
Strategies for Seed Placement and Streamline
Selection

Sudhanshu Sane

Abstract—Flow visualization is a vital component in the workflow of studying computational fluid dynamic simulations. Integral curves
or streamlines are one of the most commonly used techniques to visualize flow fields and selecting a good set of streamlines is viewed
as a challenge. Identifying a representative set of streamlines that captures the flow behavior can be achieved by either strategically
placing seed points or selecting a subset of precomputed streamlines that exhibit desired properties. Over the past two decades, as
desired characteristics and hardware resources have evolved, the approaches to solving the challenge have greatly varied. Primarily
automatic techniques, these algorithms can be classified into density-based, feature-based, and similarity-based methods. In this
report, we further subdivide each category to identify the strategies adopted by various researchers. We identified a total of 18
automatic technique strategies and 2 manual technique strategies. In addition to the qualitative and quantitative comparisons
established by these works, we evaluate the strategies based on criteria specifically relevant to us, i.e., redundancy, regions of interest,
and computation. We believe our classification and categorization reporting benefits future research endeavors with regard to in situ
flow visualization techniques where seed placement and streamline selection will be key to successful flow exploration.

Index Terms—Flow visualization, Integral curve, Seed placement, Streamline selection

F

1 INTRODUCTION

Flow visualization is a prominent branch of scientific
visualization and plays a key role in the scientific explo-
ration and understanding of fluid dynamics phenomena.
Flow visualization techniques are applied to a variety of
fields ranging from modeling and simulation of weather
and climate systems to aerodynamics to turbomachinery
design processes. These techniques are used to capture
and highlight regions of interest to better understand the
behavior of the flow field enabling scientists to then improve
computational fluid dynamics models.

A flow field is often defined as a vector field over a
discretized mesh in the domain. If the vector field does not
evolve over time the flow field is considered to be in a steady
state. If the vector field evolves over time it is said to be in
an unsteady state. Streamlines are a popular technique used
to visualize the behavior of a steady state field. Likewise,
pathlines are used to visualize unsteady state flow. Both
streamlines and pathlines are integral curves that represent
the trajectory of a particle. These curves are calculated
by first placing a seed point in the domain, followed by
integrating the path of the trajectory by considering the un-
derlying vector field at each point. The majority of research
done in this field has been limited to steady state flow, given
that unsteady state flow introduces additional challenges.
For example, when considering a flow field defined over a
2D grid, streamlines traced in that domain can not intersect
paths, while pathlines can occupy the same spatial location
at different points in time.

For over two decades researchers have attempted dif-
ferent approaches to solving a key problem when using
streamlines to visualize a vector field — the strategic selec-
tion of a sparse representative set of streamlines to visualize
a vector field. While a dense collection of streamlines can
capture all features in a field, the resultant visualization
might be hard to perceive or regions in the field might

be completely occluded. Conversely, too few streamlines
might miss interesting features and not provide sufficient
coverage. Additionally, what comprises a representative set
of streamlines has varied greatly based on the dimensions
of the domain, the application context, and objectives of
the research. Further, objectives of research have evolved
from identifying a uniform distribution of streamlines to
focusing on highlighting flow features to being able to
respond to streamline similarity queries. More recently, with
the emergence of in situ processing, techniques to extract
flow field information in the form of integral curves have
been proposed.

The problem of selecting a representative set of stream-
lines can be approached from different directions. Selecting
a representative set of streamlines has often been framed
as a seed placement problem and is commonly perceived
as tackling the same challenge. Intelligently placing seed
points such that the generated streamlines capture inter-
esting flow features and maintain uniformity or coverage
has been a commonly adopted method. Other works have
considered selectively choosing streamlines that convey the
most information from a dense set of streamlines or clus-
tering similar streamlines before choosing representatives
for each cluster. Approaches to the problem have varied to
a great degree with most recent efforts involving machine
learning. In this report, we categorize and analyze the
contributions of various seed point placement and stream-
line selection research. Given the primary focus for most
research has been limited to steady state flow, i.e., the use of
streamlines, we will specifically highlight when a particular
work has targeted unsteady state flow.

Following the discussion of our motivation, we identify
the challenges associated with seed placement and stream-
line selection strategies, evaluation/comparison considera-
tions, and applicability of these strategies in situ. Next, a

1

classification of the strategies in the field is followed by the
contributions of this report.

1.1 Motivation

Solutions to the problem of generating or selecting stream-
lines that accurately capture the behavior of the flow and
highlight important regions are valuable given their use
to study fluid phenomena. Our motivation to conduct this
survey was to identify the different strategies that have been
adopted and the specific goals they aimed to achieve.

Typically utilized post hoc, these methods have largely
solved the problem of streamline selection for steady state
fields. The application of these methods in situ can be to per-
form visualization as the simulation progresses or to sample
the flow field strategically in order to save useful informa-
tion. With regard to generating visualizations, challenges
of maintaining frame coherence for unsteady state flow,
operating under the in situ constraints of memory and com-
pute resources, and operating in a distributed environment
would require extensions to existing work. With regard to
sampling flow data in order to maximize information per
byte stored, this challenge has a direct relation to calculating
a sparse set of streamlines that allow reconstructing the
vector field with minimal error. Some works even adopt this
approach when generating visualizations post hoc, i.e., the
vector field should be well preserved or divergence in the
field should be captured.

With more research being directed toward in situ visu-
alization methods and extracting or sampling flow data in
situ, knowledge of existing seed placement and streamlines
selection algorithms is valuable. Our research specifically
focuses on information extraction of unsteady flow data to
tackle the large data visualization problem and thus we are
motivated to conduct this survey which can directly inform
our research efforts.

1.2 Challenges in Seed Placement and Streamline Se-
lection

Seed placement and streamline selection strategies have
been proposed to address various flow visualization tasks.
The most common research objective is the generation of an
informative visualization image or set of images. Other tasks
that we survey which have involved seed placement and
streamline selection (without being too specific) are the ex-
traction of flow field information in the form of streamlines
as opposed to a vector field defined over a mesh, extraction
of all streamlines that match a streamline query, or particle-
based systems that control particle density distribution.

With regard to generating an informative visualization
image, if an excessively large number of streamlines is
used, it can result in a dense and cluttered image. This is
particularly problematic for three dimensional flow fields,
given streamlines will occlude one another and the flow di-
rection can become hard to observe or follow. If a very small
number of streamlines is used, important flow features can
be missed. Uniformly placing seed points in the domain
to generate streamlines often results in visual artifacts if
the generated streamlines are too short. If the generated
streamlines are complete, i.e., only terminate at boundaries

or critical points, streamlines might cluster in certain regions
resulting in a non-uniform distribution.

When considering extraction of flow field information to
later reconstruct a vector field, occlusion is not a concern,
however, computing a dense set of streamlines can have
undesired computational and storage costs. This once again
introduces a tradeoff with the desired goal being calculating
a representative set of streamlines that results in minimal
reconstruction error. Matching streamlines based on a query
introduces the challenge of identifying all similar stream-
lines irrespective of orientation and scale. Particle-based
methods suggest new ways in which particle density dis-
tribution can be controlled without cluttering or occluding
regions of interest.

1.2.1 Desired Characteristics of a Streamline Visualization
Verma et al. [1] were the first to explicitly list characteristics
that are desired of the selected set of streamlines. These
characteristics are —

• Coverage: Streamlines should not miss interesting
regions of the flow field.

• Uniformity: Streamlines should be uniformly dis-
tributed over the field.

• Continuity: From an aesthetic perspective, stream-
lines should be selected such that they show conti-
nuity in the flow, i.e., long streamlines are preferred.

The desired properties of the selected set of streamlines
have been modified by researchers and scientists as this
area of research has evolved. One of the primary additions
to the above list has been visibility of regions of interest,
i.e., to handle occlusion when considering the view of a set
of streamlines in 3D. Thus, when considering the selection
of streamlines in 3D, it is important that less informative
streamlines do not occlude more interesting regions of the
flow. Other desired characteristics are smooth transitions
or frame coherence when visualizing unsteady flow or
changing viewpoints, retaining spatial perception for depth
cues, and representing maximum information content per
byte stored. Contributions to this field have prioritized
different characteristics while advancing or improving on
previous work - either from a visualization or computational
perspective.

1.2.2 Evaluation
The evaluation of streamline placement algorithms has
largely been qualitative, i.e., based on the qualities of the
generated streamline visualization. However, qualitative
evaluations can be biased based on the specific requirements
or objectives of each algorithm. Thus, capabilities such as the
ability to maintain spatial perception, or highlight multiple
interesting regions in the field are viewed as ”upgrades“
or improvements. In this report, rendering techniques, such
as thinning of lines or lighting effects, are not discussed
and are deemed out of scope given the focus of this report
is identifying representative and important streamlines for
a flow field. Few works have used quantitative measures
such as accuracy of the reconstructed vector field using
streamlines. Research in the field has typically strived to
improve the flow exploration abilities via these streamlines
selection algorithms. Thus, in addition to qualitative and

2

quantitative comparisons made by the methods themselves,
we further compare and relate the works based on criteria
important to us for our research. We evaluate these methods
on the basis of:

• Regions of Interest
• Redundancy
• Computation

Using these three axes enables us to determine what ap-
proaches should be adopted in the future based on objec-
tives and constraints.

Information content represented via streamlines is di-
rectly reflected by the method used and the efforts of
the algorithm to capture regions of interest and minimize
redundancy. The computation costs for solving challenges
associated with streamline selection that meets prescribed
criteria are worth accounting for, given it can be viewed as
an expensive search problem. Developing techniques which
can solve this problem efficiently or in parallel is another
challenge with the majority of works operating in serial.
Besides improving the qualitative or quantitative measure of
the sets of chosen streamlines, several works are motivated
by the need to improve on the computational costs of
previous approaches.

The use of streamlines or particle-based systems for in-
teractive flow exploration requires the proposed algorithms
to compute at real-time processing speeds. Interactive meth-
ods could involve varying the level-of-detail, isolating re-
gions of the domain, changing the view direction, and so
on. With flow visualization algorithms being researched to
operate in situ, these algorithms must operate under addi-
tional constraints introduced by the simulation environment
and ideally be able to make use of accelerators.

1.2.3 In Situ Methods

The majority of works that propose seed placement and
streamline selection algorithms operate under the post hoc
visualization paradigm. In recent years, there has been a
shift in performing visualization and analysis efforts in situ.
In situ processing, through its successful frameworks and
usage [2], [3], [4], [5], [6], [7], [8], has been demonstrated to
be an important approach for large data analysis and visu-
alization on upcoming supercomputers. With regard to flow
visualization, in situ processing counteracts issues of tempo-
ral sparsity which can cause inaccuracies for unsteady state
flow visualizations. Flow visualization performed in situ for
large scale simulations allows access to the complete spatial
and temporal resolution of the simulation data. Exploring
flow visualization and analysis under the in situ processing
paradigm is a growing research field with frameworks for
visualization [9] and efforts to extract information in forms
other than vector field grids [10], [11] being developed.

