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ABSTRACT

I/O is increasingly becoming a significant constraint for simu-
lation codes and visualization tools on modern supercomputers.
Data compression is an attractive workaround, and, in particular,
wavelets provide a promising solution. However, wavelets can be
applied in multiple configurations, and the variations in configu-
ration impact accuracy, storage cost, and execution time. While
the variation in these factors over wavelet configurations have been
explored in image processing, they are not well understood for vi-
sualization and analysis of scientific data. To illuminate this issue,
we evaluate multiple wavelet configurations on turbulent-flow data.
Our approach is to repeat established analysis routines on uncom-
pressed and lossy-compressed versions of a data set, and then quan-
titatively compare their outcomes. Our findings show that accuracy
varies greatly based on wavelet configuration, while storage cost
and execution time vary less. Overall, our study provides new in-
sights for simulation analysts and visualization experts, who need
to make tradeoffs between accuracy, storage cost, and execution
time.

1 INTRODUCTION

The design of modern supercomputers is constrained both in how
much money can be spent on its components and in how much en-
ergy the machine can consume when operating. These constraints
force supercomputer architects to make difficult tradeoffs among
the system components (e.g., networking, I/O, memory, and com-
putational speed) to balance their budgets. Over the last decade,
architects have devoted smaller and smaller percentages of their
budgets toward I/O. As a result, both the I/O bandwidth and the
storage capacity are often not keeping pace with these supercom-
puters’ abilities to generate data.

For visualization and analysis, in situ processing has shown great
promise in addressing this reduced I/O capabilities. However, in
situ works best when analysts know the visualizations and analyses
that they want to perform a priori. In a data exploration-oriented
setting, the traditional post hoc model — where data is stored to
disk and explored on human time scales afterwards — is still the
dominant paradigm. And, in this paradigm, I/O performance is fre-
quently the bottleneck for overall performance [4].

In the image processing community, data reduction, especially
wavelet-based lossy compression techniques, has proven to be ef-
fective in addressing both I/O bandwidth and storage capacity.
While image data and scientific data share characteristics, namely
that they are both non-periodic and self-similar (i.e., neighboring
data points are likely to have similar values), the efficacy of wavelet
compression observed for image data does not clearly map to sci-
entific data. Though one could reasonably assume that the benefits
from wavelet-based lossy compression will translate, the magni-
tude of effects are still unknown. That is, visualization experts and
simulation scientists do not have a clear sense of the tradeoffs in
accuracy, storage cost, and execution time for their data sets. With
this study, we sought to answer these questions.

Our experiments applied wavelet compression to large scien-
tific data sets, specifically turbulent-flow data sets, and measured
how well lossy compressed forms could be used for visualizations
and analyses. Each of our evaluations, including our accuracy
evaluations, was quantitative in nature, making for clear compar-
isons. That said, evaluating accuracy is frequently an application-
dependent process. Lost data accuracy may be insignificant for
some analyses, but very important for other analyses. Our approach
for this issue was to consider two specific analyses, drawn from ex-
isting in-depth studies with simulation scientists, and then repeat
them with wavelet-compressed data.

Traditionally, the scientific visualization community has used
wavelet transforms in a configuration employing multi-resolution
hierarchies and the Haar kernel. This arrangement provides pro-
gressive data access, and also achieves data reduction when reading
data representations at coarser resolutions. The image processing
community, however, is employing alternate approaches. Currently,
this community makes heavy use of prioritized coefficients to or-
ganize their data, and Cohen-Daubechies-Feauveau (CDF) wavelet
kernels. With this study, we want to consider all of these configura-
tions, their efficacies, and how they compare.

The work in this paper is an evaluation study. The goal of this
evaluation is to provide more guidance to visualization experts and
simulation scientists when deciding to apply wavelet compression
in their work. Its specific contributions are:

• Demonstration that configurations currently favored by the
image processing community also perform well in the con-
text of meaningful scientific analyses applied to turbulent-
flow data. Specifically:

– Coefficient prioritization performs better than the multi-
resolution approach.

– The CDF 9/7 kernel performs better than the Haar ker-
nel.

• Evaluation of wavelet configurations that focuses on quanti-
fying differences, which enables intuitive comparisons.

This paper is organized as follows: Section 2 describes basics
of wavelet compression, and surveys relevant research. We pro-
vide an overview of our study in Section 3, and describe the two
established visual analyses that we repeat in Section 4. Section 5
describes our evaluation metrics and efficacy results for both visual
analyses. Section 6 augments this analysis to illuminate tradeoffs in
accuracy, storage cost, and execution time. We conclude the work
in Section 7.

2 BACKGROUND

We begin by discussing the basics of data compression using
wavelet transforms in Section 2.1. We then discuss wavelet config-
urations: Section 2.2 describes two compression strategies and Sec-
tion 2.3 describes three wavelet kernel choices. Finally, we survey
prior work using wavelet compression for visualization and analy-
ses in Section 2.4.



