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ABSTRACT

In situ compression is a compromise between traditional post hoc
and emerging in situ visualization and analysis. While the merits
and limitations of various compressor options have been well stud-
ied, their performance impacts on scientific simulations are less
clear, especially on large scale supercomputer systems. This study
fills in this gap by performing in situ compression experiments on
a leading supercomputer system. More specifically, we measured
the computational and I/O impacts of a lossy wavelet compressor
and analyzed the results with respect to various in situ processing
concerns. We believe this study provides a better understanding of
in situ compression as well as new evidence supporting its viability,
in particular for wavelets.
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1 INTRODUCTION

With each new generation of supercomputers, their ability to gener-
ate data outpaces their ability to save data, resulting in an increasing
time to write out the content of memory to disk. In response, sci-
entists may 1) continue with the post hoc workflow and save data
less often; 2) opt for in situ visualization and analysis so I/O is
completely skipped; or 3) adopt in situ compression to relieve I/O
while still enabling post hoc visualization and analysis. The third
option is a promising compromise because it both prevents poten-
tial “missing science” from saving data too sparsely, and allows data
explorations without re-running the simulation.

The performance impacts of in situ compression are not fully
understood, especially on the large-scale supercomputers of to-
day. This is because while the computational costs are relatively
predictable, the I/O performance is subject to many factors on su-
percomputers, and the parallel filesystems themselves tend to have
less intuitive characteristics. We take a first step to understand these

Matthew Larsen
Lawrence Livermore National Laboratory

Hank Childs

University of Oregon

impacts in this study. Specifically, we test an in situ lossy wavelet
compressor together with a proxy simulation on Cheyenne [6],
the flagship supercomputer of National Center for Atmospheric
Research. We run a weak scaling test with up to 1,000 compute
nodes and measured the performance impacts in both computation
and I/O. Based on data collected from this experiment, our major
contributions in this paper are 1) analysis of a weak scaling experi-
ment on a large-scale supercomputer, 2) derivation of an empirical
equation regarding I/O tradeoffs for in situ compression, and 3)
discussion on various in situ wavelet compression considerations.

2 BACKGROUND

2.1 In Situ Processing and Analysis

In situ processing, also referred to as “co-processing,” has been
traditionally used for computational steering that allows users to
alter a simulations as it executes for reasons such as preventing
crashes and changing numerical solvers [20]. More recently, the
growing I/O gap has reinvigorated research into in situ techniques,
so analysis can take place while the data is still in memory or
the amount of data is reduced before it is written to disk. Some
representatives include Libsim [25] and Catalyst [8] for in situ visu-
alization, Cinema [1] and proxy images [24] for in situ generation
of exploration-enabled imagery, and an I/O mini-app dedicated to
in situ visualization [27]. Finally, we remind our readers a compre-
hensive survey of state-of-the-art in situ systems by Bauer et al [3].

2.2 Compression of Scientific Data

Compression has been well explored to reduce the size of scientific
data. Lossless techniques (e.g., Fpzip [18] and FPC [4]) retain the full
integrity of data, but hardly achieve impressive reduction factors.
As a result, more techniques opt for a lossy compression, with ex-
amples being ZFP [17], SZ [7, 23], ISABELA [11], and wavelet based
compressors [10, 21, 22]. Lossy compression techniques can achieve
aggressive reduction factors while still allow meaningful analysis
to be carried out, as reported in analyses of turbulent flow data [15],
climate data [2, 26], and physics-based proxy simulations [12].
For in situ compression, the compressor’s ability to utilize paral-
lelism becomes critical. ISABELA divides data into windows and
compresses each window independently [11]. VAPOR divides a
volume into domains (typically of size 64%) and applies wavelet
compression on each domain independently [21]. Li et al. [16] re-
ported a wavelet compression implementation using data parallel
primitives, achieving portable performance among multiple archi-
tectures. This work differs in that we focused on the compressor’s
performance impacts to simulations in an in situ setting.
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3 EXPERIMENT OVERVIEW
3.1 Software Used

Our experiments ran within the ALPINE Ascent in situ infrastruc-
ture [14] (a production version of Strawman [13]), which enables
fast prototyping of in situ algorithms. The infrastructure consists
of two main parts: an interface to simulations and a hybrid-parallel
library that provides a distributed-memory layer on top of shared-
memory parallel algorithms in VTK-m [19]. Ascent contains three
physics proxy-applications to start with.

Our study used the Lulesh [9] proxy-application, a 3D Lagrangian
shock hydrodynamics code. Lulesh implements the Sedov test prob-
lem, which deposits initial energy at one corner of a cube, and
propagates a shock wave from the origin outward to the rest of the
cube. In terms of computation, Lulesh uses thread-level parallelism
(via OpenMP ) for calculation within a domain, and process-level
parallelism (via MPI) for multiple domains.