The Lagrangian paradigm can be used in situ to extract
a smart sampling of the flow and then used post hoc for
flow exploration by reconstructing the field. Several research
works have supported this effort to improve the extraction
and interpolation to visualize unsteady state flow [10], [12],
[13], [14], [15], [16], [17], [18]. Operating under the con-
straints of an in situ environment requires addressing the
following challenges —

• Distributed computation of integral curves: Ef-
ficiently computing particle trajectories in a dis-
tributed environment is viewed as a difficult problem
given the scalability issues and lack of control of data
distribution.

• Flow map sampling strategy: Efficient sampling or
seed placement for unsteady state flow fields by eval-
uating the domain for flow features or maintaining
desired particle distribution.

1.3 Classification
Research presenting seed placement and streamline selec-
tion have evolved over the past two decades. Methods have
ranged from manually selecting seed points to a variety
of automated techniques including most recently applying
machine learning to the problem of streamline selection.
While a chronological presentation of these works would
provide an understanding of how the field has evolved, we
categorize these works based on the general approach they
have adopted. We select this approach to classification since
distinct sets of approaches have progressed simultaneously
or with significant overlap.

We classify seed placement and streamline selection
techniques at a high-level into —

• Automated Techniques

1) Density Based
2) Feature Based
3) Similarity Based

• Manual Techniques

These high-level categorizations are further divided and
subdivided for a total of 20 categories - 18 automatic
strategies and 2 manual strategies. Each of the density,
feature and similarity-based techniques have a total of 6
base level categories. Figure 1 illustrates the classification
and categorization for strategies of automatic techniques for
seed placement and streamline selection.

Fig. 1: Our classification and categorization for strategies
of automatic techniques for seed placement and streamline
selection.

The majority of research over the past two decades has
proposed approaches for automatically generating sparse

3

sets of streamlines that attempt to convey flow field infor-
mation accurately. These approaches encompass methods
that build a sparse set of streamlines by choosing candidate
seed locations to methods that select the most informative
set of streamlines based on curve attributes and spatial
location.

Density-based techniques primarily seek to evenly-space
streamlines in object or image space. These approaches pri-
oritize uniformity to cover the entire space without any par-
ticular focus on flow features (for example, a sink or source).
Feature-based techniques adopt a focus + context approach
prioritizing placement of streamlines that accurately capture
flow features before placing additional streamlines that pro-
vide context information of the surrounding flow. Stream-
line similarity-based techniques approach the problem of
streamline selection by first clustering similar streamlines
based on distance metrics or streamline features and then
choosing a streamline to represent each cluster.

Manual approaches are suitable when the flow field
under consideration is being explored interactively in a
virtual reality environment or when the phenomena in the
vector field is very specific and known to the scientist. Flow
field information, real-time rendering and visualization, and
seed placement tools can be used to assist guiding seed
placement in an interactive environment. However, this
approach is not reliable when exploring complex unknown
flows since important features can be missed if the gener-
ated streamlines from manually placed seeds do not capture
this behavior.

1.4 Contribution

In this paper, we classify research contributed to the field of
flow visualization proposing approaches for seed placement
and streamline selection. We focus on the aspects of these
works that contribute to domain coverage, feature focus,
and extraction of information (in the form of an integral
curve) that enables accurate flow field reconstruction. Our
survey highlights techniques proposed to identify infor-
mative streamlines and intelligent placement of particles
for coverage of regions of interest. We extend our seed
point placement techniques survey to methods involving
pathlines, flow maps sampling, and particle-based flow
visualization methods. Additionally, we look at the use of
streamline selection to respond to queries requiring identi-
fication of similar streamlines.

We do not focus on rendering/viewing aspects such as
occlusion management implementation, thinning of stream-
lines, animation, viewpoint selection, etc. Further, for gen-
eral feature extraction or vector field clustering techniques
(often employed within seed placement and streamline se-
lection workflows) we direct our reader to works by Post et
al. [19], Laramee et al. [20], [21], McLoughlin et al. [22], and
Pobitzer et al. [23]. We deem streamline selection methods
that have been applied to domains other than flow visual-
ization, for example, DTI fiber tracking, as outside the scope
of this survey.

With this work, our contributions are as follows —

1) Categorize research to identify variation in ap-
proaches, application, benefits, shortcomings, and

computational costs of techniques for streamline
selection.

2) Identify methods that provide intelligent seed place-
ment for calculating streamline and pathlines.

3) Provide a classification of research, which can act as
a foundation for future in situ methods to assess
the direction they want to adopt with regard to
generating visualizations or extracting information.

1.5 Definitions

We first define a streamline and other relevant terms, fol-
lowed by definitions of useful characteristics of streamlines.

A streamline is a line that is everywhere tangent to the
instantaneous local velocity vector. A streamline represents
the path followed by a massless particle moving with the
flow. Streamlines are geometric objects used to visualize
steady state flow, i.e., constant velocity field.

Pathlines, like streamlines, are integral curves and repre-
sent the path traced by a massless particle moving in an
unsteady state flow field, i.e., velocity field evolves over
time.

A critical point is a singularity in the vector field such
that the velocity magnitude at that location is zero. Critical
points can be classified by the eigenvalues of the Jacobian
matrix at their position. Sources, sinks and saddle points are
examples of critical points in a flow field.

The curvature of an integral curve is the absolute value
of the rate of change of angle of inclination with respect
to arc length. It measures how much the integral curve
deviates from a straight line.

The torsion of an integral curve measures how sharply
the curve is twisting or bending out of the plane of curvature
or osculating plane.

The tortuosity of an integral curve is the ratio of the
length of the curve compared to the shortest distance be-
tween its start and end points. It is a measure of deviation
from the shortest path and quantifies how twisted the curve
is.

Vorticity or curl of the velocity is a vector quantity that
indicates the tendency of a fluid particle to rotate or circulate
at a particular point.

Helicity is the absolute value of the dot product between
velocity and vorticity, with high absolute values indicating
vortex regions.

2 AUTOMATIC TECHNIQUES

Automatic seed placement or streamline selection algo-
rithms follow a set of rules to generate a distribu-
tion/selection of streamlines (or particles in some cases).
These algorithms may consider the view direction, proper-
ties of the vector field, properties of integrated streamlines
and so on. Our classification identifies whether a particular
algorithm is primarily a density-based, feature-based or
similarity-based approach. We categorize automatic tech-
niques based on the essence and primary motive of the
algorithm. For example, an algorithm might first extract
flow feature locations and strategically place seed points
in these regions before placing additional seeds to generate
an approximately uniform distribution of streamlines while

4

Technique Target/Context Dims State View-
Dependent

Distribution Reference

Planar Surface Flow

2D Steady No Uniform [1], [24], [25], [26], [27], [28],
[29], [30], [31], [32]

2D Steady No Non-Uniform [33], [34]
2D Steady Yes Uniform [35]
2D Steady Yes Non-Uniform [36]
2D Unsteady No Uniform [37], [38]

Curved Surface Flow
3D Steady No Uniform [39], [40]
3D Steady Yes Uniform [41], [42], [43]

Volume Flow

3D Steady No Uniform [44], [45], [46], [47], [48],
[49]

3D Steady Yes Uniform [50], [51], [52], [53], [54],
[55], [56]

3D Steady Yes Non-Uniform [57], [58], [59]
3D Steady No Non-Uniform [11], [60], [61], [62], [63],

[64], [65], [66], [67], [68],
[69], [70], [71], [72], [73],
[74], [75], [76]

3D Unsteady No Non-Uniform [77], [78], [79], [80], [81],
[82]

3D Unsteady Yes Uniform [83]
Streamsurface Construction 3D Steady No Uniform [84]

Particle-Based Vis
3D Unsteady No Uniform [85]
3D Steady No Non-Uniform [86]

Texture-Based Vis
3D Steady No Uniform [87]
3D Unsteady No Uniform [88], [89]
3D Unsteady No Non-Uniform [90]

TABLE 1: Grouping of algorithms based on the target or application context, dimensions, state of flow, dependency on
viewpoint, and distribution.

highlighting flow features — we categorize this as a feature-
based approach and not a density-based approach. It is
common that approaches will overlap with respect to mo-
tivation given the desired characteristics are not mutually
exclusive, i.e., an algorithm may strive to achieve several
desired characteristics in some order of priority.

2.1 Density-based

Density guided automatic techniques are typically proposed
when a uniform or user-defined distribution is the desired
outcome of a seed point placement or streamline selection
algorithm. A uniform density or distribution of streamlines
provides the user with a view of the entire flow field.
These techniques usually select or calculate approximately
evenly-spaced streamlines in object or image space. We cat-
egorize the density based approaches as view-independent
or view-dependent/image-guided. View-independent ap-
proaches don’t consider the image-space, i.e., the resultant
set of streamlines do not change if the view of the domain
changes. Most two dimensional techniques are presented
as view-independent given they do not consider change
of the viewing angle (nor would it make sense to in 2D).
Image-guided or view-dependent techniques consider the
final representation in image-space. These techniques might
select a different set of streamlines when the viewpoint
changes.

2.1.1 View-Independent Techniques
View-independent approaches propose techniques to obtain
a uniform or user-defined distribution or often even-spacing

between streamlines in object space. In two dimensions,
object and image space are the same, however, in three
dimensions, the view direction of the domain can influence
the quality of the visualization. In these set of works, they do
not consider the viewpoint of the domain and the streamline
selection is independent of the image-space representation.
This approach is faster when producing a visualization
which does not need to calculate and render a new set of
streamlines when the viewpoint is changed.

In the context of streamsurface construction, Hultquist
et al.’s early work utilized a key concept regarding main-
taining distances between streamlines [84]. They consider
seed point addition and removal during streamsurface con-
struction. After seed points are initialized along a rake, the
distance between particles is tracked as particle trajectories
(streamlines) are integrated. Based on the premise that to
achieve a good visualization an approximately uniform
spacing between particles is desired, new seeds are added
or existing seeds are merged based on a user-defined neigh-
boring particle distance criteria.

Algorithms Using Local Seeding Strategy
Max et al. [39] use evenly-spaced short streamlines to

visualize a 3D vector field on a contour surface. They
consider several projections to visualize the streamlines.
While they evaluate different projections (Eye, Normal, XY,
and Cylinder) on the 3D surface and transitions of those
projections as the view changes, a precomputation phase
involves seed point selection and particle tracing in a view-
independent fashion. To allow streamlines to be traced for

5

long distances before they get too close to each other the
initial positions of seed points are chosen on an integer
lattice in a spatially hierarchical manner. A streamline length
threshold is used in order to determine the minimal length
of accepted streamlines. A streamline grows until it reaches
a surface edge, a singularity in the field, or becomes too
close to another streamline.

Fig. 2: New streamlines are derived from the first streamline
calculated (thick) by identifying locations for candidate seed
points a minimum separating distance away [24]. Image
courtesy Jobard and Lefer.