2.1 Data Compression Using Wavelet Transforms
Let x[n] be a one-dimensional data array of size K and uk[n] be a set
of K basis functions. Then a wavelet transform expands x[n] as:

x[n] =
K−1

∑
k=0

ak ·uk[n]. (1)

Each coefficient ak measures the similarity between the correspond-
ing basis function uk[n] and the input data array x[n]. This transform
itself is lossless and x[n] can be reconstructed by calculating the
above expansion using all K coefficients. However, wavelets are
frequently used in a lossy manner [8, 19, 26]; when reconstructing
x[n], an approximation, x̃[n], can be calculated by using a subset of
the K̃ coefficients:

x̃[n] =
K̃−1

∑
k=0

ak ·uk[n], (K̃ < K). (2)

Since the basis functions, uk[n], can be calculated on the fly, data
compression is achieved by storing a subset of coefficients, and re-
constructing x̃[n] using only this subset. The compression ratio is
thus derived from the fraction of coefficients used. For instance, to
achieve an 8:1 compression ratio, one eighth of the total number of
coefficients would be used.

Wavelet transforms can be applied recursively on coefficients
from previous wavelet transforms, resulting in a hierarchy of co-
efficients. This recursive application of wavelet transforms helps
concentrate information content into fewer and fewer coefficients,
and the resulting coefficient hierarchy enables a data representation
spanning multiple resolutions.

2.2 Compression Strategy Options
There are multiple ways to lay out wavelet coefficients. Because we
always read the K̃ coefficients from a consecutive storage space, the
ordering of coefficients determines which coefficients are included
to reconstruct the approximation, and thus determines the compres-
sion strategy. With our study, we evaluated a multi-resolution strat-
egy and prioritized coefficient strategy.
Multi-resolution: With a multi-resolution approach, coefficients
are laid out naturally with respect to the coefficient hierarchy. Be-
cause each level of coefficients reconstructs an approximation of the
original data array, compression is achieved by storing only some
levels of coefficients from the hierarchy. Coefficients stored in this
manner retain their addresses, i.e., where they belong to in the co-
efficient hierarchy, and thus do not require additional addressing
mechanisms.

Each iteration of wavelet transform coarsens the data array into
half of its previous resolution. For example, the Haar wavelet ker-
nel calculates the unweighted average of two neighbor elements as
the approximation, which has one value. As a result, the multi-
resolution compression strategy offers a pyramid representation
that is strictly limited to power-of-two reductions along each axis.
In the case of a three-dimensional regular mesh, the applicable com-
pression ratios are of the form 8N :1, where N is the number of itera-
tions of wavelet transform to apply. That is, applicable compression
ratios include 8:1, 64:1, 512:1, etc.

Finally, the multi-resolution wavelet approach differs from sim-
ilar techniques used by the visualization community, such as
mipmapping [31], and space-filling curves [20, 17]. In the first
case, mipmapping requires additional storage space for the coars-
ened approximations. In the second case, the coarsened approxi-
mations come from single point data (nearest neighbor sampling),
rather than average of all points in that region.
Prioritized Coefficients: When reconstructing the original data
from the wavelet expansion given in Equation 1, coefficients have

different importance, i.e., coefficients representing the more rapidly
changing parts of the original data contribute more than coefficients
representing the more self-similar parts. The prioritized coefficient
technique makes use of this property by laying out the coefficients
based on their importance, i.e., important coefficients are placed
toward the beginning of the storage space. Compression is thus
achieved by storing only the collection of important coefficients,
and treating the rest coefficients as zeros.

The prioritized coefficient strategy differs from multi-resolution
strategy in that: 1) it supports an arbitrary compression ratio, by
choosing what percentage of total coefficients to keep; 2) it supports
reconstructing the mesh on its full resolution, by filling zeros to
the coefficient locations that are not stored; and 3) it requires extra
mechanisms to keep track of where the prioritized coefficients be-
long in the coefficient hierarchy. The software we used to perform
wavelet compression keeps coefficient addresses explicitly, thus in-
troducing storage overhead. We will further discuss this addressing
choice and quantify this storage overhead in Section 6.2.

2.3 Wavelet Kernel Choices

Wavelet kernels are used to generate the basis functions from Equa-
tion 1. These basis functions, in turn, have different efficacies when
used for data compression. In our study, we consider three wavelet
kernels: Haar, CDF 9/7, and CDF 8/4.

The Haar [14] kernel is one of the most basic and widely un-
derstood wavelet kernels. It serves as a baseline for our evaluation.
The Haar kernel generates a series of “square-shaped” functions for
its basis functions. When used with the multi-resolution strategy,
the Haar kernel yields a hierarchy representation that is identical
to that produced with a linear (trilinear in three dimensions) down-
sampling filter. Because the Haar kernel is so simple, it introduces
only a modest computational cost (see Section 6.3).