The lossy wavelet compressor we used in this study is an im-
plementation introduced in [16] that we integrated into ALPINE’s
hybrid-parallel library. This implementation fits well in our in situ
experiment settings because it has comparable performance with
the best multi-thread CPU wavelet compressors, and is versatile
enough to enable performant compression on GPUs. It implements
filter-bank based wavelet transforms, and we used the CDF 9/7 [5]
wavelet kernel in this study. For lossy compression, it simply keeps
wavelet coefficients containing the most information (i.e., largest
magnitudes) and discards the rest. For example, a 64:1 compression
means keeping 1/64th of all coefficients. In terms to computation,
this implementation achieves thread-level parallelism using data
parallel primitives on single compute nodes, but does not have
inter-node communication. After finishing compressing, each node
independently writes its data in the compressed form to disk via
an fwrite() function call of the C programming language.

3.2 Simulation with In Situ Compression

Our simulation and compression code runs in an in situ setting: at
the end of each simulation cycle, simulation variables are passed to
the compression code to perform compression, and then written to
disk in the compressed form. Multiple variables are processed one at
a time, during which the simulation is suspended. As a result, each
complete cycle consists of one simulation step and multiple com-
pression and writing steps (for multiple variables). Specifically, our
experiment has seven variables: pressure, energy, relative volume,
artificial viscosity, and the x, y, z components of velocity. One might
think compressing multiple variables together could better exploit
the available parallelism. However, our in situ wavelet compressor
is already a parallel implementation, so simultaneous compression
would not make a big difference in computational time. (It would
make more difference in memory consumption though, see Sub-
section 5.2). Finally, while data being saved so frequently does not
reflect real world usage, it is sufficient for our study.

Our in situ compression is “tightly coupled.” This means, each
compute node not only performs simulation on a domain, but also
compresses the data of the same domain without data movement
through the network.

Disk I/O is handled individually by each compute node as well.
After processing a variable of a domain, the compute node writes
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its content to disk as an individual file no matter whether there is
compression or not, until all variables are processed.

We note that we use MPI barriers in the code to keep all MPI
ranks in sync, meaning that they are always in the same stage
of performing simulation, compression, or writing. We feel this
represents real-world usage in terms of bursty I/O coming from all
nodes at the same time.

Finally, our compression code treats compression ratio 1:1 as a
special case — it does not perform any compression on the data,
and directly passes the data to the file writer. In our tests, this
configuration acts as the baseline case to compare and measure in
situ compression impacts.

3.3 Experiment Runs

We ran our experiments on Cheyenne, the flagship supercomputer
of National Center for Atmospheric Research. Each compute node is
equipped with two 18-core Xeon CPUs at 2.3 GHz (36 cores in total)
and 64 GB memory. Both simulation and compression software
were compiled with GCC-6.3.0, and they used 64-bit floating point
values to carry out their computation.

With the Lulesh simulation, we fixed the size of each MPI rank’s
domain size to be 320 (3203 cells or 3213 vertices). The entire simu-
lation then scales up by using more domains/MPI ranks, making it
a weak scaling problem. Lulesh supports the number of MPI ranks
being cubics of natural numbers, i.e., 13,23, 33, etc.

We vary two parameters for experiment runs:

e number of MPI ranks: 1, 8, 27, 64, 125, 216, 343, 512, 729, and
1,000;
e compression ratio: 1:1, 16:1, 64:1, and 128:1;

The number of MPI ranks is essentially the number of compute
nodes we use, since we assign one MPI rank to a node. The total
number of tests we performed is then 10 X 4 = 40.

4 RESULTS

4.1 Execution Time Impacts

We present the execution times in Figure 1. Each column is one
experiment run. These columns are grouped into groups of four;
each group has experiment runs with the same number of compute
nodes. The four columns within each group differ in their compres-
sion ratios; they are 1:1, 16:1, 64:1, and 128:1 from left to right. Note
the 1:1 column has no compression time.

Each column provides an execution time per cycle averaged
from five cycles. Though each cycle has one simulation step, it
has seven compression and writing steps for seven variables (see
Subsection 3.2). The sum of the seven compression and writing
times are reported here. The runs were performed during a lull on
the machine in the middle of the night, in an effort to minimize I/O
contention with other jobs running on the supercomputer.