Jobard and Lefer extended the work done by Max et
al. [39] and proposed an effective single pass method for
placement of long evenly-spaced streamlines in a 2D steady
state field [24]. The method can achieve visualizations rang-
ing from dense texture-like to sparse hand-drawing styles
by only setting the separating distance, denoted by dsep,
between adjacent streamlines. The algorithm initially placed
a random seed point and integrated a new streamline back-
ward and forward until some termination criteria, similar to
those in the work by Max et al., is met. The first streamline is
used to calculate a set of candidate seed points dsep distance
away from the streamline. The candidate seed points are
added to a queue to be evaluated. Each candidate seed point
is used as a starting location to integrate a streamline until
it is within some distance dtest, a fraction of dsep, distance
from existing streamlines. Figure 2 illustrates seed points, a
user-defined distance away from an initial streamline, used
to integrate new streamlines. If the integrated streamline
is accepted, then the new streamline contributes a set of
candidate seed points to the existing queue. To accelerate
the computation process, they proposed two optimizations
—

• Streamlines consist of a set of sample points that are
evenly spaced and a distance smaller than dsep apart.
Only these sample points are considered in distance
computations.

• A cartesian grid with cell side exactly dsep is su-
perposed on the domain with each cell containing
pointers to the sample points located within the cell.
Thus, distance computations are limited to the cells
surrounding the cell containing the sample point
under consideration.

These optimizations have been employed in several follow-
ing research works. The evenly spaced placement algorithm

achieves placement quality as good as previous techniques,
i.e., work by Turk and Banks [35], while significantly im-
proving computation speeds.

Jobard and Lefer extended their initial work to propose
a multiresolution technique for steady state flow [25] and
an approach to create animations for visualizing unsteady
flow [37]. To generate a sequence of streamline-based im-
ages of a vector field with different density (multiresolu-
tion), they generate a set of streamlines for a particular
separating distance value. The generated streamlines are
then used as an initial set of streamlines for the next image
in the sequence which has a higher density and uses a
smaller separating distance value. This process continues
for the desired number of levels of streamline density. The
shortcoming of this approach is that streamlines generated
for later levels were shorter due to the existence of an initial
set of longer streamlines.

For the visualization of unsteady flow in 2D, they
proposed a feed-forward algorithm which used reference
streamlines from one time step to select corresponding
streamlines in the next time step. Sample points of reference
streamlines act as initial seed locations to generate candi-
date streamlines. The best candidate streamline, based on
an L2-norm correlation criteria measure, was selected as a
corresponding streamline in the next time step. If required,
additional streamlines were calculated to obtain a uniform
distribution. By correlating instantaneous visualizations of
the vector field at the streamline level, they visualized
unsteady flow. While the approach had wide applicability
in 2D, the generalization of this approach to 3D fields
raises perceptual problems and the need of a more accurate
correlation criteria stands out.

Mattausch et al. [44] adopt the Jobard and Lefer evenly-
spaced streamline algorithm while targeting strategies to
improve focus+context techniques and spatial perception
with respect to 3D flow fields. They extend the streamline
placement algorithm to 3D, which involves calculating 6
candidate seed points at a distance dsep for every sample
point on a streamline. In addition to generating stream-
line for a 3D domain, they improve the multiresolution
technique presented by Jobard and Lefer and prevent the
generation of shorter and shorter streamlines for higher
levels of detail.

The Jobard and Lefer algorithm has been utilized as
an intermediate step for texture-based flow visualization
techniques and for domains outside flow visualization such
as DTI Fiber Tracking [91], [92]. Li et al. [87] present
Chameleon, a texture-based rendering framework, which
decouples the calculation of streamlines and the mapping
of visual attributes allowing the user flexible control of
the visual appearance of the vector field. They employ the
evenly-spaced streamline placement algorithm to control
the length and density of the generated streamlines. A
trace volume is created using a dense set of streamlines
and their geometric properties. The trace volume can then
be combined with varying input appearance textures to
produce a wide range of effects at runtime. Shen et al. [88]
extend the Chameleon framework to support unsteady flow
fields by calculating pathlines instead of streamlines. The
approach involves bookkeeping to track pathline segment
intersections and trace volume updates during rendering.

6

Fig. 3: The intermediate stages of the algorithm presented by Mebarki et al. [26]. Left: circles the largest void in the field.
Middle: shows the use of Delaunay triangulation to identify triangles with a large circumradius. Right: shows the final
placement of streamlines using the algorithm.

However, they do not address the distribution of pathlines
across the domain over time.

Employing a pipeline similar to Chameleon, Helgeland
et al. [89] propose a method to use evenly distributed parti-
cles as input for a texture-based visualization of unsteady
flow in 3D. They propose a particle advection strategy,
inspired by the Jobard and Lefer algorithm [24], that outputs
a point set instead of a set of streamlines. Using an initially
random pool of seed points, they apply the Jobard and Lefer
evenly-spaced streamline algorithm to identify the subset of
seed points that generate a set of streamlines dsep distance
apart. The resultant point set is used to generate streamlines
using a texture-based method (for example, Seed LIC [93])
for each time step. When seed points are advected forward
to the next time step, cluttering is avoided by removing
particles that are lesser than dtest distance apart. While
particles leaving the domain are naturally removed, they
consider adding particles to account for inflow. A seed
point is added to the center of a boundary voxels if a
fixed length streamline traced from it is dsep distance from
existing streamlines. Overall, particle density is maintained
by injecting particles into areas with low density without
exceeding a user-defined maximum number of seed points
for the domain.

Algorithms Using Global Seeding Strategy
While the technique proposed by Jobard and Lefer was

a greedy placement of seeds in the neighborhood of pre-
viously placed streamlines, Mebarki et al. [26] proposed to
place seeds furthest away from all previously placed stream-
lines. Using an approach, proposed by Chew et al. [94], that
had already been successfully applied to point sampling
and mesh refinement [95], [96], [97], Mebarki et al. placed
new seed points at the center of the biggest voids within
the domain. Using Delaunay triangulation to identify voids
in the domain, the circumcenter of the triangle with the
largest circumradius is chosen as the next seed location.
Streamlines, approximated using a set of sample points,
are inserted one at a time and are traced until a minimum
separating distance criteria is violated. Processing a prior-
ity queue of triangles, sorted by circumradius and with
circumcircle diameter larger than the separating distance,

the algorithm ends when the priority queue is empty. The
computation of the process is significantly optimized by
only using every nth sample point to calculate the Delaunay
triangulation and further filtering the number of triangles
added to the priority queue. Only triangles, one on either
side of a streamline, which correspond to the local maxima
(circumradius) and triangles incident to the streamline ex-
tremities are considered. Placing seed points farthest away
from existing streamlines resulted in long streamlines, im-
proving on the quality of streamlines placement by reduc-
ing streamline discontinuities. Figure 3 illustrates various
stages of the streamline placement algorithm. Mebarki et al.
demonstrated reduced execution time and placement qual-
ity compared to the Jobard and Lefer algorithm [24], while
retaining the placement quality of Turk and Banks [35] but
significantly reducing computation costs for 2D domains.

Fig. 4: The dual streamlines algorithm proceeds by iden-
tifying the largest segment in two sets (black and blue,
i.e., primal and dual streamlines respectively) of stream-
line segments [40]. Left: arrow indicates midpoint of the
largest segment, i.e., the new seed location to calculate a
streamline. Middle: arrow indicates next largest segment,
i.e., next streamline seed location. Image contains streamline
generated from seed point in left image (dotted-line). Right:
Result after placement of next streamline (dotted-line).

Motivated by the objective of studying flow phenomena
near wall regions or boundaries, i.e., curved surfaces in
3D, Rosanwo et al. [40] propose a greedy algorithm for
the streamline placement method. Similar to previous ap-
proaches a single distance δ is used to control streamline
density. However, the method avoids the computation of
geodesic distances and reduces the search space for seed

7

placement to a set of curves. The algorithm employs two
sets of streamlines, namely, primal and dual streamlines.
Primal streamlines are tangential to the vector field at every
point and used to visualize flow phenomena. Used to ap-
proximate the largest uncovered areas in the domain, dual
streamlines are a supplementary set of streamlines that are
orthogonal to the vector field at every point. A small set of
both primal and dual streamlines can be initialized either
randomly or by using flow field topology. Given the orthog-
onal directions of the two sets of streamline, they intersect at
several locations. Segments of primal streamlines are stored
in a priority queue P , ordered by arc length. Similarly,
segments of dual streamlines are stored in a priority queue
D, ordered by arc length.

Fig. 5: Results of the dual streamline algorithm for surfaces
in 3D flow fields [40]. Left: The image shows a ship pro-
pellor and streamlines of the wall shear stress. Right: The
image shows a cerebral aneurysm and the wall shear stress
streamlines.

The algorithm iteratively selects the longest arc in P or
D and places a seed at the midpoint to calculate the next
streamline, followed by both queues being updated based
on new intersections and segments. The algorithm stops
when the length of the longest segment is less than twice
the value of δ. Figure 4 illustrates the steps involved in
the algorithm. An informed placement of the initial set of
streamlines can reduce time to convergence for the algo-
rithm and highlight flow topology resulting in speedups of
2x-3x and improved streamline placement quality over pre-
vious approaches [24], [26], [35] when evaluating streamline
placement for planar surfaces. Figure 5 demonstrates the
use of the approach for curved surfaces in 3D vector fields.
However, given the orthogonal structure of a 1D streamline
in 3D is a 2D surface, the use of dual streamlines does not
directly extend to 3D spaces.

Zhang et al. [30], [32] propose a method to place stream-
lines in parallel for 2D flow fields. They define local tracing
areas (LTAs) as subdomains enclosed by streamlines and/or
field borders, where the tracing of streamlines is localized.
Using an irregular domain decomposition strategy, the ini-
tial LTA is recursively partitioned into hierarchical LTAs.
Within an LTA, if a valid seeding area (VSA, determined
by streamline proximity criteria) exists, a new seed point is
placed at the centroid of the biggest VSA. They use a cell
marking technique, instead of performing distance check-
ing, to mark zones where seeds can be placed and stream-
lines traced. The authors further extended the algorithm

to support multiresolution and 3D flow fields [31], [49]. A
comparison with Mebarki et al. [26] showed equivalent or
better placement quality but was a magnitude order faster
computationally when using parallel hardware.

Algorithms In Situ
Within the context of extracting flow information in situ,

Agranovsky et al. [10] place seed points along a uniform
grid to calculate a flow map. Pathlines or basis flows are
calculated for each seed for a fixed duration before being
terminated and saved. The process repeats by placing seeds
uniformly in order to maintain coverage of the domain.
Agranovsky adopted this Lagrangian-based technique to
tackle the inaccuracies resulting from temporal sparsity
when visualizing unsteady flow data from large simulations
on supercomputers. With a similar motive, Sane et al. []
propose an alternative Lagrangian-based technique which
begins with seeds being placed along a uniform grid. Seeds
are advected for a duration of time before evaluating the
need to add or remove particles. However, as opposed to
resetting the seeds periodically, the distribution of particles
is evaluated using Delaunay triangulation. New seeds are
introduced at circumcenters of cells with a large circumra-
dius and seeds are terminated if they exit the domain or are
found to be in regions with very small cells.