Both CDF 9/7 and CDF 8/4 are from the Cohen-Daubechies-
Feauveau [7] biorthogonal wavelet family. Members in this fam-
ily differ based on their filter sizes, which are indicated as the
suffix, e.g., 9/7 or 8/4, and to the degree with which they resem-
ble orthogonal wavelets. The CDF family of wavelets is widely
used in the compression of non-periodic signals (e.g. images and
video) due to its effective boundary handling capabilities [29]. The
CDF 9/7 kernel, in particular, has been empirically shown to yield
superior compression distortion results for imagery [1, 30], and
is widely used for multimedia compression applications including
JPEG 2000 [25]. The CDF 8/4 kernel is the default wavelet kernel
used in an open-source visualization and analysis software, VA-
POR [5, 6], so we also include it into our evaluation.

2.4 Prior Research of Wavelets in Visual Analytics

Wavelet compression has been previously employed with scientific
visualization. When reconstructing slices of a CT data set, two-
dimensional wavelet transforms have been proven to provide high
compression rates with fast decoding for performing random access
of voxels [15, 23]. When used on three-dimensional volume data
sets, such as hydrodynamic simulations, global ocean models, or
terrain data, wavelet compression has been shown to be effective
when visualizing different levels of detail [2, 24, 27, 21]. Wavelet
compression also brings new possibilities for real-time analysis on
large-scale data sets on commodity hardware [10, 13]. A 1,0243

turbulent-flow data set was also visualized at a rate of 5 seconds per
time step on desktop PCs, via reduced I/O from applying wavelet
compression [28].

Some notable prior studies have also tried to understand the ef-
fects of wavelet compression on scientific data. Wong et al. pro-
posed an energy-based model to analyze the authenticity of orthog-
onal wavelet compressed volume data [32]. Woodring et al. and
Ma et al. further introduced visualization techniques to encode the
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Figure 1: Our experiment methodology. We used wavelet compres-
sion to create a compressed form (DATA’) from its original form
(DATA). RESULTS and RESULTS’ represent the analysis results
from DATA and DATA’, respectively. Our study then quantitatively
evaluated the difference between RESULTS and RESULTS’.

amount of variance in a location, providing the ability to exam-
ine local information loss at points of interest [33, 18]. Further,
the Woodring et al. study provided exact error bounds for each
data compression level, allowing domain scientists to get a pre-
cision guarantee when analyzing compressed data sets. Finally,
Gralka et al. included wavelet compression into an application-
specific compression pipeline for particle-based data, and evaluated
the effectiveness of their compression pipeline [11].

In contrast to previous studies of wavelet compression on sci-
entific data, we consider a variety of wavelet configurations, and
evaluate tradeoffs in accuracy, storage cost, and execution time.

3 STUDY OVERVIEW

We studied multiple wavelet configurations, varying over compres-
sion strategies, wavelet kernels, and compression ratios. Section 3.1
describes our experiment methodology for a generic configuration,
and Section 3.2 describes the different wavelet configurations we
studied.

3.1 Experiment Methodology
Our experiment methodology, illustrated in Figure 1, was as fol-
lows:

• We began with turbulent flow data in its raw form.
• We applied wavelet compression to the raw data to get the

compressed form.
• We applied an analysis routine to the data in both its raw and

compressed forms.
• We quantitatively evaluated the difference between the results.

This wavelet transformations were performed using the VAPOR
software package [5, 6]. VAPOR also has advantages over other
implementations, as in [33] for example, that VAPOR natively sup-
ports wavelet transforms in three dimensions, and operates on float-
ing point data. For the analysis routines, we used the software that
was used to perform the analysis originally: VisIt [3] or VAPOR.

3.2 Wavelet Configurations Studied
We performed our experiments in three rounds.

In the first round, we considered the wavelet compression strat-
egy. Specifically, we compared multi-resolution with prioritized
coefficients (see Section 2.2), both using the Haar kernel. Since the
multi-resolution approach requires two-to-one reduction in all three
dimensions, only reductions that are powers of eight are possible.
The three compression ratios we studied for this round were 8:1,
64:1, and 512:1.

In the second round, we studied the effects of the wavelet ker-
nels. Specifically, we compared the Haar kernel, the CDF 9/7 ker-
nel, and the CDF 8/4 kernel. All tests in this round used the prior-
itized coefficients strategy. The compression ratios for this round
were 8:1, 16:1, 32:1, 64:1, 128:1, 256:1, and 512:1. With priori-
tized coefficients, arbitrary ratios would have been possible, but we

8:1 16:1 32:1 64:1 128:1 256:1 512:1

8:1 16:1 32:1 64:1 128:1 256:1 512:1

Haar
Multi-res

Prioritized

CDF 9/7 Prioritized

CDF 8/4 Prioritized

Kernel
Compression 
Strategy

8:1 16:1 32:1 64:1 128:1 256:1 512:1

8:1 16:1 32:1 64:1 128:1 256:1 512:1

Haar
Multi-res ✔ ✔ ✔

Prioritized ✔ ✔ ✔ ✔ ✔ ✔ ✔

CDF 9/7 Prioritized ✔ ✔ ✔ ✔ ✔ ✔ ✔

CDF 8/4 Prioritized ✔ ✔ ✔ ✔ ✔ ✔ ✔

Kernel
Compression 
Strategy

Figure 2: Wavelet configurations studied. Cross signs represent
configurations examined in our first round of experiments, circles
represent configurations examined in our second round of experi-
ments, and squares represent configurations examined in our third
round of experiments.

chose powers of two for easy comparisons with the multi-resolution
approach.