Experiment results show that simulation time stays relatively
steady at around 9 seconds per cycle, no matter how many nodes
are in use and whether or not in situ compression is involved.
Wavelet compression adds computational overhead to every cycle.
This overhead is mostly consistent as well (around 5 seconds per
cycle), because the wavelet transform and coefficient thresholding
steps are both independent of the final compression ratio.
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Figure 1: Per cycle execution time breakdown of 40 experiment runs. Each group of four uses the same number of compute
nodes (X labels), but different compression ratios: 1:1, 16:1, 64:1, and 128:1 (from left to right within each group).
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Figure 2: Achieved parallel filesystem writing speed with dif-
ferent number of compute nodes (X-axis).

4.2 1/O Performance Analysis

The I/O time shows more interesting results than computational
time considering the huge difference of the amount of data being
written to the filesystem. With our experiment settings, each node
generates a fixed amount of raw data per cycle. The total amount of
data is then proportional to the number of nodes. However, looking
at the writing time of raw data (left-most columns of each group
of four), they are by no means proportional to the total amount of
data being written.

We consider this interesting I/O behavior due to the very large
aggregate bandwidth of parallel filesystems. This bandwidth is large
enough that a small set of compute nodes are not using up all of it —
the I/0O is constrained by the network between individual nodes and
the parallel filesystem. After the number of concurrently-writing
nodes grows past a certain point, the I/O bottleneck starts to shift to
the parallel filesystem, when its bandwidth gets saturated. Looking
at our results, the raw data writing time is almost constant up to
216 nodes, and then starts to grow with the number of nodes.

We compared our results with the specs of the test system
(Cheyenne of NCAR), which is equipped with a 200 GBps filesys-
tem. The amount of raw each compute node generates each cycle

is roughly 1.84 GB. The achieved aggregate I/O is then calculated
using the total amount of data and writing time, which is presented
in Figure 2. It tops out at approximately 170 GBps starting from 343
nodes. We achieved this plausible I/O rate because we run our exper-
iments when the supercomputer is relatively idle, and in-production
simulations are likely to face more contentious conditions.

The I/O time with compression is much less consistent, meaning
that writing time for the same-ratio compressed data vary consider-
ably from one run to another. Compared to raw data writing time, it
is almost always taking a larger percentage of time than its data size
fraction. We consider this to be due to the relatively large latency
of parallel filesystems, which introduces a lot of variance to writes
with small amount of data. The only certainty for such scenarios is
that writing compressed data takes much less time than raw data.

5 VIABILITY OF IN SITU COMPRESSION
5.1 Overall I/O Viability

With in situ compression, computational overhead is incurred while
the actual I/O is most likely reduced. We thus consider the overall
1/0, which includes both computational and the actual I/O cost. In
our experiment, computational overhead counts for the majority of
overall I/O, which may or may not improve over writing raw data.

In the case where the number of compute nodes is small, the
achievable aggregate I/O is able to grow as the number of compute
node grows. The computation of the compression then needs to be
performed fast enough to improve the overall I/O, at least faster than
writing raw data to disk. This can be considered as a performance
lower bound. The in situ wavelet compression implementation we
tested fails in this criterion, and it caused overall I/O to grow with
less than 512 nodes.

In the case with a large number of compute nodes, their concur-
rent I/O requests may top out past the aggregate I/O of the parallel
filesystem. In situ compression is then possible to improve overall
/O here. Given a filesystem with aggregate 1/0 bandwidth Vg4,
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Figure 3: Renderings of the pressure field from Lulesh: a shock wave propagates in a cube. From left to right, they are from
the raw data, and compressed data with ratios 16:1, 64:1, 128:1. The most artifacts emerge on the shock wave front.

N compute nodes each generating D j,p,4in amount of data, the
I/O time to write the raw data is Trgw = (N * Dgomain)/Vaggr- As-
sume an in situ compressor that takes T¢omp time in calculation and
achieves a compression ratio of R, the overall I/O for the same N
compute nodes is then Tin—situ = Teomp+(N-Dgomain)/(Vaggr-R).
The overall I/O T;;,—siry improves over Ty 4,y when the compression
time satisfies the following equation:
N - Ddomain - (R—1)

Vaggr - R ’
With lossy compression, compression ratios are usually big enough
that (R — 1)/R can be approximated to be 1. The equation can then
be re-written as:

Teomp <

N> Tcomp : Vaggr )
Daomain

This equation means that with enough compute nodes, in situ
compression can always improve the overall I/O. First, without
much surprise, this threshold is proportional to the computational
overhead Tcomp, so faster compression lowers this threshold. Sec-
ond, this threshold is also proportional to the rate between aggre-
gate filesystem bandwidth and the domain size (Vaggr /Daomain)-
Given that the domain size may be constrained by the memory
capacity of compute nodes, and the memory capacity growth keeps
outpacing the bandwidth growth, this trend further lowers this
threshold. In our experiment, 512 was estimated to be the threshold
so the overall I/O was improved with 729 and 1,000 nodes; the I/O
time of 1,000 nodes was almost cut in half. We anticipate simulation
runs with larger numbers of nodes would benefit even more.