Summary
The view-independent algorithms presented in this sec-

tion approached the problem of calculating a representative
set of streamlines by placing seed points strategically in
the domain. Further, the applications varied for generating
a streamline visualization for 2D planes and 3D curved
surfaces, to generating input streamlines for a texture-
based technique, to generating flow map samples to capture
the behavior of time-varying flow fields. The algorithms
adopted one of two methods, i.e., generating nearby can-
didate seeds or place candidate seeds in the largest void of
the domain. Algorithms adopting the former approach built
on top of the Jobard and Lefer method. The Jobard and Lefer
algorithm evolved to support an evenly-spaced generation
of integral curves in 3D volume flow, on curved surfaces,
and in unsteady state flow. Optimizations typically included
methods to reduce the search space by either sampling
streamlines using a subset of points along the curve or using
a cartesian grid to reduce distance checking or mark cells.
Algorithms adopting the second approach generated more
streamlines of complete length revealing the flow topology
better. Further, these techniques were proposed with com-
putational improvements over a local seeding strategy and
were demonstrated to be faster for 2D domains. However,
global seeding strategies do not extend well to 3D domains.
While most of these algorithms operate in serial, a single
parallelization strategy irregularly decomposed the domain
to place streamlines to improve computation time.

Overall, these approaches generate aesthetically pleasing
flow visualizations and are considered to have solved the
problem of density guided streamline placement in 2D and
on 3D surfaces. However, a shortcoming of these techniques
is that they can often contain redundant streamlines and
volume flow visualizations, i.e., 3D domain, would contain

8

large amounts of occlusion requiring interactive tools to
further explore the generated set of streamlines.

With regard to in situ seed placement, if the objective
is to generate a 3D flow visualization, a view-dependent
technique would likely be more suitable. If the objective is to
extract flow map samples and thus occlusion is not a factor,
coverage and accurately capturing behavior in regions of
interest become priorities. There remains significant scope
for research to be done in terms of selecting streamlines
under in situ constraints.

2.1.2 View-Dependent or Image-Guided Techniques

While view-independent techniques presented in the previ-
ous section produced uniform or user-defined distribution
of streamlines, they were primarily restricted to 2D tech-
niques. Methods that produced a set of streamlines for 3D
either required interactive exploration or used the stream-
lines as input for a texture-based flow visualization tech-
nique. By only considering object-space these approaches
did not account for occlusion which plays a significant role
when exploring 3D flow fields. View-dependent techniques
presented in this section, take the image viewed by the user
into account while determining seed point placement and
streamline selection.

Algorithms Using Filters
Pioneering work in the field of streamline placement,

Turk and Banks [35] proposed to use a stochastic mechanism
to iteratively refine the placement of streamlines to visualize
2D steady state flow. The approach is based on the idea
that for a given image containing a set of streamlines, a
low-pass filter applied to its corresponding binary image
should result in an evenly gray image if the streamlines
are uniformly distributed. Areas with streamlines cluttered
would have bright pixel values while sparsely represented
areas would remain dark in the low-pass filtered image. The
energy of the streamline image can be quantified as the sum
of difference with a given gray-scale value at each pixel of
the low-pass filtered image. The density of streamlines can
be controlled by adjusting the size of low-pass filters and
optimization of the streamline distribution is realized via
iteratively minimizing the energy function. For this work,
the applied filter is a circularly symmetric filter kernel from
a basis function of cubic Hermite interpolation.

Beginning with streamlines generated from seed points
at vertices of a 2D grid, where each streamline has an
associated energy contribution, they modify the set of
streamlines until the desired energy threshold is reached.
The algorithm considers moving, lengthening, shortening,
deleting, inserting, and combining streamlines based on
energy. Modifications to streamlines are either proposed by
an oracle (50%) or is a random modification (50%) to prevent
any oracle bias. The Oracle can speed up the convergence
of the optimization by a factor of 3x-5x. To propose effec-
tive changes, the oracle uses image information to identify
sparse regions and maintains a priority queue containing
streamlines based on their individual energy level. This
way the oracle can suggest regions to insert streamlines or
how to lessen the energy contribution of the most energetic
streamlines. If the modification lowers the overall energy

Fig. 6: A comparison of streamline placement and filtered
versions using the Turk and Banks image-guided algo-
rithm [35]. Left Column: Short streamlines generated from
seeds placed on a regular grid and the corresponding fil-
tered image. Right Column: Short streamlines placed by iter-
atively optimizing placement and the corresponding filtered
image showing fairly even gray value.

value of the image, the change is accepted, otherwise, the
change is rejected. The process continues until the energy
function reaches a threshold or the accepted changes are
rare. While this approach produces high quality streamline
placement, it is computationally expensive given it can have
a long convergence time.

Mao et al. [41] extend the Turk and Banks algorithm to
uniformly distribute streamlines to a curvilinear grid. They
use the expensive image-guided algorithm because density
distribution on curvilinear grids, which are anisometric, is
hard to achieve with distance-based approaches. The first
step of their approach is a mapping of vectors on the
curvilinear surface to computational space. To account for
the mapping distortion caused by an uneven grid density
of a curvilinear grid, a new energy function is designed.
Using a Poisson ellipse sampling to distribute a set of
rectangular windows in computational space, the streamline
density is locally adapted to the inverse of the grid density
in physical space. Use of such an energy function ensures
the generated set of streamlines of the desired density are
evenly distributed after being mapped back onto the 3D
surface.

Algorithms Using Image Space Seeding
Uniformly distributed streamlines in 3D space are not

guaranteed to be evenly-spaced in their 2D projection.
Presenting an approach to avoid clutter when visualizing
a 3D flow field using streamlines, Li et al. [50] perform
seed placement and streamline termination in image space,
and streamline advection in object space. The algorithm
operates similar to the Jobard and Lefer algorithm, except
that candidate seed points for a streamline are dsep apart
from the streamline in image space. Thus, even though a 3D
domain is under consideration, for every sample point of the
streamline only two possible candidate points are identified.
A streamline, being advected in object space, is terminated
if it is within dsep from another streamline in image space.

9

Further, a streamline closer to the viewpoint is preferred
to another far behind. This criterion is evaluated when
determining whether to terminate the streamline advection.
To support importance driven seed placement, they adopt
an approach which decouples seed point generation and
streamline spacing control. They first generate a set of seed
points using a process that stochastically generates more
seeds in a region of interest, followed by calculating the
corresponding streamlines in object space. To avoid clutter,
streamlines which violate spacing requirements in image
space are deleted, while favoring longer streamlines. This
approach by Li et al. was the first work which used an image
space based seeding strategy.

Spencer et al. [43] present an evenly-spaced streamline
seeding algorithm for vector fields defined on surfaces in
3D space. The algorithm is capable of generating both
sparse and dense representations of the flow and can handle
large, complex, unstructured, adaptive resolution grids with
holes and discontinuities. Streamlines are only integrated
for the portions of the surface visible in image space. The
advection strategy removes the need to perform streamline
tracing on a triangular mesh and instead projects the vector
field onto the image plane. Seed placement and streamline
integration are then done in image space. They store the
flow data in a ”velocity“ image where each pixel stores the
flow velocity on the surface and a 16-bit representation of
the z-depth representing the distance of the surface. The
use of a z-depth buffer allows the algorithm to disregard
non-visible portions of the surface and plays an important
role in detecting discontinuities or edges. The approach

Fig. 7: Results for placement of streamlines on surfaces in
3D flow using the algorithm by Spencer et al. [43]. Seed
placement is done in image space. Left Column: The images
show the seed locations in image space. Grid-based seeds
are shown in red and vector field-based seeds are shown in
blue. Right Column: Final streamlines placement.

places seed points, called grid-based seeds, in every cell of
the mesh with non-zero depth. In addition to grid-based
seeds, it generates vector field-based seeds, i.e., candidate

seed points, in a similar manner to the Jobard and Lefer
algorithm. They terminate a streamline when the proximity
to another streamline drops below dtest or when z-depth
drops to zero or the change in z-depth exceeds a user-
defined threshold. Using both sets of seeds in combination
ensures all visible sections (there are potential geometric
discontinuities arising from edges and occluding surfaces)
have a uniform distribution of streamlines. To avoid termi-
nating streamlines near edges due to proximity in image
space (the streamlines are a greater distance apart in object
space) they check if streamlines have approximately the
same z-depth buffer. To create improved depth perception
in the visualization, they vary the value of dsep based on
the depth. The idea of reducing any complex surface to a
2D problem results in a computationally efficient algorithm.
Figure 7 illustrates a result of the approach. Spencer et al.
used a GPU to improve rendering times and showed their
streamline generation is faster than a simple Jobard and
Lefer algorithm in 3D object space.

Algorithms Using Occlusion and Projection
Given the extensive use of contours to visualize scalar

fields, Annen et al. [57] introduce the concept of vector
field contours for flow exploration. They propose a stream-
line seed placement approach with the goal of generating
isolated streamline lines which display behavior similar to
that of classical surface contours. The approach is view-
dependent in that seeding structures are identified by locat-
ing points where dot product of the view direction and the
vector field is zero, and a seed which takes one infinitesimal
integration step preserves that condition. Multiple render-
ing passes are applied to extract the seeding structure with
curvature being used in a similar manner as an isovalue in
a scalar field. Streamlines are then forward and backward
integrated until the dot product of the vector at the stream-
line position and the view direction exceeds a threshold.
The extraction and rendering of the vector field contours is
inter-frame coherent, with the flow field capable of being
interactively explored in real-time.

Marchesin et al. [51] select streamlines which contribute
to understanding flow field characteristics, while simulta-
neously accounting for cluttering for a given view. The
approach uses streamline features and the occlusion caused
by it, to decide whether to include a particular streamline.
An iterative method consisting of four main stages, the
algorithm begins with the computation of a random pool
of streamlines. Projecting all the computed streamlines onto
an occupancy buffer helps identify highly occluded regions
for a given view. Given the importance of swirling lines to
understand flow behavior, the occupancy buffer does not
account for self-occlusion caused by a single streamline and
simply measures the screen space footprint. Thus, for each
pixel, the number of streamlines projecting onto this pixel
is calculated. Lastly, the values in the occupancy buffer are
normalized to account for the depth of the domain for a
given viewpoint. The third stage is a pruning step, with
a streamline removal algorithm evaluating the relevance
of a line and the amount of occlusion it produces. They
use the linear and angular entropy values of segments
of a streamline to determine the quantity of information

10

Fig. 8: Stages of the Marchesin et al. [51] algorithm. Left: an initial dense pool of streamlines. Middle: streamlines which
are rated high based on the importance metric. Right: Final result after the addition of additional streamlines to create a
more uniform distribution of streamlines in image space.

conveyed by the streamline. Additionally, they consider an
overlap value to determine the occlusion caused by the
streamline for the given view. Combining these values, they
present a streamline metric which is a weighted sum of
the linear and angular entropies divided by the average
overlap. Sorting streamlines by their score, the streamlines
with the lowest score are iteratively removed, followed by
an update of the occupancy buffer, and affected streamlines.
The final stage of the algorithm decomposes the occupancy
buffer into a number of tiles and computes the average
occupancy for each tile. Seeding a small pool of random
streamlines from the tile with the lowest occupancy, the
streamline resulting in the least occlusion is retained. This
process is repeated until all tiles have a non-zero occupancy.
Figure 8 illustrates a result of the approach and shows the
evolution of the visualization over the algorithm stages.
The approach captured features of the flow better than
previous view-dependent methods and required a GPU for
fast computation.