In the third round, we repeated the wavelet configurations from
the first two rounds, but with a different analysis routine.

Figure 2 summarizes the wavelet configurations we studied over
all three rounds.

4 VISUAL ANALYTICS OVERVIEW

Our study incorporated two analysis routines, both of which came
from established research on turbulent-flow data. These two analy-
ses were both performed on rectilinear data sets from simulations.
In our study, we located the original data sets used in the two prede-
cessor studies. We denote their data sets DS1 and DS2 for simplic-
ity. DS1 contained a single scalar field defined over thirteen time
slices on a 4,0963 mesh. DS2 did not vary in time. It contained a
scalar field and a vector field, both defined on a 1,0243 mesh. For
DS1 and DS2, the scalar field was “enstrophy,” which directly mea-
sures the kinetic energy in a flow model. For DS2, the vector field
was velocity.

Both established analysis routines identified and analyzed criti-
cal structures, which are defined as regions with significantly higher
enstrophy values than the areas surrounding it. However, they fo-
cused on the critical structures’ properties in different scopes. The
first analysis (Section 4.1) focused on the global population of all
critical structures, while the second analysis (Section 4.2) focused
on the local dynamics of individual critical structures.

Finally, we note that our goal is to evaluate tradeoffs in com-
pression and accuracy on established analysis routines with wavelet
compressed data over a variety of wavelet configurations. In partic-
ular, if an analysis routine is especially sensitive to lost accuracy in
the data, then we view that as a finding for our study, but not as a
cue that we should extend or modify the established analyses.

We describe the key steps of these two visual analytics routines
in the following subsections.

4.1 Critical Structure Identification
Gaither et al. performed an analysis that included measuring the
global population of critical structures [9]. Identifying these crit-
ical structures took two steps. The first step isolated regions with
enstrophy values higher than α , a fixed value provided by domain
scientists. For reference, the test data set DS1 contains millions
of these high-enstrophy regions. The second step eliminated struc-
tures with a volume smaller than a threshold β , again a fixed value
provided by domain scientists. For DS1, this process reduces the
number of critical structures down to hundreds. Figure 3 shows a
screenshot of these identified critical structures at the first time slice
of DS1, as well as a close-up look at one of the critical structures.

This analysis routine can potentially be quite sensitive to changes
in the enstrophy field from compression. If the compressed enstro-
phy breaks a component, then the result may put that component
below β . Similarly, if the compressed enstrophy joins two disjoint



Figure 3: The left rendering shows critical structures identified from
the first time slice of DS1. Each structure has a unique color in
this view. The right rendering shows a close-up view of one of the
critical structures.

components, then the result may put the joined component above β .
Such a change would affect the statistics of the global population of
critical structures.

4.2 Local Dynamics Analysis
Gruchalla et al. analyzed the dynamics of individual structures in a
turbulent-flow simulation [12]. Specifically, for a single structure,
they studied the change in velocity from the inside of the struc-
ture to the outside. For their analysis, structures were first identi-
fied following steps similar to those described in Section 4.1, and
then representatives from two distinct types of local dynamics were
picked to perform further analysis. Renderings of these two repre-
sentations can be found in Figure 8a and 8b in the the results dis-
cussion. The high-enstrophy areas of these structures are rendered
in blue, and their local dynamics are illustrated by yellow stream-
lines seeded in the velocity field. We refer to these two types of
structures as S1 and S2. Visually, the two types of dynamics can be
distinguished from each other, since streamlines twist around the
core with S1, and follow the writhe of the tube with S2.

Their primary analysis looked at radial-enstrophy profiles — en-
strophy as a function of radius — for individual structures. They
created this profile by considering fifteen cross sections along the
major axis of a structure. Within a cross section, they identified
the center of the structure for that cross section. They then calcu-
lated the average enstrophy around this center for many different
radii. This resulted in a radial-enstrophy profile for that cross sec-
tion. They then averaged the radial-enstrophy profiles over all cross
sections to create the final radial-enstrophy profile.

A radial-enstrophy profile captures local flow dynamics. For
S1, the profile shows high enstrophy values in the core, and drops
rapidly when exiting the structure. For S2, the profile shows mod-
erate enstrophy values in the core and drops slowly when exiting
the structure.

