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ABSTRACT

Viewpoint Quality (VQ) metrics have the potential to predict human
preferences for camera placement. With this study, we introduce
new VQ metrics that incorporate entropy, and explore how they can
be used in combination. Our evaluation involves three phases: (1)
creating a database of isosurface imagery from ten large, scientific
data sets, (2) conducting a user study with approximately 30 large
data visualization experts who provided over 1000 responses, and
(3) analyzing how our entropy-based VQ metrics compared with
existing VQ metrics in predicting expert preference. In terms of
findings, we find that our entropy-based metrics are able to predict
expert preferences 68% of the time, while existing VQ metrics
perform much worse (52%). This finding, while valuable on its own,
also opens the door for future work on in situ camera placement.
Finally, as another important contribution, this work has the most
extensive evaluation to date of existing VQ metrics to predict expert
preference for visualizations of large, scientific data sets.

Index Terms: Viewpoint Quality Metrics—View-Dependent
Visualization—Automating Visualization—

1 INTRODUCTION

Camera placement is a critical task for scientific visualization. In
a typical post hoc setting, the camera placement process typically
starts with a default camera position (e.g., zoomed out with the
camera translated down the Z-axis and pointed at the center of the
data set) and a domain scientist uses a mouse to modify the camera
location to a position or positions that increase their insight. That
said, this mode of interaction is not the only approach. Alternatively,
the camera can be set via an automated approach. If the automated
approach can select insightful views, then there are multiple applica-
tions. One application is in the post hoc context, whether for setting
the initial camera position or for suggesting insightful views to users.
Another important application is in the in situ setting, which fre-
quently has no human in the loop. In this setting, automation is
an important approach, i.e., not only having in situ visualization
routines perform tasks like rendering, but also having them perform
tasks like determining the camera positions for those renderings.

A significant number of research investigations have considered
using viewpoint quality (VQ) metrics to evaluate the quality of a
camera placement. These metrics are designed to produce “better”
views as the metric values increase. That said, the evaluation of
these metrics has been limited to non-scientific data sets and the
metrics have not considered in situ constraints. With this work, we
fill this gap by conducting a user study of large data visualization
practitioners using isosurface imagery. Further, while we do not
apply our results in situ, we do constrain the metrics considered to
those that can be efficiently calculated in such a setting.

As a separate contribution, we introduce new VQ metrics that
are based on entropy. We introduce three such metrics, one that
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measures data entropy, one that measures depth entropy, and one
that measures shading entropy. Many previous research efforts have
considered entropy for optimizing visualization parameters; the
novelty in our work is in the specific form for this specific problem.
We also introduce a mechanism for combining metrics. Our findings
show that these metrics perform better than comparator VQ metrics.
Summarizing, this work has two significant contributions:

* We introduce new VQ metrics that are appropriate for an in
situ setting and demonstrate that these metrics perform better
than existing metrics.

* We conduct the first ever user study devoted to large, scientific
visualizations, and use the results to evaluate the efficacy of
ten VQ metrics.

2 RELATED WORK

Foundational research on user preferences for camera position has
occurred outside of the graphics and visualization communities. Tarr
and Kriegman [40] conducted psychoanalysis experiments inves-
tigating the influence of viewpoint on user preference and found
that, for many models, there exists a small number of views that
are preferred by most people. Further, numerous user studies have
shown that users prefer an image with a three-quarter or “canonical”
view [5,27]. According to Blanz et al. [5], canonical views are
stable and expose as many salient and important features as possible.
That said, Kamada et al. [19] considered an image good if it mini-
mizes the number of degenerate views. But while these views have
been proven to be visually pleasing, they provide no guarantee of
scientific merit or importance.

Within the graphics community, there have been multiple efforts
at defining viewpoint quality (VQ) metrics. A VQ metric takes a
data set and a camera position as input and returns a score (floating-
point value) as output. This score reflects the metric’s assessment of
the quality of the camera position for the given data set. Multiple
works have surveyed viewpoint quality metrics [14, 31, 34], with
the most recent by Bonaventura et al. [7]. The Bonaventura survey
organized VQ metrics into five categories based on what aspects of
the data are utilized: area [6, 15,29, 30, 32,33,42], depth [34,37],
silhouette [26, 31, 34, 43], image stability [4, 8,9, 15,24,42], and
surface curvature [15,17,22,26,31,36].

Further, some proposed methods in the graphics community have
incorporated entropy. Vazquez et al. [42] calculated the entropy of
projected areas of the visible geometry from a given viewpoint. Next,
Gumbold [16] applied entropy to the Phong-Blinn illumination and
chose a light source that maximized this information for a given data
model. Later, Page et al. [26] proposed calculating the entropy of a
data model’s silhouette, or outline, as well as calculating the entropy
of the data model’s surface curvature, but it was Polonsky et al. [31]
who first applied these entropy calculations as VQ metrics.

Within the visualization community, there have been multiple
efforts at locating good camera positions. Bordoloi and Shen [8]
argued that the “best image” depends on context. They have two
guidelines for determining a “good image” for volume rendering:
viewpoints that display voxels with high noteworthiness factors
and viewpoints where the projection contains a high amount of
information. Work from Correa and Ma [12] also involved transfer
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Figure 1: A single-metric oracle (Left) and a multi-metric oracle (Right). Single-metric oracle: For two cameras, C; and C;, and a single metric, M,
the oracle will compare each camera’s respective metric score and determine the best viewpoint. Multi-metric oracle: For two cameras, C; and C,,
and n metrics, My,...,M,, the oracle will combine each camera’s metric scores, compare the combined scores, and determine the best viewpoint.

functions, allowing users to decide importance metrics that will be
used to create a transfer function that highlights intervals of interest.
Viola et al. [45] also used importance features to determine a transfer
function, and then utilized Viewpoint Mutual Information (VMI)
to determine the best viewpoint [44]. Finally, work from Yao and
Wang [46] incorporated Al to determine both the transfer function
and the best viewpoint.