Gunther et al. [53] present an interactive, view-
dependent, and inter-frame coherent flow visualization
technique whose results are dependent on user-driven seed
placement. The method has an initial preprocessing step
which involves both user-guided seed placement using a
seed box, and random placement to generate streamlines
that cover the entire flow field. For each streamline, a
screen contribution value is computed by using a cubic
Hermite interpolation function to map the number of vis-
ible pixels of the streamline to a transparency value. The
screen contribution values are used to determine which
streamlines are visible to the user for a given view and
fade out streamlines with only minor contributions. Given
one important region of the flow can occlude another, the
user can selectively place seed boxes in order to focus on
certain regions. To support exploring regions of coherent
flow, the user can highlight a set of similar streamlines by
selecting a single streamline. Streamlines in a limited screen-
space neighborhood window of the chosen streamline are
evaluated for similarity using linear and angular entropy.
Gunther et al. [54] extend their previous work by adopting

a global line selection strategy. Starting with an initially
dense sampling of the domain, the approach is based on
computing the opacity for every streamline segment in the
field as a solution to a bounded-variable least-squares opti-
mization problem. Their system supports a flexible choice
of importance measure of a streamline segment such as
curvature, linear entropy, angular entropy, scalar entropy,
segment length, or screen contribution. Depending on the
metrics chosen the algorithm highlights relevant features
in the flow field by minimizing the occlusion caused by
other streamlines. Figure 9 shows a sample result of the
algorithm. While the optimization problem is based on the
total number of streamlines segments in the flow, when
considering unsteady state flow the number of segments in-
creases significantly and can become a bottleneck. To tackle
the challenge of 3D unsteady flow, Gunther et al. [83] mod-
ify their approach and employ a hierarchical representation
of an integral curve and consider only a view-dependent
set of candidate segments for the optimization process.
Gunther et al. use the GPU to achieve frame coherent, time
coherent, and interactive flow exploration, thus improving
on previous research.

Ma et al. [55] present a view-dependent streamline se-
lection approach that evaluates the information content of
streamlines. As a preprocessing step, a dense set of stream-
lines intersecting every voxel in the domain is computed.
Next, for every sample viewpoint, the streamlines are sorted
on the basis of importance. The streamline importance mea-
sure consists of entropy (considering both direction and
magnitude) measured along the streamline, an evaluation of
how much entropy is preserved for a given 2D projection,
and a shape characteristic metric indicating how stereo-
scopic the streamline shape is for a given viewpoint. The last
two factors together forming a view-dependent importance
measure for each streamlines for each viewpoint. To iden-
tify a set of view-independent representative streamlines,
streamlines are inserted into a priority queue based on the
summation of their view-dependent importance measure
for each view. A minimum threshold distance is used to
avoid selecting redundant streamlines. To generate a view-

11

Fig. 9: Opacity optimization demonstrated by the algorithm
by Gunther et al. [54]

dependent set of streamlines, the top-ranked streamlines for
that viewpoint are combined with the highest rated stream-
lines from the view-independent set. Further, to maintain
coherence as the viewpoint is changed, streamlines from a
previous viewpoint are retained. A density map is employed
to determine uncovered regions before rendering the final
visualization. Their approach was able to generate fewer
redundant streamlines compared to Marchesin et al. [51]
given the use of the occupancy buffer.

Summary
To generate a view-dependent selection of streamlines,

algorithms were based on either strategic seed placement
or informed streamline selection. The earliest work used a
filter over an image of a set of streamlines and iteratively
improved the placement and selection of streamlines. How-
ever, these methods were computationally expensive given
the time to convergence was long and they do not extend
to 3D volumes. Li and Shen identify the selection of stream-
lines in 3D volumes as a view-dependent problem and pro-
pose to place seed points in image space and thus directly
manage the density distribution of the streamlines. Another
work reduced the problem of generating streamlines on a
surface in 3D to a 2D problem by only considering visible
surfaces for a given view and placed seed points in the
image space as well. Thereafter, view-dependent algorithms
used a dense set of streamlines, evaluating attributes along
the curve and considering the 2D projection of each stream-
line. Streamlines were then selected for a given viewpoint,
by considering the importance measure and the screen space
occupancy of the streamline. Methods to handle occlusion
involved completely removing a streamline that occludes
a more important region or techniques such as opacity
adaption to retain context information.

View-dependent methods have evolved from requiring

long convergence times for a 2D plane visualization to
interactive exploration rates for 3D volumes using GPUs.
In addition to these view-dependent approaches, research
in other sections also consider the viewpoint of the visual-
ization, however, their streamline selection isn’t primarily
motived by the viewpoint.

2.2 Feature-based
Feature-based techniques make use of available vector field
information to guide the seed placement or streamline selec-
tion. Prioritizing coverage of interesting regions of the flow
field over a uniform distribution, these approaches aim to
first take measures to ensure streamlines are placed taking
into account either explicitly extracted flow field topology
or derived informative scalar fields. We classify feature-
based approaches depending on whether they explicitly
extract flow field topology for precise information or allow
a derived scalar field to guide the algorithm. Approaches
choosing to use a derived scalar field, do so in order to
either capture some particular flow field behavior or as an
alternative approach to capture salient flow features, such
as critical points (Figure 10), which are often difficult to find
in a robust manner. As we will see in the following sections,
several of the feature-based techniques, in addition to their
specific approach to highlight features, adopt uniform seed
placement strategies presented in the previous section.

Fig. 10: Different types of critical points possible in 2D
flows [1].

2.2.1 Explicit Flow Topology Guided Techniques

Algorithms Using Critical Point Locations
An early work presenting a multiresolution visualization

technique for nested weather models, Treinish [61] proposed
to use a combination of critical point analysis and a filter
similar to Turk and Banks [35]. Deriving a set of seeds
using a low-order approximate critical point analysis, an
initial set of streamlines is computed. A low-bandpass filter
is subsequently applied to the entire forecasted velocity
field, as opposed to an image of the streamlines, to identify
regions with a relatively large change in wind speeds. Seed
points are placed in these regions to calculate additional

12

Fig. 11: Images show seed templates for various critical points and regions of influence identified by the flow-guided
algorithm [1].

streamlines. The technique was superior to using uniformly
sampled seed points and captured detailed features from
the forecast. However, this particular work did not provide
specifics regarding the placement of the seed points in
relation to critical points or regions of interest.

Verma et al. [1] propose the use of critical point spe-
cific seed placement templates. The primary goal of their
approach is capturing flow behavior in the vicinity of critical
points. The algorithm first identifies the locations and types
of critical points in the 2D flow field using FAST [98] fol-
lowed by a segmentation of the domain into an approxima-
tion of critical point neighborhoods. For the approximation,
a Voronoi diagram, computed using triangle [99], partitions
the flow into regions containing similar flow behavior. A
second objective is to provide sufficient coverage of non-
critical regions. After tracing long streamlines using the
template seeds, a region of influence is determined for each
critical point. In the spaces outside the regions of influence,
Poisson disk distribution is used to place additional seed
points, with streamlines being generated using an approach
similar to the Jobard and Lefer algorithm. Figure 11 shows
the seed placement templates, and a sample field with
critical points, corresponding templates, and regions of in-
fluence, and the field partitioning such that each partition
contains a single critical point. The approach was able to
better capture flow behavior around critical points in both
dense and sparse flow representations when compared to
previous techniques [35] while being computationally faster
when selecting a greater number of streamlines.

In addition to extending the template-based approach to
3D steady state flow, Ye et al. [45] propose improvements
to the algorithm. To account for the distance between and
relative strength of critical points, they change the shape of
the templates by mapping how eigenvalues of one critical
point evolve into the eigenvalues for another. To determine
the size of seed templates, separating regions need to be
calculated. To calculate separating regions in 3D for each
critical point, instead of using expensive full topological
analyses [100], [101], as an optimization an approximation
is used. The size of the seeding template is set to a quarter
of the distance to the nearest other critical point. Poisson
sphere distribution is used to fill areas between critical
point regions of influence. Given the streamlines are placed
in 3D, without any consideration of the view, the image
would likely appear cluttered. This work included a post-

processing step in order to filter streamlines to provide a
less cluttered visualization. Streamlines are filtered on the
basis of length, accumulated winging angle, and proximity
to other streamlines. First removing short streamlines with
low winding angles, followed by identifying a single rep-
resentative streamline for a set of streamlines that have a
similar start, end, and centroid location. For a cell with a
high streamline count, denoting a dense region, streamlines
with high winding angles are filtered to reduce cluttering.

Liu et al. [46] propose an evenly spaced streamline
algorithm (ADVESS) that employs two queues of candidate
seeds. The primary queue consists of an initial set of seeds
generated using the templates used by Verma et al. [1]. Can-
didate seeds generated from these initial set of streamline
seeds are also added to the primary queue in order to maxi-
mize the effect of the seeding patterns. The secondary queue
consists of candidate seeds generated from sample points
along the streamline. As an optimization, Cubic Hermite
Polynomial interpolation using large sample spacing is used
to reduce the number of sample points and consequently
distance checking. An additional improvement on previ-
ous evenly spaced streamline algorithms is the use of an
adaptive dtest value based on the local variance measured
at each grid point in the 2D field. Appropriately scaling
the value of dtest causes fewer cavities in the streamline
placement. Further, the authors propose a robust loop de-
tection technique which limits a streamline loop to a single
cycle [47]. Employing the proposed algorithm as one part
of a hybrid seed placement approach, Liu et al. [42] present
a view-dependent approach for streamline placement on a
planar or curved surface in 3D. Using the double queue
strategy differently, Poisson disk distribution is used to
push a set of seeds to the secondary queue and begin the
process. Candidate seeds introduced by the seed of the ac-
cepted streamline are stored in the primary queue, and non-
seed sample generated candidate seeds in the secondary
queue. The approach is used for the purposes of image
space streamline placement to fill spaces after a primary
set of physical space seeds are used to generate streamlines
that are reused and lengthened between view frames. The
combination of the two strategies provides a temporally co-
herent visualization. In comparison to previous approaches,
the algorithm achieved placement quality better than Jobard
and Lefer [24] and as good as Mebarki et al. [26] with loop

13

detection, in addition to being computationally faster than
both.

Ding et al. [38] present a technique to maintain temporal
coherence when viewing unsteady 2D flow fields by using
a moving mesh method. Another extension of the Jobard
and Lefer algorithm to evenly space streamlines, they first
extract critical points to calculate an initial set of candidate
seeds. Using Poisson disk distribution [102], they place seed
points in regions of importance and add them to the queue
of candidate seeds. They move the seeds towards the critical
features by creating and deforming an auxiliary mesh along
with the evolution of the vector field. They use a similar
feed forward pipeline system to identify corresponding
streamlines to maintain temporal coherence across frames.