5 EFFICACY EVALUATIONS

In this section we present evaluation results from our two estab-
lished analyses. Section 5.1 presents the results from the first anal-
ysis: critical structure identification. This section consists of the
first two rounds of our experiment. Section 5.2 presents the results
from the second analysis: local dynamics analysis. This section
consists of the third round of our experiment.

For each of the two analyses, we first describe our evaluation
metric, and then present the evaluation results.

5.1 Evaluation: Critical Structure Identification
5.1.1 Evaluation Metric
The critical structure identification task yields some number
of identified structures on both the raw data and the wavelet-

compressed data. In the ideal case, the number of critical struc-
tures for both would be the same, and each critical structure in the
baseline analysis would have a corresponding structure in the same
location in the compressed data. However, in practice, the critical
structures do not always align in this ideal way.

There are two types of error that can occur. First, a critical struc-
ture can appear in the compressed data that does not appear in the
raw data. We refer to this type of error as a false positive. Second,
a critical structure can fail to appear in the compressed data, even
though it does appear in the raw data. We refer to this type of error
as a false negative. Our evaluation metric is based on the number
of false positives and false negatives — the lower these two num-
bers are, the better the results from the compressed data match the
baseline results from the raw data.

To provide a better comparison among all time slices, we consid-
ered the proportion of error among the critical structures, rather than
absolute numbers. Formally, let FN be the number of false nega-
tives, FP be the number of false positives, and COMM be the num-
ber of critical structures common to both. We then focused on two
error metrics: FN Proportion, defined as FN/(FN +COMM),
and FP Proportion, defined as FP/(FP+COMM). Both metrics
range between zero and one, with values closer to zero being better.

Determining if an identified critical structure is common to both
is not a trivial task. We used a proximity test to match up criti-
cal structures in COMM. This test compared the bounding boxes
of all structures in the baseline with the bounding boxes of all
structures in the compressed data. For each pair of baseline-and-
compressed structures, the overlap was measured. The overlap was
calculated so that structures with similar sizes and similar spatial
extents would have high values. Specifically, if V was the volume
of intersection between the two, VB was the volume of the baseline
structure, and VC was the volume of the compressed structure, then
their overlap was scored as V 2/(VB ×VC). A perfect overlap would
score one, and no overlap would score zero. A baseline-compressed
structure pair was then identified as the “same” if, for a baseline
structure b and a compressed structure c, then b’s best match (i.e.,
highest score) was c, and c’s best match was b. This meant that
large baseline structures that got split during compression would
contribute false positives (as only one compressed structure would
match, but one would find no match), and separate baseline struc-
tures that got combined during compression would contribute false
negatives (as only one baseline structure would match the combined
structure).

5.1.2 Results: Wavelet Compression Strategy

We evaluated the two wavelet compression strategies — prioritized
coefficients and multi-resolution (see Section 2.2) — with three
compression ratios: 8:1, 64:1, and 512:1. Each test used the Haar
kernel. This resulted in six different wavelet settings. Figure 4
shows renderings from our analysis using each of the six settings on
the first time slice of DS1. Visual inspection shows that results us-
ing the prioritized coefficient strategy not only retain more critical
structures from the baseline, but also preserve more shape details.

Figure 5 compares FN Proportion and FP Proportion between
the prioritized coefficient strategy and the multi-resolution strategy.
It plots the average values over all thirteen time slices. Prioritized
coefficients clearly outperform the multi-resolution approach, as
the blue lines are significantly lower than the red ones. That said,
FN for multi-resolution drops at the 512:1 ratio. This is because
the multi-resolution strategy fails to identify most of the structures
at this compression level, so the few identified ones are likely to be
correct. Restated, this low false positive proportion does not indi-
cate better performance for the multi-resolution strategy.



(a) Multi-resolution, 8:1 (b) Prioritized Coefficients, 8:1

(c) Multi-resolution, 64:1 (d) Prioritized Coefficients, 64:1

(e) Multi-resolution, 512:1 (f) Prioritized Coefficients, 512:1

Figure 4: Screenshots from our critical structure identification task
using the multi-resolution strategy (left column) and the prioritized
coefficient strategy (right column). These screenshots are from the
first time slice of DS1, so the left image of Figure 3 shows the
baseline result for raw data for this task.

Figure 5: False negative (solid lines) and false positive (dashed
lines) proportions for two compression strategies. The multi-
resolution results are colored red, and the prioritized coefficient re-
sults are colored blue. Each line is an average of results from all
thirteen time slices.

(a) Baseline Result (b) Haar Kernel, 256:1

(c) CDF 9/7 Kernel, 256:1 (d) CDF 8/4 Kernel, 256:1

Figure 6: Screenshots from our critical structure identification anal-
ysis on the first time slice of DS1. All the compressed results (b, c,
and d) use a prioritized coefficient strategy.