The visualization community has also considered using entropy
to improve rendering. Takahashi et al. [39] considered volume ren-
dering use cases, focusing on projections of subregions. Specifically,
they considered the entropy of individual weighted and unweighted
isosurfaces from different camera positions. The former has trou-
ble accounting for occlusions, whereas the latter requires a transfer
function. Takahashi et al. [38] then developed two new metrics that
summate the entropy of individual weighted and unweighted inter-
val volumes. Other notable works include a method by Naraoka et
al. [25] that optimized light sources for volume rendering via illumi-
nation entropy and a method by Lee et al. [23] that used the entropy
of a vector field for flow visualization, specifically for choosing seed
placements and for choosing optimal viewpoints.

Evaluation of user preference for camera placement has primarily
occurred within the graphics community. Dutagaci et al. [14] created
a benchmark for testing new viewpoint quality metrics against the
preference of 26 human subjects for 68 recognizable 3D objects.
To collect this data, they asked their subjects to select the most
informative view of each object. A distance measure was then used
to determine how close a proposed metric was to selecting a user-
preferred view. Next, where the Dutagaci et al. work evaluated seven
metrics using their benchmark, a survey by Bonaventura et al. [7]
evaluated all 22 metrics against the benchmark. Finally, Secord et
al. [34] and Polonsky et al. [31] both described and evaluated metrics
and concluded that no current metric was sufficient for consistently
finding the best viewpoint, and, Polonsky et al. speculated finding
the best viewpoint may require combining several metrics. Secord
et al. pursued this direction, combining metrics based on different
data attributes, such as surface visibility, silhouette length, projected
area, and maximum depth.

Our research differs from these previous works. Many of the
previous works lacked user evaluation, instead proposing a metric
and then demonstrating they could maximize that metric. In our case,
evaluation is done through a user study that includes the perspectives
of many visualization practitioners and many data sets. Other VQ
metric works have included evaluation, but have not considered
scientific data sets. Our efforts fill this gap, i.e., a user study on
scientific data sets. It also contributes new VQ metrics that are more
effective for our data sets than previous VQ metrics.

3 OUR METHOD

This section details our method for constructing an oracle that can
use VQ metrics to predict user preference. There are two main
concepts in this section: (1) how to construct an oracle from VQ
metrics? and (2) which VQ metrics do we incorporate into oracles?
The first concept is discussed in Section 3.1. The second concept
is discussed in two parts: Section 3.2 discusses new entropy-based
VQ metrics that we introduce in this work and Section 3.3 discusses
existing VQ metrics that we use as comparators.

3.1 Constructing Oracles from VQ Metrics

A VQ-based oracle uses VQ metric values to predict which camera
a user would prefer. In an in situ setting, they could be used to auto-
mate camera placement: evaluating camera positions and ultimately
selecting the one thought to best match user preference. However, in
this study, oracles are used in a more limited way: to evaluate which
VQ metric best matches user preference. Further, in this study, an
oracle considers two camera positions and attempts to predict the
user’s preference between the two. That said, oracles could trivially
be expanded to deal with more than two camera positions.

For the version of oracle we consider, the only inputs are VQ
metrics. They do not have access to image data, information about
the camera position, or the geometry being rendered. For example,
one of the VQ metrics we consider is “Visibility Ratio” (described
in Section 3.3.4) and one of the oracles we construct attempts to
predict user preference using only Visibility Ratio. In this case, the
only input to the oracle would be the values for Visibility Ratio for
the two camera positions.

As shown in Figure 1, oracles can operate using only a single VQ
metric or multiple VQ metrics. The key distinction between them is
that single-metric oracles do not need to combine metrics.

3.1.1 Single-Metric Oracles

A single-metric oracle is an oracle that uses only one metric to make
decisions. We created 10 single-metric oracles, one each for our
three new entropy metrics (Section 3.2) and one each for the seven
existing metrics (Section 3.3). If a metric M produces score M (C})
for camera position C; and score M(C5) for camera position C, and
if M(Cy) > M(C3), then the oracle would select C). For all of the
metrics, “bigger is better,” so their corresponding oracles choose the
higher values. Further, it was not necessary to decide how to deal
with equal metric values, since this did not occur in our experiments.

3.1.2 Multi-Metric Oracles

An oracle that uses multiple metrics has the potential to make better
decisions by drawing on different types of information. Given a
multi-metric oracle that uses n metrics, My,...,M,, these metrics
produce tuple (M} (Cy)...,M,(Cy)) for camera position C; and tuple
(M1(C,),...,M,(C,)) for camera position C,. That said, these tuples



are not immediately useful, as the metrics produce values with
disparate ranges and a variety of units — combining the metrics
to make a binary decision is a a fundamental issue with the multi-
metric approach. Our solution is to try three different methods for
combining metric scores and evaluate all three. That said, looking
ahead to results, all three combination methods produced similar
findings. The three methods we consider for combining metrics are:

* NORM: Normalizing the scores based on minimum and maxi-
mum values and adding the normalized scores together.

* TIER: Clustering the scores into tiers using an automated
method (Jenks natural breaks optimization [18]) and then
adding the tiers together.

* NONE: Adding the raw scores together.

The NONE approach is not appropriate in almost all cases, but it is
appropriate in the case of adding together three entropy scores.