Algorithms Using Flow Topology As Initial Set
In addition to proposing a technique to systematically

create and cancel fixed points and periodic orbits in a vector
field, Chen et al. [27] modify the Jobard and Lefer algorithm
to highlight the vector field topology. Motivated by the
visual discontinuity in periodic orbits and separatrices in
current techniques, before using the seed placement algo-
rithm, they first extract periodic orbits and separatrices and
make them the initial streamlines. Further, to avoid clutter
near sources, sinks, and periodic orbits, they terminate a
separatrix if it is within a user-defined distance from the
non-saddle end.

Preceding the parallel hierarchical local tracing area al-
gorithm presented in Section 2.1.1, Zhang et al. [28] pro-
posed to extract the underlying flow topology and use the
topological skeleton as the initial set of streamlines that
segment the field. Following the partitioning of the field, ad-
ditional streamlines are calculated by placing seed points at
the center of topological areas in a recursive manner creating
an approximately uniform distribution of streamlines. They
extend the vector field domain in each direction by adding a
layer of mirrored boundary cells [103]. Using the additional
critical points from the extended vector field helps capture
open separation and attachment lines.

Similar to the previous work, Wu et al. [29] extract the
flow field topology and partition it into regions of uniform
flow behavior. However, as opposed to adopting a recursive
method, they search for the longest path that orthogonally
crosses all streamlines within a region. Seeds are placed
evenly along the longest path to produce approximately
uniformly placed streamlines. They treat periodic orbits
and saddle-connected loops as special cases. Using vector
field reconstruction error as a quantitative measure for com-
parison (Figure 12), they demonstrate superior streamline
placement than previous works [24], [26], [27], [46]. We can
observe that as a sparser set of streamlines is used, i.e., as
separating distance increases along the x-axis, the algorithm
results in lower reconstruction error in comparison to other
algorithms. Figure 13 illustrates the use of the longest or-
thogonal path as a seeding curve.

Summary
Algorithms using explicitly extracted flow topology in-

formation adopted both seed placement and streamline
selection approaches. One set of works used critical point

Fig. 12: A quantitative comparison using reconstruction
error for five algorithms. Our algorithm in the plot is the
method presented by Wu et al. [29].

Fig. 13: Wu et al. place seed points along the longest or-
thogonal curves (black) [29]. Left: Orthogonal curves (light
blue, black) and extracted flow topology (blue). Right: Or-
ange streamlines are traced from seeds placed along longest
orthogonal curves.

locations to use templates of seed points in the domain.
The templates are critical point type specific and were de-
signed to capture the flow feature accurately. Improvement
on the original set of templates involved extending the
2D templates to 3D flow and modifying the shape of the
template based on neighboring regions of the flow field.
With regard to streamline selection, certain works directly
selected streamlines showing periodic orbits and separa-
trices after extracting critical points. Other works use the
extracted flow topology to divide the flow into regions of
relatively uniform behavior before further seed placement
in each region.

These works successfully highlighted flow topology and
represented flow behavior. Wu et al. demonstrated a lower
vector field reconstruction error compared to multiple pre-
vious approaches. However, some of these techniques are
limited to 2D domains and require being able to robustly
calculate flow topology.

14

2.2.2 Scalar or Derived Field Guided Techniques
Extracting the topological structure of the flow field can
often be difficult to find in a robust manner for real-world
applications, and several research efforts have proposed the
use of derived fields as an alternative approach to guide
seed placement and streamline selection to capture salient
flow features.

Algorithms With General Applicability
Zockler et al. [60] propose to use a statistical method

to facilitate the placement of streamlines with density pro-
portional to some scalar quantity. Considering a uniform
grid over the domain, for each cell, a local degree of in-
terest is computed. Cells are selected on the basis of the
parameterization of a probability distribution using the local
degree of interest. Seeds are then added to those cells, with
streamlines grown for a fixed length with forward and
backward integration from the point of placement. If the
range of values for the chosen scalar ranges over multiple
orders of magnitude, streamline distribution can be unsat-
isfactory. To tackle this problem, a histogram equalization
approach is used to obtain a more homogenous distribution
of streamlines. This technique was applied by Weinkauf et
al. [104], [105] using fields of curvature and torsion.

Schlemmer et al. [65] present a heterogeneous distri-
bution of streamlines based on a density map derived
using scalar fields (temperature, viscosity), derived vector
field information (magnitude of velocity, vorticity, field
topology), or a user-defined density function. They define
streamline density as the number of occupied cells over
the total number of cells in a domain. To calculate priority
streamlines, they first define a density map used to guide
seed placement, with the map updated after every stream-
line calculation. The first seed is placed at the location of
the maximum value of the initial density map. The next
location is chosen as the furthest of the next five maximum
values and the process continues. Given the density map
is monotonically decreasing over time as streamlines are
added, the algorithm will eventually terminate. Figure 14
shows the results for a flow data set comparing a constant
density map and a user-defined density map.

Fig. 14: Schlemmer et al. proposed the use of a density
map to modify streamline distribution based on attributes
of interest [65]. Left: a constant or uniform density map.
Right: a non-uniform density map: density values decrease
from lower right to the upper left corner.

Algorithms Using Entropy (Information Theory)

Furuya et al. [58] consider streamline selection when the
visualization is combined with scalar field isosurfaces. Their
approach generates a large number of seed points to capture
interesting flow features by the integrated streamlines. The
entropy of segments of individual streamlines is measured
and used as a basis for selection. The measure of stream-
line entropy accounts for occlusion caused by isosurfaces
by penalizing a streamline if segments of the curve are
occluded. Finally, streamlines are sorted and selected in
order of highest entropy. To control density, streamlines are
only rendered if they are some minimum threshold distance
away from existing streamlines.

Xu et al. [66] present a flow visualization framework
based on the premise that the effectiveness of a visualization
can be evaluated by measuring how much information in
the original data is being communicated. In this work,
they empirically demonstrate that entropy in regions near
critical points and separation lines is higher than that of
other regions. Modeling a vector field as a distribution
of directions, Shannon’s entropy is used to measure the
information content in the flow domain. Figure 15 illustrates
the use of a polar histogram to capture the distribution
of vector directions for a given neighborhood of the field.
The effectiveness of the streamline placement is measured

Fig. 15: Xu et al. measured entropy or information content
in neighborhoods of the vector field [66]. Left: an example
vector field neighborhood. Right: the distribution of the
vectors approximated using a polar histogram.

by reconstructing a distribution of vectors derived from
the selected streamlines. The approach begins by iteratively
placing seed points in regions of high entropy. They use a
diamond shape template to place 9 seed points in 2D and
an octahedral shaped template consisting of 27 seed points
in 3D. Further, to prevent large voids, they place the next
seed at a point proportional to the conditional entropy com-
puted from its local neighborhood. The streamline addition
process ends when the value of conditional entropy of the
entire domain converges to a small value. A final pruning
step removes redundant streamlines. Figure 16 shows the
placement of seeds based on entropy, streamlines traced in
two stages, and a comparison of the selected streamlines
for the proposed approach to previous works [24], [26]. The
algorithm provided quantitative control of the selection of
streamlines.

Lee et al. [52] extend the framework presented by Xu et
al. [66], to support a view-dependent streamline selection
aimed at minimizing occlusion and revealing important
flow features. Using the derived entropy field, a maximal
entropy projection (MEP) frame buffer is computed for a

15

Fig. 16: The seed placement stages of the entropy-guided algorithm by Xu et al. [66]. Seed points are highlighted in red and
the images show (from left to right) initial placement of seed templates, additional seeds used to reduce conditional entropy,
a result of the algorithm, and visualization results of the Jobard and Lefer method [24] and Mebarki et al. algorithm [26].

given image space. The MEP buffer stores maximal entropy
values, as well as the corresponding depth values for the
given viewpoint. To identify the optimal viewpoints, i.e.,
views which convey maximum entropy information, MEPs
of 780 viewports are evaluated. Streamlines are assigned a
higher priority if they reveal the flow near salient features
and a lower priority if it occludes an important region of
the flow. Streamlines are segmented and each fragment in
the image plane is evaluated to compute a scalar score
ω for each streamline. ω is calculated using information
stored in the MEP buffer - depth and entropy. The stream-
lines are prioritized based on their value of ω which can
be positive or negative. To maintain a streamline density
proportional to the flow complexity, the screen space is
divided into tiles and an expected streamline density equal
to the average normalized entropy of the region in the
MEP buffer is computed. For a given streamline, if the
addition of the streamline affects more tiles with a density
lower than the expected density, the streamline is added.
This approach favors streamlines which reveal salient flow
features without occluding other more important features.
They demonstrated improved feature capturing compared
to Marchesin et al. [51] for a view-dependent selection of
streamlines. Further, even though they significantly benefit-
ted from using a GPU, the serial selection is a bottleneck.

Ma et al. [71] present FlowTour, a framework which
selects best viewpoints to explore a flow field visualized
using streamlines. A skeleton-based seeding algorithm is
employed to generate a set of streamlines which capture
critical regions of the field. Variation of both direction and
magnitude of vectors are considered to compute the entropy
of voxels. Critical regions are identified as local neighbor-
hoods in which voxel entropy values exceed a threshold.
Sufficiently large regions of connected voxels with high en-
tropy are used as input to a volume thinning algorithm that
extracts the skeleton points. Skeleton points are connected
by applying a minimum spanning tree algorithm to produce
a tree-structured skeleton line. The density of streamlines is
controlled by placement of seed points aligned along the
skeleton at an equal user-defined separating distance. Can-
didate viewpoints are generated on the basis of the critical
regions identified in the field. Finally, best viewpoints for
each region are selected and connected into a view path
using a B-spline curve.

Algorithms Using Derived Vector Field Characteristics
The problem of image space cluttering is exacerbated in

3D unsteady state flow, given pathlines of different particles
can occupy the same location in space at different times. To
study unsteady state 3D flow, Wiebel et al. [79] introduce
the concept of an eyelet. Calculating a set of pathlines or
streaklines that pass through the same single point (eyelet)
in space at different times yields an insightful static visual-
ization of the unsteady flow field. The collection of pathlines
can be used to construct a surface to visualize the flow. If
pathlines diverge more than a user-defined threshold, a new
seed is added at the eyelet at a time step in between the
time steps of its neighboring particles. While this approach
is conceptually similar to Hulquist [84], instead of adding
a new point at the location where divergence is detected,
it is added at the eyelet to guarantee the particle would
indeed pass through the eyelet. The placement of the eyelet
plays a critical role in the usefulness of the algorithm to
study the flow field. They identify regions of high activity
by introducing measures to capture the change of a vector
field over time. A dot product variation is computed by
accumulating the positive dot products of vectors in con-
secutive time steps. A second measure, the vector variation
is the norm of the computed difference of the two vectors
considered. Isosurfaces drawn using these variation fields
help identify regions of high and low activity for further
investigation. Additionally, edges and corners, or regions
behind flow passed objects, singularities, and vortex cores
serve as good locations to place an eyelet.

