paradigm,
which aims to future-proof for emerging architectures.
We showed that our performance is comparable with two
hardware-specific softwares on multi-core CPUs and Nvidia
GPUs. The GPU comparison also quantifies the VTK-m
overhead to be no more than 40% of its native CUDA coun-
terpart.

For future work, we would like to explore techniques that
enable us to process larger data sets on GPUs despite their
constrained memory capacity, for example, the greatly en-
hanced unified memory from CUDA 8.
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