Once the scores were combined, they were compared, and the
oracle selected the C; with the highest value. The TIER approach
did have ties in some cases, and in these cases a random camera was
chosen.

3.2 New VQ Metrics

Each of our new metrics utilizes Shannon Entropy [4], which cal-
culates the average level of information. Given a discrete random
variable X, with the possible outcomes x1, .. .,x,, occurring with the
respective probabilities P(x1),...,P(x,) the entropy of X is defined
as:

n

H(X)=—)_ P(x;)-log(P(x;)

i=1

The higher the entropy the more information that is present.
Entropy-based VQ metrics can be constructed by placing fields
on images in addition to the typical colors. For example, graphics
libraries often produce depth information for the Z-buffer algorithm,
and this data augments the image. This depth information can then
be used as the discrete random variable for the Shannon entropy
calculation, i.e., construct a discrete random variable made up of the
depth information for every pixel where data appears and then calcu-
late Shannon entropy on that random variable. Further, maximizing
the score of a given entropy-based VQ metric equates to maximizing
the information present in the image, at least with respect to its type
of data (for example, maximizing entropy in depth information).
We pursued three types of data entropy-based VQ metrics:

* Field Data: the visible data of some user specified field

* Depth Data: the distance from the camera to the visible field
data

» Shading Data: the shading coefficients for the visible geometry
of the data

These metrics correspond to readily available quantities during the
rendering process (field value, depth value, and normal value, which
becomes a shading value).

In all cases, we considered the “visible” data (i.e., visible field
data, visible depth data, or visible shading data). This means that a
scene is rendered, an image is produced, and the data from that image
(field, depth, shading) is extracted. If an image has N pixels, and if
M pixels have no data occupying that pixel (i.e., background color),
then the visible data comes from the N — M pixels that do overlap
with the geometry. Considering the example of shading data on an
image of 10 pixels (N == 10), if 3 pixels have no data (M == 3),
then the visible shading data would be the set of shading values from
the remaining 7 pixels (N — M), e.g., {0.3,0.2,0.6,1.0,1.0,0.8,0.2}.

3.2.1 Data Entropy

Data Entropy calculates the entropy of the visible field data from
a given viewpoint v. Given field data F, let F(v) be the visible
field data for some viewpoint v with elements fi,..., f;;, then Data
Entropy is defined as:

=

H(F(v)) == ) P(fi)-log(P(fi))
1

r

Past research failed to develop this metric because they were
primarily focused on developing viewpoint quality metrics for 3D
objects that only have geometric data and lack any field data, unlike
scientific data. And while Data Entropy can be applied to any
field mesh, it is best if the geometry is unstructured and produces
amorphous shapes, as opposed to a three-dimensional rectilinear
mesh.

3.2.2 Depth Entropy

Depth Entropy calculates the entropy of the distances from the
camera to the visible field data from a given viewpoint v. Let D(v)
be the set of distances from the camera to the visible field data for
some viewpoint v with elements dj,...,d,, then Depth Entropy is
defined as:

HDW)) = — Y P(d) - log(P(dy))

Depth entropy is similar to Secord et al.’s [34] metric, Depth
Distribution, which deals with the normalized histogram of depth
bins. Finally, this metric is readily applicable to surface data, which
fits our isosurface-centric study. Volume rendering would require
extending this metric, e.g., adapting for regions of high opacity or
when the opacity along a ray hits a threshold.

3.2.3 Shading Entropy

Shading Entropy calculates the entropy of the visible shading co-
efficients. This metric determines the shading coefficient for each
visible triangle and then calculates the entropy.

Let G(v) be the set of visible shading coefficients from a view-
point v, with elements g1, ..., gy, then Shading Entropy is defined
as:

n
H(G(v)) =~} P(g:) - log(P(s:))

i=1
We used flat shading in our calculations, since that was straight-
forward in our infrastructure, but we note that vertex shading is also
possible. Additionally, our infrastructure uses a “miner’s light” that
is always located above the camera. And while this work is the first
to use shading entropy for viewpoint selection, this metric was first
proposed by Gumhold [16] who used shading entropy to determine

optimal placement for light sources.

3.3 Comparators: Existing VQ Metrics

‘We consider seven existing VQ metrics as comparators. There are
other VQ metrics beyond these seven, but we are only interested in
those that can be extended to run both in an in situ setting and in a
distributed-memory parallel setting. In all, we only considered a VQ
metric if it met three requirements:

¢ The metric should have a small memory footprint.
* The metric should have a fast execution time.
¢ The metric should require minimal communication.

The remainder of this section describes the seven metrics, first
defining how the metric works and then discussing its merits. All
descriptions use the notation summarized in Table 1.



Notation Definition
X data value
X set of data values
p(x) probability of x
z polygon
Zz set of polygons
v viewpoint
% set of viewpoints
a;(v) projected area of polygon z from viewpoint v
ar(v) projected area of the model from viewpoint v
vis;(v) | visibility of polygon z from viewpoint v (0 or 1)
N number of polygons
R number of pixels of the projected image
A, area of polygon z
Ay total area of the model
p(z|v) conditional probability of z given v
p(2) probability of z
H(Z) entropy of the set of polygons
H(Z|v) conditional entropy of the set of polygons
given viewpoint v
F set of field data
F(v) set of visible field data from viewpoint v
D(v) set of distances from the camera to the visible
field data from viewpoint v
S(v) set of shading data from viewpoint v

Table 1: Notation used in metric descriptions. This notation was
developed by Bonaventura et al. [7].