Wang et al. [67] visualize explosion fields by strategi-
cally placing seed points to calculate streamlines. Given the
nature of the simulation, they first generate an isosurface
for the magnitude of velocity. The isosurface region is then
divided into a series of subregions that are almost equal
in area. The center of a subregion is used as a seed point
with the integrated streamlines always starting from the
center of the explosion and extending outward in a direction
perpendicular to the isosurface.

Luo et al. [36] propose a streamline generation tech-
nique by combining the use of derived scalar fields and
topological methods, such as contour trees and persistent
homology. They measure the global importance in terms of
persistence of topological features in the vector field and
use streamline density in the generated visualization to
reflect the same. Hodge decomposition [106] is a technique
used to decompose the 2D vector field into a rotation-free
component - gradient, a divergence-free component - curl
and a harmonic component. Maxima and minima of the
gradient field correspond to sources and sinks respectively

16

and guide the placement of a set of gradient seeds. The
number of seeds placed is proportional to the persistence
of the maxima and minima, measured by determining the
amount of perturbation required to smooth out the moun-
tain peak or valley. A contour tree encodes the evolution
of level sets of the curl field and is used to generate a set
of curl seeds. Each branch of the contour tree corresponds
to a topological component of the domain. Each branch is
assigned a number of seeds proportional to its range func-
tion to collectively produce a set of curl seeds. Every seed
location is evaluated to determine gradient vector or curl
vector magnitude dominance at that position. Only gradient
seeds in positions of gradient dominance are used. Similar,
only curl seeds in positions of curl dominance are used.
They demonstrated superior placement quality in terms of
reconstruction error compared to Li et al. [33] and Xu et
al. [66].

Yu et al. [68] use the curvature and torsion fields of
the flow field to generate a saliency map which is used to
guide the placement of seed points. Based on the premise
that the metrics themselves may not be able to capture
the salient features, a saliency map is computed as the
difference between Gaussian-weighted averages calculated
at multiple scales, i.e., varying the standard deviation of
the Gaussian filter. They compute the saliency map for five
threshold distances and then combine all five saliency maps
with a nonlinear normalization. While the computation of
the saliency map is relatively expensive on CPUs, it can
be computed within a few seconds on a GPU accelerator.
Given a final saliency map, the seed placement algorithm
selects locations in order of decreasing saliency. Generated
streamlines are integrated for a large threshold maximum
length (favor long streamlines while mitigating loops) and
those that occupy the same voxel as existing streamlines
are discarded. The use of the saliency map as opposed to
directly seeding based on the curvature or torsion fields,
allows streamlines to be placed closer to critical points
highlighting flow features. Further, the generated set of
streamlines is hierarchically clustered to enable exploration
at different levels of detail and manage clutter (details in
Section 2.3.1).

Zhang et al. [82] investigate the usage of a scalar field
Φ derived from the input vector field by integrating the
rotation of the integral curves. They place seed points where
|∇Φ|, the magnitude of the rate of variation of derived
field Φ, is greater than a user-defined threshold. Randomly
starting from a placed seed point, an integral curve is
computed, followed by the filtering of nearby seeds. The
process is repeated with the remaining seeds.

To visualize a vortex rope which builds up in the draft
tube of a water turbine, Bauer et al. [85] propose a particle
seeding scheme to visualize unsteady flow. They use Sobol
quasirandom sequences [107] to obtain a uniform distri-
bution while avoiding clustering and artifacts like regular
patterns. Given the vortex rope is a rotating helical structure,
they evaluate the helicity int the flow domain to identify
regions of interest. They propose a scheme to introduce new
particles to regions with a scalar value of helicity greater
than a predefined threshold by offsetting the original point
set of quasirandom sequences. They use a layer of invisible
buffer cells, shown in Figure 17, which enable particles

to fade in and out smoothly from the region of interest.
Similar to the texture-based visualization methods which

Fig. 17: Bauer et al. identify a region of interest using helicity
and maintain particle density using Sobol quasirandom
sequences and buffers to manage smooth transitions [85].

use evenly spaced streamlines presented in Section 2.1.1,
Guthe et al. [90] present another seed placement approach
which distributes more particles in regions of interest. The
placement of seed points is based on an adaptive sampling
of the field with the goal of achieving a higher sampling
resolution in interesting regions and a lower sampling reso-
lution in less interesting regions. They use the local gradient,
divergence, and curvature of the vector field to influence the
particle distribution. Additionally, they suggest the use of
local shear and rotation of the vector field or distance to the
closest critical point. An octree data structure is employed
to maintain the distribution of particles in the domain.
The distribution octree is updated as particles travel along
streamlines with particle age being a deciding factor in
regard to particle removal in overcrowded regions.

Particle-based visualization systems have seen efforts to
improve the interactivity of the flow visualization [108],
[109], [110], [111]. Engelke et al. [86] propose a particle
system which results in an adaptive particle density by
using autonomous particles. Particles operate in parallel
without neighborhood information or inter-particle com-
munication by following a set of rules. The rules dictate
particle birth, death, and split events which influence the
density of particles in different regions of the flow. The
authors choose to use split criteria such as λ2, the curvature
of the particle trajectory, and distance to an object in the
field. The parallel nature of the system allows interactive
visualization while maintaining a smart sampling of the
flow. It uses both context and feature particles, with con-
text particles being regularly introduced into the domain
to prevent underrepresented regions. These particles are
randomly inserted. Feature particles are children of context
particles and are introduced when a split event occurs. Split
events are determined by a combination of properties such
as energy, generation of the parent particle and the local
importance measures in the flow.

Algorithms Using Custom Measures

17

Shen et al. [75] propose the use of fractal dimensions
for streamline selection. Measured using the box-counting
method, fractal dimensions can provide insight into the
complexity of a streamline by considering its space-filling
properties [112]. For each grid point in the domain, a scalar
value is calculated using the local box counting ratio of each
streamline at that location. The scalar grid is used to filter
streamlines by fractal dimension and to identify regions
containing vortices and turbulence. While this approach
does evaluate the space-filling properties of streamlines and
highlights regions where this behavior is exhibited, it does
not guarantee to capture interesting regions in the flow.
Further, they demonstrate the ability to capture a very fea-
ture focused set of streamlines and remove any redundant
curves.

Summary
Motivated by the desire to highlight particular flow

features using streamlines, several algorithms using seed
placement and streamline selection have been proposed.
Early work by Zockler et al. used the simple concept of
associating a degree of interest scalar value for each cell
in the domain. Several works measured the entropy or
information content of a streamline or a neighborhood in
the vector field to determine which streamlines to pick or
where to place a seed point respectively. The use of entropy
results in streamlines that accurately capture the vector field
in regions of turbulent or swirling behavior, i.e., usually
regions of interest. Multiple derived scalar values, such as
curvature and torsion, are used to highlight streamlines that
demonstrate interesting features. These works demonstrate
the potential to accurately capture regions of interest with-
out requiring to explicitly extract the flow topology.

In addition to generating streamline visualizations, the
seed placement methods using derived scalar fields was
applied to particle-based visualization techniques. Derived
scalar field techniques offer the benefit of easily computing
potential regions of interest in a field and placing seeds or
selecting streamlines such that those features are the focus
of the visualization.

2.3 Similarity-based

While traditional streamline placement algorithms were
based on density distribution or feature extraction to guide
streamline placement, these approaches have certain draw-
backs. Density-based approaches result in sets of stream-
lines that contain significant redundancy and feature-based
approaches require prior knowledge of the flow features in
order to extract them (real-world problems pose challenges).
Similarity-based approaches have been gaining popularity
in the past decade by serving multiple flow field explo-
ration tasks. They are used to identify a representative set
of streamlines in the flow field, support flow exploration
by answering streamline similarity queries, and perform
streamline clustering to identify sets of similar streamlines
or hierarchically group streamlines for a level-of-detail ap-
proach. With the goal of performing these tasks, various
approaches have been proposed. We categorize these works
based on the technique adopted to measure the similarity

between streamlines. Further, when considering the sim-
ilarity between streamlines there are multiple factors to
consider such as proximity, shape, scale, and orientation.
Certain works aim to only identify similarity in the proxim-
ity, while other methods aim to identify similarity invariant
to rotation, scale, and orientation. However, the majority of
works approach this task by reducing the problem to an
evaluation of points along the streamline or segments of
the streamline. Early works favored using spatial distance
measures to group or identify similar streamlines, while
more recently streamline features are being exploited to
cluster streamlines and the use of machine learning has
been explored as well. We categorize the methods into three
classes, i.e., approaches using distance measures between
streamlines to evaluate similarity, approaches using features
along a streamline to evaluate similarity and the application
of machine learning in this domain.

In addition to works identifying a representative set
of streamlines in the flow volume, there exists research
involving feature specific streamline selection. For exam-
ple, in an effort to highlight structures of interest in the
flow Salzbrunn et al. [113], [114] define streamline and
pathline predicates to cluster similar integral curves that
satisfy some criteria. Clustering of curves is an approach
commonly found in visualizing diffusion tensor imaging
(DTI) data [115], [116], [117], [118], [119]. These algorithms
generally first define a similarity metric between two curves
and then employ a clustering algorithm on the basis of
it. With respect to flow visualization, Oeltze et al. [120]
evaluate three different kinds of clustering techniques - k-
means, agglomerative hierarchical clustering, and spectral
clustering to reduce clutter when visualizing streamlines
traced from simulated blood flow. Given the relatively high
cost of using similarity metrics that often involve pairwise
streamline comparison, Shi et al. [121] propose metrics for
clustering integral curves that run in linear complexity.

Multiple works have addressed pattern searches to high-
light complex distinguishable flow structures in a vector
field. To retrieve flow patterns, Ebling et al. [122], [123] and
Heiberg et al. [124] employ convolution with dense ideal-
ized filter masks, while Schlemmer et al. [125] and Bujack et
al. [126] define moment-invariant pattern descriptors for 2D
flow fields.

2.3.1 Spatial Distance Techniques

Algorithms Using Distance Measures
Motivated by the shortcomings density and feature

guided methods have Chen et al. [48] present the first
similarity guided streamline placement algorithm for 2D
and 3D steady state flow fields. The proposed algorithm
naturally accentuates regions of geometric interest while
minimizing streamlines in areas of parallel flow. As a mea-
sure of similarity between two streamlines, they define a
similarity distance metric which has two influencing factors.
The first factor is a translational distance measured as the
Euclidean minimum distance between a point on the first
streamline under consideration and the second streamline.
The second factor is a measure of shape and orientation
similarity and is measured over a spatial window. A spatial

18

window is formed by identifying a predefined number of
equally spaced sample points along the curve. Figure 18
shows sample point pairs for two streamline windows.

Fig. 18: The figure shows the pairs of points in a spatial
window used by Chen et al. [48]. The pairing considers
velocity direction along the streamline and thus measures
shape and orientation similarity.