5.1.3 Results: Wavelet Kernel Choice
We then expanded our kernel choices to include the CDF 9/7 and
CDF 8/4 kernels. This meant there were a total of three kernels,
as we still considered the Haar kernel. We no longer considered
a multi-resolution approach, and this allowed us to consider more
compression ratios. We studied seven: 8:1, 16:1, 32:1, 64:1, 128:1,
256:1, and 512:1. Thus, the total number of experiments was 21.
Figure 6 shows the visual difference among three wavelet kernels
using the 256:1 compression ratio (6b, 6c, and 6d), and their com-
parison to the baseline (6a). Visual inspection shows that while all
kernels capture many structures, CDF 9/7 and CDF 8/4 manage to
keep more details than Haar.

We plotted FN Proportion and FP Proportion for the three
wavelet kernels in Figure 7. Again they are averaged over all thir-
teen time slices. The top plot shows that the CDF 9/7 and CDF 8/4
have similar false negative proportions, and they are both lower than
the Haar kernel. The bottom plot shows that the CDF 9/7 kernel has
the lowest false positive proportions at every compression ratio by
a clear margin. Summing up, results from this evaluation indicate
that CDF 9/7 is the best choice among these three wavelet kernels
for this analysis.

5.2 Evaluation: Local Dynamics Analysis
5.2.1 Evaluation Metric
Our evaluation process began by identifying the two structures, S1
and S2, in the raw and wavelet-compressed versions of the data.
We then calculated their radial-enstrophy profiles. Ideally, the pro-
file produced using the compressed data would be the same as the
profile from raw data, i.e., the radial-enstrophy plots would overlap
with each other. However, in practice, there were differences be-
tween the two profile lines. We evaluated the wavelet compression
by quantifying the difference between these two radial-enstrophy
profiles — the smaller the difference, the better the compressed data
preserved local dynamics.
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Figure 7: False negative (top) and false positive (bottom) propor-
tions for three wavelet kernels. Each line is an average of results
from all thirteen time slices.

(a) S1: Baseline Rendering (b) S2: Baseline Rendering

(c) S1: CDF 9/7+Prioritized, 128:1 (d) S2: Haar+Multi-resolution, 64:1

Figure 8: Visualizations of identified critical structures (rendered
in blue) and their local dynamics (rendered in yellow). The top
subfigures show the baseline rendering using the raw data, and the
bottom subfigures show the rendering using the compressed data.

We used the root mean square error (RMSE) metric to measure
the difference between the two profiles. Specifically, given the
baseline radial-enstrophy profile E[r] (0 6 r < N) and the radial-
enstrophy profile from compressed data Ẽ[r] (0 6 r < N), RMSE is
then defined as:

RMSE =

√
∑

N−1
r=0 (E[r] − Ẽ[r])2

N
. (3)

In this work, we normalized RMSE by the observed data range.
Thus, the normalized RMSE (a.k.a. NRMSE) evaluated to zero
when E[r] and Ẽ[r] are exactly the same, and evaluated to one in
the worse possible case.

5.2.2 Evaluation Results
We included all three wavelet kernels and both compression strate-
gies for this evaluation. The multi-resolution strategy used three
compression ratios (8:1, 64:1, and 512:1), and the prioritized co-
efficient strategy used five compression ratios (8:1, 64:1, 128:1,
256:1, and 512:1). So the total number of wavelet configurations
tested was eighteen. Figure 8a and 8b show baseline renderings for
these tests, and Figure 8c and 8d show two examples from the eigh-
teen configurations. Visual inspection shows that data compression
changes the streamlines in both structures compared to the baseline
renderings (Figure 8).

Figure 9 shows the NRMSE of the radial-enstrophy profile for
the two structures after data compression. Both NRMSE plots show
that the three wavelet settings using prioritized coefficients yield
significantly lower errors than Haar+multi-resolution. In addition,
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Figure 9: NRMSE of the radial-enstrophy profile for S1 (top) and
S2 (bottom). Each color represents a wavelet setting in our ex-
periment, with the legend displayed in the bottom figure. The red
color represents Haar+multi-resolution, which only supports com-
pression ratios at 8:1, 64:1, and 512:1 (see Section 2.2). We connect
the data points of 64:1 and 512:1 in this setting using a straight line.

Table 1: Accuracy summary of different wavelet configurations.
The multi-resolution+Haar configuration serves as the baseline, and
the improvements from other configurations are shown compara-
tively.

Wavelet Analysis 1 Analysis 2
Configurations Proportion of NRMSE for

FN FP S1 S2
(8:1 Comp.)
Multi-res+Haar 1x 1x 1x 1x
Prioritized+Haar 11.63x 9.16x 19.31x 3.74x
Prioritized+CDF 8/4 16.40x 13.60x 21.97x 9.93x
Prioritized+CDF 9/7 24.27x 16.35x 26.72x 21.88x
(64:1 Comp.)
Multi-res+Haar 1x 1x 1x 1x
Prioritized+Haar 3.32x 3.59x 4.43x 3.86x
Prioritized+CDF 8/4 5.31x 3.07x 8.19x 14.05x
Prioritized+CDF 9/7 5.34x 3.80x 16.40x 14.05x
(512:1 Comp.)
Multi-res+Haar 1x 1x 1x 1x
Prioritized+Haar 1.39x 0.83x 1.43x 2.21x
Prioritized+CDF 8/4 1.37x 1.39x 1.11x 1.30x
Prioritized+CDF 9/7 1.38x 1.38x 1.39x 1.27x

when using prioritized coefficients, the two CDF kernels always
perform better than the Haar kernel at compression ratios up to
256:1, and the CDF 9/7 kernel has the lowest errors at most config-
urations. This result is consistent with our findings in Section 5.1.