3.3.1  Number of Visible Triangles

This metric, developed by Plemenos [29] and then expanded upon
by Plemonos and Benayada [30], is based on the number of visible
triangles from some viewpoint. The best viewpoint will be the one
with the highest number of visible triangles. Formally:

VO (v) = Z visy(z).

€2

In the worst case, this metric favors quantity over quality and may
choose viewpoints that contain a lot of polygons but little content.

3.3.2 Projected Area
This metric, developed by Plemenos and Benayada [30], favors

viewpoints that show the most projected area of the data model.
This metric simply sums the visible area of the data’s geometry.

Formally:

VO (v) = a(v).

In the worst case, this metric could select an image that favors
one large polygon. Further, maximizing the projected area of the
data could also maximize the number of occlusions.

3.3.3 Plemenos and Benayada

This metric, from Plemenos and Benayada [30], is a combination of
their first two metrics and is defined as follows:

a:(v)
Yeezl ot | N Yoezaz(v)

VQ3 (V) = N R ’

Correcting the downside from the first two metrics, Plemenos and
Benayada developed a metric that maximizes the number of visible
triangles as well as the resolution of the rendered image. While this
metric is an improvement, it is susceptible to favoring viewpoints
with large occlusions since this metric can be dominated by visible
surface area.

3.3.4 Visibility Ratio

This final metric from Plemenos and Benayada [30] is the ratio of
the real visible surface area over the total real surface area (i.e. the
areas in World Space) and is defined as follows:

_ Y ez Visy (2)A;

VQ4 (V) A,

Note that this metric uses the world space geometry rather than
device space geometry. This metric has similar advantages and
disadvantages as the second metric, V Q5.

3.3.5 Viewpoint Entropy

This metric was first applied to viewpoint selection by Vazquez et
al. [42]. Their metric alters Shannon Entropy [4, 13] to take into
account the projected area of the scene when centered at a particular
viewpoint. Viewpoint Entropy is defined as follows:

N
VOs(v) = — Z az(v) log “Z(V)_

i—0 a(v) ar(v)

The ratio ZIEX; represents the proportion of the projected area of
each polygon. This ratio is also proportional to the cosine of the
angle between the normal of the projected polygon a,(v) and the
camera angle. Additionally, this ratio is inversely proportional to the
a;\v
)
will be higher when the polygon is seen from a better angle and at a
closer distance. This metric will work best on data sets with varying
polygonal size, since larger polygons are penalized in comparison
to smaller polygons. An important drawback of this metric is that it
will go towards infinity with finer mesh resolutions.

3.3.6 Viewpoint Kullback-Leibler distance (VKL)

Developed by Sbert et al. [33], this metric measures the Kullback-
Leibler distance between the normalized distribution of the projected
areas of polygons from a given viewpoint and the normalized distri-
bution of the real areas of polygons. It is defined as:

squared distance from the camera to polygon. This means that

Voo = X W 10g 4

AL (V)

The best viewpoint, which corresponds to the minimum value, is
achieved when the normalized distribution of the projected areas is
equal to the normalized distribution of real areas. In order to make
the metrics all follow a “bigger is better” pattern, we multiply this
value by -1.

3.3.7 Maximum Depth

This metric was defined by Stoev and Strasser [37], but was applied
by Secord et al. [34] as a VQ metric. This metric is defined as
follows:
VQi(v) = depth(v),

where depth(v) is the maximum depth of the model from some
viewpoint v. Depth can be a useful metric for terrain data sets.
Terrain data sets are often viewed from above when information is
maximized, making the data appear flat, thus it is important to take
depth into consideration.

4 CORPUS FOR COMPARING VIEWPOINTS

This section describes our data corpus for evaluating our method.
The corpus is made up of multiple elements. First, the corpus
contains images and meta-data about these images. This aspect of
the corpus is discussed in Section 4.1. Second, the corpus contains
results from a user survey on preferred images. This aspect of the
corpus is discussed in Section 4.2.
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Figure 2: Examples of two questions from the user survey. The left image depicts a question between two viewpoints from the Asteroid data
set. The right image depicts a question between two viewpoints from the S3D-UVEL data set. Users can select the image they feel is most
representative of the simulation, or they can select neutral if they have no preference.

4.1 Generating a Database of Images

Our corpus considers multiple camera positions for multiple scien-
tific data sets. For each (camera, data set) pair, the corpus contains
an image and all VQ metric scores for that image. In all cases, the
visualization was of a multi-level isosurface. The remainder of this
section describes more detail on the data sets used, the selection of
isovalues, and how cameras were placed.

4.1.1 Data Sets

A gap in prior research is the lack of application to scientific data sets.
To fill this gap, we chose ten large-scale scientific data sets, drawing
the IEEE Visualization Conference’s Scientific Visualization Contest
and from data sets from the Exascale Computing Project from the
United States’ Department of Energy. One of our primary goals in
selecting these data sets was to consider diverse application domains
and diverse imagery, so our results would be (as much as possible)
applicable to a larger proportion of scientific data sets.
Four data sets were from the Scientific Visualization Contest:

* Asteroid: A data set of a deep water impact of an asteroid [28].

* Fluid Dynamics: A fluid dynamics data set that models a
cylindrical flow of water [20].

¢ Hurricane: A weather data set of Hurricane Isabel [1].

e Mantle: An earth sciences data set that models the Earth’s
mantle [35].

Six data sets were from the Exascale Computing Project:

» Constit: A material sciences data set that probes the deforma-
tion response of polycrystalline materials [10].

* ExaAm Truchas: A materials science data set that looks at
effects within micro-structures of Additive Manufacturing
(AM) [3].

» ExaSky Nyx: A cosmological data set that looks at gas dynam-
ics [2].