Besides the factors we have analyzed here, the overall I/O of
real-world simulation runs is also subject to other variations, in-
cluding hardware specifications, parallel filesystem characteristics,
and even other users concurrently using the system. An accurate
analysis on the overall I/O is even more challenging with these
variations. We believe the trend is a more important takeaway,
which is that larger simulations are more likely to benefit from a re-
duced overall I/O, and the amount of benefit is going to grow as the
relative I/O bandwidth keeps decreasing. Moreover, any potential
improvement of the overall I/O is already on top of storage benefit
from a reduced data size.

5.2 Memory Viability

Memory overhead is another consideration of in situ compression,
since many simulations are already bound by available system

Table 1: Error measurements from compression for each
compression ratio (first column from left). Both root-mean-
square error (RMSE) and L — co norm values (second column)
are normalized by the range of data. The rest columns are
evaluations of five data fields: energy (e), relative volume (v),
pressure (p), artificial viscosity (q), and x-velocity (xd).

e v p q xd
16 RMSE | 6.7¢e —8 | 4.1e—8 | 3.5¢e —4 | 2.2e—4 | 1.1e—3
—o0 | 92e—-7 | 47e—-7 | 53e—-3 | 44e—-3 | 1.5e -2
64 RMSE | 7.7e —7 | 4.8e—7 | 49¢—3 | 5.8¢ —3 | 1.0e — 2
—oo | 1.8e—=5 | 1.6e—=5| 1.0e—1 | 1.2e =1 | 2.0e—1
128 RMSE | 1.7e—6 | 1.1e—6 | 1.0e —2 | 1.2e—2 | 1.8 —2
—oo0 [ 3.8e—5|23e—-5|2.6e—1]|29%—-1]34e—-1

memory. The wavelet compressor we used does not work in a
streaming fashion, instead, it requires an extra buffer space for
each variable it processes. That means, for a variable of size S, it
introduces a memory overhead of 2S. A simulation usually consists
of multiple variables. In the case where the in situ compressor fully
makes use of the available parallelism, this memory overhead is not
multiplied since these variables can be processed one by one. The 2S
memory overhead thus becomes independent of the total number of
variables, making in situ compression more viable. In the case where
the compressor is not fully parallelized, multiple variables need to be
processed simultaneously to exploit the available parallelism. The
2S memory overhead is then multiplied, making in situ compression
less viable. The wavelet compressor in our experiment falls into
the first case, so it introduced memory overhead that is twice the
largest variable at 3213 resolution, or 529 MB in total, which was
acceptable for our test supercomputer system.

5.3 Data Integrity Viability

Data integrity is a universal concern of all lossy compression tech-
niques, but the acceptance of information loss greatly varies. This
acceptance is usually determined by factors such as the nature of
the intended analysis, the accuracy requirement of a particular ap-
plication, as well as resource limitations such as I/O and storage.
Given that this paper focuses on performance impacts of in situ
compression, we present a visualization and simple statistics of the
resulting compression but choose not to go into detailed analysis.
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Figure 3 presents ray tracing results of the pressure field of
this shock wave at time step 4,300, in a 1283 cube. While the 16:1
result looks almost indistinguishable from the baseline, the 64:1
result has clear “ripples” along the shock wave front, since that is
where most of the energy resides. The 128:1 result is even more
deteriorated with not only rough front, but also artifacts in the
volume. Table 1 presents error measurements for multiple data
fields at the same time step. The normalized root-mean-square
error provides an average deviation, and the normalized L — oo
norm provides the maximum point-wise difference. We used a 1283
cube for this visualization instead of sizes in our performance tests
(320 or even larger) because the per-voxel differences are still
prominent in smaller volumes; renderings look more similar to
each other in a 320% cube. Again, data integrity is highly analysis-
dependent and a complex topic by itself. Interested readers may
further read into recent publications such as [12, 26] and [15].

5.4 Storage Viability

In situ compression reduces the storage cost regardless of its perfor-
mance: either the same data takes less storage, or the same storage
is able to hold more data. Given the data integrity requirements
are satisfied, both scenarios are welcome for scientists. Thus, the
storage viability is really a benefit rather than a concern.

6 CONCLUSION

We studied performance impacts of in situ wavelet compression
on a scientific simulation. Based on results and analysis of a weak
scaling experiment on a large-scale supercomputer, we gained bet-
ter understanding of the I/O impacts of in situ compression, and
derived an empirical equation to quantify when we can expect in
situ compression to improve the overall I/O. Finally, we argued that
in situ compression is a viable alternative to post hoc and in situ
analysis by discussing various aspects of its viability.
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