5.3 Summary From Two Analyses

Table 1 summarizes our findings regarding how accuracy compares
over wavelet configuration. In this table, the multi-resolution+Haar
configuration serves as the baseline result, with the accuracy gains
from other configurations shown comparatively. Only compression
ratios of the form 8N are shown, since those are the only ratios sup-
ported by the multi-resolution strategy. In all cases, the prioritized
coefficients strategy using a CDF kernels perform best. The two
CDF kernels perform similarly in most cases, although CDF 9/7
outperforms CDF 8/4 several times. Finally, the improvement is
very significant at finer representations, but less noteworthy at very
coarse representations.



(a) Normalized L∞-norm on wavelet compressed data. The normalized values are com-
puted by scaling the absolute L∞-norms by the maximum enstrophy in DS1. Each box
in this box plot represents a distribution of the L∞-norm over thirteen time slices of
DS1. The Y-axis is on a logarithmic scale.

(b) NRMSE of wavelet compressed data. The NRMSE is computed by scaling the
absolute RMSE value by the maximum enstrophy in DS1. Each line in this line chart
represents an average of DS1’s thirteen time slices.

Figure 10: Statistical error measurements of wavelet compressed
data.

6 FURTHER EVALUATION OF ACCURACY, STORAGE COST,
AND EXECUTION TIME

Our evaluation in the previous section helps illuminate tradeoffs be-
tween compression and accuracy in real-world scientific analyses.
With this section, we study accuracy and compression further, and
also explore storage overhead and execution time:

• Section 6.1 uses statistical error measurements to evaluate dif-
ferent wavelet configurations.

• Section 6.2 studies storage cost, as the prioritized coefficient
strategy introduces overheads that make data savings be less
than the desired compression ratio.

• Section 6.3 reports on the execution times to apply both the
forward and inverse wavelet transforms.

6.1 Statistical Error Measurements
While the focus of our study was on evaluating wavelet efficacy
for established analyses, we also wanted to understand traditional
statistical error measurements. The measurements we chose to per-
form were the L∞-norm and the root mean square error. We chose
these two metrics because they measure extreme differences and av-
erage differences, respectively. Specifically, the L∞-norm captures
the largest possible point-wise difference between the original and
compressed data, and RMSE provides an average error across all
vertices in the volume.

We performed our calculations by directly comparing every pair
of corresponding vertices from the original and compressed data for
all thirteen time slices of DS1. Because this comparison is mean-
ingful only when the compressed data has the same mesh resolution
as the original data, the multi-resolution strategy was not used. Fig-
ure 10a represents the normalized L∞-norm using box plots, and
Figure 10b shows the normalized RMSE (NRMSE). The CDF 9/7
kernel consistently performs the best up to 128:1 compression with
the L∞-norm, and up to 256:1 with RMSE. This result is consistent
with our previous findings. We also note that while the CDF 8/4
kernel generally outperforms the Haar kernel in evaluations both
in Section 5 and in the RMSE evaluation of this section, it yields
larger L∞-norm values than the Haar kernel.

Table 2: File sizes for wavelet-compressed data in GB. Our test data
set was 256 GB, and was compressed using the Haar kernel with
multi-resolution and prioritized coefficient strategies. The actual
achieved compression ratios are shown in parentheses. The four
“N/A” entries are ratios that the multi-resolution scheme does not
support.

Comp. Ratio Ideal Multi-resolution Prioritized
1:1 256.0 256.0179 (0.99:1) 274.1094 (0.93:1)
8:1 32.0 32.0022 (7.99:1) 50.1094 (5.11:1)
16:1 16.0 N/A 25.0938 (10.20:1)
32:1 8.0 N/A 12.5781 (20.35:1)
64:1 4.0 4.0003 (63.99:1) 6.3125 (40.55:1)
128:1 2.0 N/A 3.1719 (80.71:1)
256:1 1.0 N/A 1.5938 (160.62:1)
512:1 0.5 0.5000 (511.97:1) 0.7969 (321.24:1)

6.2 Storage Overhead
Table 2 shows file sizes at different compression ratios for the first
time slice of DS1 (256 GB in raw form). The rest of the time
slices have the same file size since they the same mesh resolu-
tion. We tested both multi-resolution and prioritized coefficient
schemes. Because the prioritized coefficient scheme essentially in-
troduces the same storage overhead regardless of wavelet kernel, we
only report results from the Haar kernel. This table shows that the
multi-resolution scheme achieves ratios close to ideal, i.e., the file
sizes are very close to being in proportion with the compression ra-
tio. It also shows that the prioritized coefficient scheme introduces
slightly more than 50% overhead in storage.