* Miranda: A hydrodynamics data set of large-scale turbu-
lence [11].

¢ S3D-N2: A combustion data set of field data N2 [41].

* S3D-UVEL: A combustion data set of field data U Veloc-
ity [41].

For each of the chosen data sets we selected a single timeslice we
felt was representative of the simulation.

4.1.2 Choosing Isovalues

Each of the data sets are three-dimensional and volumetric, and to
each we applied isosurfacing as our visualization operation. Six
isovalues were selected, specific to each data set. Our process
for choosing isovalues was as follows. Initially, default isovalues
were chosen and the data was rendered. If the resulting image is
considered “good,” we keep those values. Otherwise, we explored
the data set to choose isovalues that are “good.” “Good” was taken to
mean “not bad,” as in: the isosurfaces occupied a significant portion
of the possible volume and (within reason) the isosurfaces were not
bunched together with little separation.

Figure 3: Example of using a Fi-
bonacci Lattice to equally space
cameras around a data set. This
research used this method de-
termine the ten camera place-
ments for the user survey data
sets.

4.1.3 Camera Placement

For each data set, we rendered ten images from ten different view-
points that can be seen in Figure 4. The camera placements were
chosen using Fibonacci’s Lattice, a formula that equally spaces
points around a sphere, as shown in Figure 3.

We experimented with many camera placement techniques and
also with the number of camera positions to include in the survey.
We felt the Lattice approach and this number of views provided a
nice compromise between two factors. First, we felt the camera
positions covered the space of all possible camera positions well —
every feature was covered by at least one image. Second, we felt
that a small number of camera positions was beneficial, so we could
investigate issues like participant disagreement; if the number of
views is very large, then it becomes less likely to get two different
participants considering the same pair.

4.2 User Study

Our user study collected participant preferences on camera position.
The participants in the survey were attendees of the 2021 United
States’ Department of Energy’s Computer Graphics Forum, which is
made up large data visualization practitioners across a wide variety
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Figure 4: The image set for our corpus. Each data set was transformed into a multi-level isosurface, using six isovalues unique to each data set.
Then, using the Fibonacci Lattice, each data set was rendered from ten equally-spaced camera positions around the data set. Each row of images
is from the same scientific data set. Each column of images is using the same camera placement. The data sets are, from top to bottom: Asteroid,
Constit, ExaAm Truchas, Fluid Dynamics, Hurricane, Mantle, Miranda, S3D-N2, S3D-UVEL, ExaSky Nyx. In the top right corner of each image is
an annotation representing the data entropy score, depth entropy score, and shading entropy score, respectively, for each viewpoint. For each
data set and metric, the scores were normalized to be between [0,1]. An O means the viewpoint has a metric score in the top 20% among the ten
images. An X means the viewpoint has a metric score in the bottom 80% among the ten images.

of simulation domains. Participants were instructed to make their
decision around one central question: “if you had to pick only of
these images to represent this simulation, which would it be?”

To take the survey, participants accessed a website where they
were presented with a sequence of questions. Each question was
composed of two images from the same data set, as shown in Fig-
ure 2. Participants were asked to spend 10 minutes answering ques-

tions, though they could stop whenever they wanted. Participants
answered the question by selecting the image they felt was most
representative, or neutral. Having answered, a new pair of images
is generated for that user to compare. The questions are randomly
generated on demand for each user. To generate a question, first the
data set was randomly chosen, then the two images to be compared
ware randomly chosen, making sure to not to select the same view-



point for both images, and making sure not to repeat any pairs of
images that user has already seen. It is believed that approximately
30 visualization practitioners participated in the survey. (If a partic-
ipant closed their web browser and restarted the survey, then they
would appear as a new participant, making an exact count difficult.)

The survey resulted in 1266 responses, although 170 of these
responses indicated the participant had no preference for one image
over another. We discarded these “neutral” responses, resulting in
1096 entries where the participant had a preference. Each of these
1096 entries is a tuple of the form (D, C;,C;, R) where D is one of the
ten data sets, C; and C; are camera positions, and R is the participant
preference (i.e., R=C;orR=Cj ).

With respect to metric information, we calculated the ten VQ met-
ric values for each of the 100 combinations of camera position and
data set, and these 1000 values complemented our corpus. The val-
ues were calculated using Ascent [21], which has implementations
to calculate all ten VQ metrics (although some implementations have
not yet been merged to the main Ascent repository). For the entropy
calculations, data needs to be placed in a histogram with a fixed
number of bins. The number of bins can change the distribution
of the histogram and thus the entropy. For data entropy, we chose
six bins, since there were six distinct scalar values (one for each
isosurface). For shading entropy and depth entropy, we chose the
common default of 100. Finally, Ascent was also used to generate
the isosurfaces and imagery for the user study.

5 EVALUATION APPROACH

As discussed previously in Section 3.1, our method uses camera
metrics to construct oracles that attempt to predict human behavior.
Our evaluation for a given oracle measures the extent that oracle
can successfully predict participant preferences in our data corpus.
For each entry (D,C;,C;,R) in the corpus, our evaluation approach
provides the oracle with the corresponding VQ metrics and records
whether the oracle predicted the user would prefer C; or C;. If the
oracle correctly predicts R, then it receives one point. If not, then it
receives zero points. The oracle’s score is the sum of these points
over all 1096 entries, and the oracle with the highest score is the
best, since it has made the highest number of correct predictions.
Table 2 shows a notional example of this process.

Table 2: An example of evaluating an oracle on a notional corpus
with four entries. Entries 1, 3, and 4 correspond to data set 1, while
entry 2 corresponds to data set 2. This oracle would receive a total of
two points, since it correctly predicts participant preferences for the
first two entries, but is incorrect for the last two entries. Further, note
that entries 1 and 4 involves the same combination of data set and
cameras to compare, but the participants had different preferences,
which is a situation that occurs in practice. This means that no oracle
can achieve a perfect score for this corpus — the maximum score is
three, since any oracle must make a poor prediction of user behavior
for either entry 1 or entry 4.

Participant Oracle
Entry ‘ Data Set ‘ Ci | C; | Preference | Prediction
1 DS1 316 3 3
2 DS2 8 | 8 8 8
3 DS1 319 9 3
4 DS1 316 6 3

Despite having 1096 entries in our corpus, the maximum possible
score is not 1096, because users sometimes disagree on which view
is preferred (like entries 1 and 4 in Table 2). Therefore, none of
our camera metric-based oracles should expect to get a score of
1096. We studied the corpus and determined the maximum achiev-
able score is 952, i.e., when participants disagreed, the sum of the
dissenting choices was 144.

Table 3: Correct predictions for each single-metric oracle. Percent
correct is reported for both with respect to the maximum possible
for our corpus (952 — see discussion in Section 5), and to the total
number of entries (1096).

Correct
Metric Predictions | % (/952) | % (/1096)
Data Entropy 676 71.0% 61.6%
Shading Entropy 662 69.5% 60.4%
Maximum Depth 571 60.0% 52.1%
Depth Entropy 566 59.4% 51.6%
# of Visible Triangles 503 52.8% 45.9%
Visibility Ratio 502 52.7% 45.8%
Plemenos & Benayada 498 52.3% 45.4%
Viewpoint Entropy 492 51.6% 44.9%
VKL Distance 484 50.8% 44.2%
Projected Area 465 48.8% 42.4%
6 REsuULTS

This section evaluates how well camera metric-based oracles can
predict user preference. It is organized into three sections:

¢ Section 6.1 evaluates single-metric oracles, i.e., metrics that
make predictions using only one type of camera metric.

* Section 6.2 evaluates multi-metric oracles, i.e., metrics that
make predictions using more than one type of camera metric.

* Section 6.3 considers the conditions where our top oracles can
predict user behavior and where they cannot.

6.1 Single-Metric Oracles

The evaluation for each metric can be found in Table 3. The rate of
correct prediction is surprisingly low for all metrics. An oracle that
made random choices would be correct 50% of the time, and yet
six of the metrics were unable to achieve this threshold. Certainly,
these metrics (on their own) do not appear to be useful for the data
sets in our corpus. The top performing metrics do include our new
entropy-based metrics, although their rate of successful prediction is
somewhat low. The best-performing metric, data entropy, is correct
at slightly more than a 3-to-2 rate, although it does achieve 71% of
the performance of a perfect oracle.

6.2 Multi-Metric Oracles

This multi-metric analysis begins by considering oracles that incor-
porate two metrics, with the top results listed in Table 4. This table
demonstrates two important findings: (1) that our new entropy-based
metrics are performing well as oracles and (2) that the method for
combining metrics (i.e., TIER, NORM, or NONE) is not crucial.
With respect to performance, each of the top oracles uses at least
one of our entropy-based metrics. Further, the three combinations
that involve two of our metrics (i.e., data entropy + shading entropy,
data entropy + depth entropy, and shading entropy + depth entropy)
rank as the top three for NORM and NONE and three of the top
four for TIER. In fact, the top performer that does not have one of
our entropy-based metrics are the 14" best performers for NORM
and TIER (visible triangles+maximum depth for both cases) and
the 13t best performer for NONE (VKL+maximum depth). With
respect to combining metrics, while there is variation in the order
and percentages, the overall trends are quite close: each of the top
combinations are in the 63%-65% range and many of the same pairs
of metrics are repeated across the table.

Table 5 continues the analysis with oracles that incorporate three
metrics. This table shows highly similar results to the two-metric
analysis: our entropy metrics are good performers and the method
for combining metrics (TIER, NORM, NONE) is not all that sig-
nificant. Once again, each of the top ten performers involves at



Table 4: This table displays results for two-metric oracles all three combination methods (TIER, NORM, NONE). There are 45 two-metric oracles,
but only the best ten are shown for each combination method. The TIER method is prone to ties, and these ties were discarded, meaning the
number of entries evaluated for TIER is lower than 1096. For example, the sum of the tiers for depth entropy and data entropy were equal for the
camera pairs for 158 of the 1096 corpus entries, and so only the remaining 938 entries were considered. Further, its percentage is based on this
lower number, i.e., 63.4% x 938 means this oracle made the correct number of predictions 595 times. The number of entries considered for TIER
evaluations ranged over the 45 combinations from 842 to 1016. For NORM and NONE, the percentages reflect all 1096 entries.