The multi-resolution scheme is able to achieve full storage sav-
ings since the scheme can store its coefficients in the order gener-
ated by the forward wavelet transforms; the addressing of coeffi-
cients is implicit. The slight increases over the compression ratio
are from metadata stored in the file.

The prioritized coefficient scheme must order coefficients based
on their information content. This re-ordering requires tracking
their addresses, and, in our study, the addressing is explicit. We note
that, in the image processing space, encoders such as SPIHT [16]
and SPECK [22] are able to avoid this overhead with complex en-
coding strategies. However, their approaches require byte-scaling
floating point data to integers, which may introduce additional in-
formation loss.

6.3 Execution Time
Wavelet transformation introduces computational overhead when
writing (to perform the forward wavelet transform that compresses
the data) and reading (to perform the inverse wavelet transform that
decompresses the data). In this section, we examine these com-
putational overheads with different wavelet configurations, as the
multi-resolution and prioritized coefficients compression strategies
have different characteristics. For the multi-resolution strategy, the
computational cost is closely related to the compression ratio. This
is because more aggressive compression is achieved by applying
the wavelet transform repeatedly to the data, thus introducing more
computational burden. In our study, we performed the wavelet
transform three times (and thus achieved a compression ratio of
512:1). For the prioritized coefficient strategy, the computational
cost is independent of the compression ratio, because we always
reconstruct the meshes at their native resolutions.

We ran our tests on a subset of DS1 that measured 4 GB in raw
form. We did not use the whole data set since any given node of
a supercomputer will be operating only on a portion of the overall
data set.

Our experiment used one compute node on Maverick, a machine
at the Texas Advanced Computing Center. Compute nodes on this



Table 3: Time cost, in seconds, to perform Discrete Wavelet Trans-
form (DWT) and Inverse Discrete Wavelet Transform (IDWT) on a
4 GB subset of DS1.

Multi-resolution Prioritized Coefficients
Haar Haar CDF 9/7 CDF 8/4

DWT 11.4297 12.9927 14.2177 13.9134
IDWT 5.2971 2.2621 3.8233 3.0584

machine have 20 CPU cores and 256 GB system memory. We used
community software (VAPOR) to perform the wavelet compres-
sion. This software was multi-threaded when using the prioritized
coefficient strategy, i.e., it spawned 20 threads on our test machine.
However, the software ran single-threaded when using the multi-
resolution strategy.

Table 3 reports the run time to perform the forward Discrete
Wavelet Transform (DWT) and the Inverse Discrete Wavelet Trans-
form (IDWT), with each measurement averaged over ten runs. The
results show that the prioritized coefficient strategy, even with im-
proved parallelism, introduces significantly larger computational
costs than the multi-resolution strategy. The CDF 9/7 kernel, which
performed best in our accuracy evaluations, is the slowest to ex-
ecute. Finally, we notice that the IDWT operations take signifi-
cantly less time than DWT, meaning that it is much faster to decode
wavelet-compressed data in a post hoc analysis.

While the run times to apply DWT are greater than ten seconds,
they may be acceptable for in situ usage. We envision wavelet com-
pression running only when the simulation wants to output data;
since this happens infrequently and, since I/O is a costly operation,
the overhead from the compression is likely small in comparison.

7 CONCLUSION

We performed an evaluation study on the efficacy of wavelet con-
figurations for turbulent-flow simulations. Our approach took two
existing visual analytics routines and repeated them on compressed
data sets, varying over compression strategies (multi-resolution and
coefficient prioritization), wavelet kernels (Haar, CDF 9/7, and
CDF 8/4), and compression ratios. We complemented this analysis
with traditional statistical error measurements, additional informa-
tion on storage requirements, and computational overhead for ap-
plying wavelet transforms. In total, this study informs the tradeoffs
between accuracy, storage cost, and execution time when applying
wavelets to turbulent-flow data.

Our findings show that the coefficient prioritization approach
and the CDF kernels provide significant benefits over the multi-
resolution schemes that rely on (tri)linear filtering to produce coars-
ened data (Haar as an example, see Section 2.3). Since the exper-
iments we performed were diverse and their results were consis-
tent, we believe that these findings are likely to generalize to other
scientific visualization usages as well. While our findings match
best practices from the image processing community, our focus on
quantifying the accuracies achieved for domain scientist’s analyses
allow us to determine the magnitude of the benefit for real world
settings. Interestingly, the variation in overall accuracy was quite
high across analysis routines, emphasizing the importance of keep-
ing the final usage in mind.

In terms of future work, we would like to further demonstrate
that wavelet compression is a viable option for exascale simulation
scientists. Our next step is to apply wavelet compression in an in
situ setting.
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