NORM TIER NONE
Rank Metric 1 Metric 2 %o Metric 1 Metric 2 % Metric 1 Metric 2 Yo
1 Data Ent. Shading Ent.  64.4% Data Ent. Depth Ent. 63.4% Data Ent. Shading Ent.  65.2%
2 Data Ent. Depth Ent. 64.1% Data Ent. Max Depth 63.4% | Shading Ent. Depth Ent. 64.8%
3 Shading Ent.  Depth Ent. 62.2% Data Ent. Shading Ent. 62.8% Data Ent. Depth Ent. 63.0%
4 Data Ent. Max Depth  62.0% | Shading Ent. Depth Ent. 62.2% | Shading Ent. PB 60.5%
5 Data Ent. Visible A’s  59.4% Data Ent. Visible A’s 59.5% Data Ent. Vis. Ratio 60.1%
6 Shading Ent. ~ Visible A’s  57.0% Data Ent. Vis. Ratio 59.0% | Shading Ent. Vis. Ratio 60.0%
7 Shading Ent. Vis. Ratio 56.0% Data Ent. VKL 56.8% Data Ent. Max Depth  59.5%
8 Depth Ent. Max Depth ~ 56.7% | Shading Ent. Max Depth 56.6% Data Ent. PB 59.3%
9 Data Ent. Vis. Ratio 56.5% Data Ent. Viewpoint Ent.  56.3% | Shading Ent. VKL 57.2%
10 Shading Ent.  Max Depth  55.7% Depth Ent. Max Depth 56.1% | Depth Ent. Max Depth  55.9%

Table 5: This table displays results for three-metric oracles for all three combination methods (TIER, NORM, NONE). There are 120 three-metric
oracles, but only the best ten are shown for each combination method. As discussed in Table 4’s caption, the TIER method is prone to ties, and
these ties were discarded. The number of entries considered for TIER evaluations ranged over the 120 combinations from 928 to 1051. Once
again, the percentages for NORM and NONE reflect all 1096 entries. Finally, for formatting reasons, data entropy, depth entropy, and shading

entropy are abbreviated DaE, DeE and ShE.

NORM TIER NONE
Rank Metrics % Metrics % Metrics %
1 DaE + ShE + DeE 65.7% DaE + ShE + DeE 64.5% DaE + ShE + DeE 68.0%
2 DaE + ShE + Max. Depth 64.1% DaE + ShE + Vis. Ratio 63.3% DaE + ShE + Vis. Ratio 65.0%
3 DaE + ShE + Vis. A’s 63.3% DaE + ShE + Max. Depth 62.6% DaE + ShE + PB 64.8%
4 DaE + ShE + Vis. Ratio 63.1% DaE + ShE + VKL 61.8% ShE + DeE + Vis. Ratio 64.5%
5 DaE + ShE + PB 61.4% DaE + ShE + Visible A’s 61.7% ShE + DeE + PB 63.8%
6 DaE + ShE + VKL 61.2% DaE + DeE + Max. Depth 59.7% DaE + ShE + VKL 62.9%
7 DaE + DeE + Max. Depth 60.7% | DaE + ShE + Viewpoint Entropy  59.6% DaE + DeE + Vis. Ratio 61.8%
8 DaE + ShE + Projected Area  60.5% ShE + DeE + Max. Depth 59.2% DaE + DeE + PB 61.2%
9 DaE + ShE + Viewpoint Ent.  60.1% DaE + DeE + Visible A’s 59.1% | ShE + DeE + Viewpoint Ent.  60.8%
10 ShE + DeE + Max. Depth 59.5% DaE + DeE + Vis. Ratio 59.0% ShE + Vis. Ratio + PB 60.5%

least one of our entropy-based metrics, and most involve two. Fur-
ther, the top combination across all three combination methods is
data entropy + shading entropy + depth entropy. One difference
between the combination methods is that the NONE version yields
the highest prediction rate (746 correct predictions with a maximum
possible of 952). In terms of how the comparator (non-entropy)
metrics performed, the top oracles were:

* NORM and TIER both had visible triangles + visibility ratio
+ maximum depth ranked as the 46™ best combination (out of
120), with successful predictions 50.4% and 50.1% of the time,
respectively.

* NONE had VKL + visibility ratio + maximum depth ranked
as its 35" best combination (again out of 120), with successful
predictions 54.3% of the time.

We repeated this analysis with four metrics, and found that 4-
metric oracles were generally not as effective as the 3-metric oracles.
One exception was the combination of data entropy, shading entropy,
depth entropy, and PB (Plemenos & Benayada), which had a 68.4%
winning percentage with NONE. That said, we are skeptical about
the strength of this finding. On the one hand, PB does provide new
insights that the entropy-based metrics do not have — it maximizes
visible triangles and projected area per pixel, typically choosing
viewpoints that “fill” the final image. On the other hand, the data in
our corpus is noisy and the amount of improvement is small. Further,
we are concerned that we run the risk of “reverse engineering” a
result based on our corpus. In all, we conclude from this analysis
that our entropy-based metrics do provide better prediction of user

preference than previous methods, and also that the combination
method is not important. We feel this conclusion is supported by the
high rate that entropy-based metrics appear as top performers and in
the invariance of the result across combination method.

6.3 Efficacy of Top Oracle

This section investigates how the top oracle (data entropy + shading
entropy + depth entropy, combined with NONE) performed on the
corpus.

Table 6 presents analysis about how the oracle performs for dif-
ferent types of cameras. Specifically, each camera is classified as
“POOR,” “FAIR,” “GOOD,” or “VERY GOOD” and the analysis
considers how the oracle performs for each of the combinations (e.g.,
when the oracle is asked to choose between a “POOR” and “GOOD”
camera). We classify the cameras based on their win percentage,
i.e., the rate that an individual image was preferred by participants.
For example, camera position #6 for the Mantle data set was one
of the most preferred images, being preferred by users in 28 out of
31 comparisons, i.e., a “win percentage” of 90.3%. We label as fol-
lows: 0%-25% as POOR, 25%-50% as FAIR, 50%-75% as GOOD,
and 75%-100% as VERY GOOD. While our oracle does not have
access to either win percentage or these labels, they are useful for
postmortem analysis of oracle behavior. In terms of findings, our or-
acle appears to be most effective at predicting user preference when
POOR cameras are involved, with an 82% efficacy, which was the
highest of any group by a large margin. When a participant is asked
to choose between two cameras that are GOOD or VERY GOOD,
our oracle is only 58% eftective (175/300). Possibly these images



Table 6: Performance statistics for our top oracle. As an example of how to interpret this table, the data from the GOOD/POOR entry means that
there were 222 instances in our corpus where our oracle was asked to choose between one camera that was GOOD and one camera that was
POOR, and it correctly matched participant preference 188 times, which was an 85% success rate. The Sum column provides statistics about
behavior for one camera grouping. For example, there were 470 instances in our corpus where at least one of the cameras was POOR, for which
our oracle correctly matched participant preference 82% of the time. The Sum column involves double counting some of the corpus entries, e.g.,
entries with both GOOD and FAIR are counted in both the GOOD and FAIR sums. Some table cells have higher counts because the number of
cameras for each type varies; there are 34 GOOD cameras and 22 of the other three types. Finally, table cells are colored by their performance: a
success rate of 70% or more is colored green, 60%-70% is colored yellow, and less than 60% is colored pink.

\ POOR FAIR GOOD VERY GOOD Sum
POOR 82% (23/28) 75% (55/73)  85% (188/222)  80% (118/147) | 82% (384/470)
FAIR 75% (55/73) 60% (30/50) 54% (88/162) 61% (69/114) 61% (242/399)
GOOD | 85% (188/222) 54% (88/162) 58% (57/99) 60% (107/177) | 67% (440/660)
VERY GOOD | 80% (118/147) | 61% (69/114)  60% (107/177) 46% (11/24) 66% (306/462)

are both adequate to the participant, and so other factors, such as
esthetics, become more important. Overall, this table shows that
we perform relatively similarly for all types of cameras. Moreover,
it does not show evidence that our oracle is under-performing for
certain types of comparisons.

Table 7: The rate of successful predictions by our top oracle per data
set.

Data Set Prediction Rate
Asteroid 74.2%
Constit 52.2%
ExaAM 76.5%
Fluid Dynamics 80.8%
Hurricane 60.3%
Mantle 79.1%
Miranda 52.5%
S3D-N2 57.7%
S3D-UVEL 72.7%
ExaSky Nyx 71.5%

Table 7 presents prediction rate by data set. Three of the data sets
— Constit, Miranda, and S3D-N2 — have success rates below 60%,
and a fourth, Hurricane, is just above 60%. The remainder of the
data sets are at or above the oracle average. Visual inspection of the
images for these four data sets shows:

* Constit has many views that are similar. Participants preferred
those with empty space between the isosurfaces, presumably
the other views created confusion with occlusion issues. None
of the entropy-based metrics would assist with this issue.

* Hurricane is composed of several layers with high rates of
occlusion, undoubtedly causing issues for both data entropy
and depth entropy. Additionally, this data set is easily identifi-
able and an uncommon choice of esthetics may influence user
preference.

* Miranda has blue/orange surfaces at the boundary of the vol-
ume that are (in the opinion of the authors) not as interesting
as the isosurfaces at the mixing layer. That said, data entropy
rewards showing more of these blue/orange surfaces. When
we modified our oracle to ignore data entropy, the prediction
rate went to 69.7%, in line with the oracle average.

* S3D-N2 has small features that are clearly visible from some
images, but not from others. Users preferred the images with
these features, but the data entropy calculation did not reflect
their presence since its calculations were dominated by the
other surfaces.

All of these observations suggest possible future improvements
for an oracle-based scheme.

7 CONCLUSION

The research premise of this study is that the entropy-based metrics
are good predictors, especially in combination, and we feel our
results provide strong evidence to support this premise. We do
believe that we could look further at ways to combine metrics (such
as weighted combinations) and decision-tree type oracles (“if the
data entropy is better then choose this camera, else look at shading
entropy...”) and optimize those approaches for this given corpus. But
such optimizations would have to be verified on a different corpus
with different data set and users; we view this as future work. We
also believe the shortcomings identified with Constit, Hurricane,
Miranda, and S3D-N2 suggest future avenues of improvement.

We (surprisingly) recommend the NONE combination method
of adding the three scores together. While such an approach creates
apples-to-oranges concerns when involving non-entropy metrics,
it is appropriate when adding three entropy metrics together. Our
motivation for this recommendation is not because NONE got the
highest prediction percentage, but because it requires no additional
knowledge. NORM and TIER require evaluating multiple cameras
to establish a baseline for what should go in a “good” or “bad” tier or
what should be normalized to “1” or “10.” NONE does not require
these extra calculations, which is an advantage in an in situ setting.

There are two major areas of future work: (1) how the study itself
can be improved and extended, and (2) how the results of this study
can be used for automating in situ camera placement. With respect to
improving the study, we would like to continue to expand our corpus
of data and evaluate additional metrics and oracles. In particular,
our corpus consisted of multi-level isosurface imagery, and other
visualizations may have differing results. Further, we limited our
consideration of combined metrics due to concerns of overfitting, but
an additional corpus would enable us to optimize combinations on
one corpus and validate on the other. Other extensions could include
enhancing the survey, for example to include stereo imagery, or
enhancing the overall approach, for example considering variation
in isolevels as well as camera position. With respect to in situ
automation, future work includes parallelizing the viewpoint quality
metrics used in this paper for a distributed-memory setting. Further,
there are a number of research avenues that need exploring, including
evaluating performance at scale; devising a search algorithm to
quickly find a data set’s global optimal viewpoint; and exploring
the time-varying aspects of the best viewpoint — is it consistent
or erratic?, and if it is erratic, then should camera movements be
discouraged to make a more coherent animation?
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