They measure the average deviation of sample point pair
distances from the center point pair distance, i.e., the trans-
lational distance. Starting from a dense set of candidate seed
points, they grow streamlines until its similarity distance for
a window falls below a pre-specified similarity tolerance.
If the streamline length is greater than a minimum length
threshold, the streamline is added to the set of selected
streamlines. The use of shape and orientation for similarity
resulted in 30% better placement compared to only using the
translational distance. However, the method was sensitive
to the order in which candidate seed points were tested.

With the objective of selecting a small set of repre-
sentative streamlines, Li et al. [33] propose an iterative
streamline placement algorithm for 2D steady state flow
fields. The algorithm exploits the spatial coherence in a
flow field to achieve a minimal selection of streamlines
that convey the underlying flow features. The density of
selected streamlines, each of which is integrated for as
long as possible, varies to reflect the different degrees of
coherence in the field. Employing 2D distance fields that
measure the distances from each grid point in the field to
nearby streamlines a local and global metric are derived.
The local metric measures the direction difference between
the vectors of the original field and an approximate field
computed from streamlines in the vicinity. The global metric
measures streamline dissimilarity by accumulating the local
dissimilarity at every integrated point along a streamline
trajectory. To place seed points, the algorithm begins by
placing a random or central seed point, followed by inte-
grating the streamline and evaluating the local dissimilarity
value at each grid point. A streamline is accepted if the local
dissimilarity value of the original seed point is greater than a
threshold and if the global dissimilarity value of the stream-
line is greater than a second threshold. The next candidate
seed is picked by sorting the grid points into a sorted queue
in descending order of the local dissimilarity value. The
process ends when no remaining candidate seeds satisfy the
dissimilarity threshold requirements. An optimization to the

algorithm is reducing the number of candidate seeds consid-
ered by eliminating grid points on boundaries and marking
cells visited by rejected streamlines, i.e., streamlines with
global dissimilarity values below the threshold.

Algorithms Using Mean of Closest Point Distances
Building on the feature highlighting streamline genera-

tion technique presented in Section 2.2.2, Yu et al. [68] enable
exploration at varying levels of detail via a hierarchical
streamline bundling visualization. To calculate the bundles
of streamlines, i.e., clusters, they use the mean of closest
point distances [116] as a similarity measure. The mean of
closest point distances is the mean of Euclidean distances
between pairs of points formed by mapping each point of
one streamline to the closest point of the other. Beginning
with each streamline in a distinct cluster, they successively
merge the two most similar streamlines in a bottom-up
fashion until a stopping criterion is reached. Clusters are
merged using the single-link method where the distance be-
tween two clusters is the minimum of the distances between
all pairs of member streamlines. To represent each cluster
of streamlines, the authors choose to consider the union
of streamlines along the cluster boundary as opposed to
streamlines close to the cluster centroid. The primary ratio-
nale being that while both representations capture sources
and sinks, only boundary streamlines of a cluster best reveal
the saddle together with other boundary streamlines of
neighboring clusters. Figure 19 illustrates a result of their
clustering visualization.

Fig. 19: Results of the hierarchical bundling visualization
algorithm [68]. Left: hierarchical clustering of the flow field
using 12 (top) and 70 (bottom) clusters. Right: A representa-
tive set of streamlines. Boundary streamlines of clusters are
used and they highlight saddles in the flow.

While Yu et al. [68] used the mean of closest point
distances as a measure to merge streamlines into a clus-
ter, Tao et al. [69] use the measure to identify redun-
dancy and limit the number of representative streamlines

19

selected. Measured using a streamline information metric,
the selection is performed in a view-independent manner
by considering the contribution of a streamline to a large
set of sample viewpoints. Starting with a random pool
of streamlines, they create a matrix containing the prob-
abilities of seeing each streamline from each viewpoint
considered. The probability of seeing a streamline is high
if it contains a high amount of information in 3D and its
2D projection for a given view preserves the information
well. Additionally, they score the shape characteristics of
a streamline projection by evaluating each segment of a
streamline subsampling and score segments higher if they
form a 45 or 135-degree angle to the viewing direction.
Streamline information represents the degree of dependence
between a streamline and the set of viewpoints. A low value
indicates a streamline contributes in a balanced manner to
a large number of viewpoints, while a high value would
indicate a streamline visible in a small set of viewpoints.
Streamlines are then sorted into a priority queue, in decreas-
ing order of information conveyed by a streamline for all
viewpoints accumulatively, or in increasing order of stream-
line information. However, these streamlines have significant
redundancy and likely cause clutter in 3D. They perform
pairwise dissimilarity between streamlines using mean of
closest point distances to avoid selecting streamlines that are
very similar to each other. Further, they define a viewpoint
information measure to similarly guide viewpoint selection
for the chosen streamlines. In comparison to other works,
the vector field reconstruction error for this algorithm is
lower than both Xu et al. [66] and Marchesin et al. [51]. Han
et al. [11] use this method of streamline selection in situ to
save a compressed representative set of streamlines for post
hoc flow field reconstruction and analysis.

Opacity adaption is a technique used to manage occlu-
sion and cluttering of streamlines in a 3D field. However, it
can result in the loss of spatial perception when streamlines
are faded out to reveal interesting regions of the field. To re-
tain the perception of spatial relationships between stream-
lines, Kanzler et al. [56] select a set of streamline such that
the screen-space density of the streamlines is locally adapted
to the importance of the streamlines. Figure 20 shows an
example comparing the use of opacity optimization and
adaption of screen-space density. The algorithm requires
the computation of a fully balanced line hierarchy as a
preprocess to facilitate the uniform removal of streamlines
in the domain to obtain desired density at run time. The
mean of closest point distances is computed for all pairs
of streamlines and is used to define a fully connected dis-
tance graph. A minimum cost perfect matching algorithm
is recursively used to identify pairs by minimizing the sum
of all included edge weights, i.e., the similarity measure.
Single linkage is used to merge clusters since it produces
spatial coherent merging of clusters. Streamlines are then
selected by using visibility values which are influenced by
an importance measure, such as curvature, measured along
the streamline and the occlusion caused by the streamline to
other potentially more important lines. Visibility thresholds
are assigned to lines in the hierarchy based on the level at
which the line is the representative for its cluster. Further,
the visibility values are then used to locally control the line
density. While this method improves the spatial perception

of the visualization, it incurs a long preprocessing time to
build a balanced line hierarchy.

Fig. 20: A result of the approach adopted by Kanzler et al.
to preserve spatial perception [56]. Left: a visualization us-
ing opacity adaption. Right: streamline selection performed
using a balanced line hierarchy and visibility values based
on importance.

Summary
Spatial distance measures were used in the form of

distance fields and as a measure of similarity between two
streamlines involving both seed placement techniques and
streamline selection. Chen et al. were the first to evalu-
ate the similarity in shape and orientation between two
streamlines across a window and showed the improvement
in streamline selection when the similarity of shape and
orientation are considered. Li et al. introduced a stream-
line placement algorithm based on dissimilarity, which it-
eratively picked a dissimilar streamline to already chosen
streamlines. Other works which were all based on cluster-
ing, adopt a streamline selection task by first forming dis-
tinct clusters and then choosing representatives at various
levels of the hierarchy. To improve on the balance of the
hierarchy, methods varied between variants of the agglom-
erative hierarchical clustering scheme and minimum cost
perfect matching approaches. Clustering before selection
of representative streamlines allows options for obtaining
the desired streamline distribution, such as retaining a few
occluding streamlines for spatial perception.

While these techniques are useful for selecting a rep-
resentative set of streamlines, the use of similarity-based
methods extends beyond this. Similarity-based methods
have enabled flow exploration via queries. Methods using
spatial distance measures are limited to comparing with
streamlines in the proximity. This prevents similarity query
searches from identifying similar streamlines in other re-
gions of the domain, or streamlines of different scale and
orientation.

2.3.2 Feature Attributes

Feature attributes have been extensively used to evaluate
the similarity between streamlines. A common use case is
to identify all streamlines similar to a given streamline.
Distance based similarity measures primarily account for
proximity and are sensitive to rotation, translation, and
scaling. Feature attributes measured along the streamline
provide a metric to evaluate a streamline similarity in a
proximity, size, and orientation insensitive manner.

20

Algorithms Using Point Sampled Features
Wei et al. [59] propose a 3D streamline selection tech-

nique based on identifying similar streamlines to a user
sketched streamline. The user sketch is a 3D curve whose
2D projection is used as the input to the algorithm. They
approximate the sketched curve and the streamlines using
a arc length parameterized cubic B-spline and sample the
curvature at equal arc length intervals along the curve.
Using a feature vector constructed by concatenating the
curvature at sampled points, they employ a string matching
approach to find similar streamlines, with the difference
between two vectors being measured using the edit dis-
tance [127]. They identify the most similar 3D streamline and
use it as a reference for clustering. All streamlines similar to
the reference streamlines are selected as the result of the
streamline query. For comparison between 3D streamlines
the feature vector is constructed using both curvature and
torsion. In addition to responding to streamline similarity
queries, Wei et al. propose to choose cluster representatives
of a agglomerative hierarchical clustering scheme on the
basis of view-dependent quality. Viewpoint quality of a
streamline is computed by accumulating the winding angle
of the 2D projection of the streamline.

Fig. 21: Wei et al. presented a similarty-based approach
to identify streamlines similar to a user-sketched query
streamline [59].

Zheng et al. [34] present a streamline selection algorithm
for 2D flow fields that uses streamline feature classification,
similarity and entropy. Streamlines are classified on the basis
of the feature they highlight, i.e., a vortex, source, sink, or
saddle, and are also prioritized in that order when they
capture more than one feature. In addition to feature type,
each streamline has a feature position, i.e., the vortex center
for a vortex streamline, the critical point for a source-sink
streamline, or the point of highest entropy for a saddle
streamline. Streamlines are then iteratively clustered on the
basis of a combination of feature type and proximity of
the feature position. They define a similarity metric that
uses a combination of both geometric shape properties

and proximity. Curvature and accumulated angle are used
as geometric shape properties and sample points on two
streamlines are mapped using dynamic time warping. For a
proximity evaluation mean of closest point distances is em-
ployed. They first select a set of streamlines by identifying a
streamline from each feature subset with the highest entropy
accumulated along the points of the streamline. Streamlines
within each feature subset that are dissimilar to the pre-
viously selected streamlines are picked next. The last step
involves, selecting more streamlines by considering both
streamline similarity to previously chosen streamlines and
streamline entropy until a desired number of streamlines are
selected. The algorithm is focused on limiting the number
of redundant streamlines and is capable of generating a
placement qualitatively equivalent to the work by Yu et
al. [68] for a 2D flow field.

Algorithms Using Segmentation
To tackle the high computational expense of distance

based similarity measures which involve performing large
numbers of Euclidean distance tests, McLoughlin et al. [81]
propose to measure streamline similarity by first comput-
ing an integral curve specific signature. The signature is
computed by segmenting an integral curve and using a set
of curve-based attributes, namely, curvature, torsion, and
tortuosity, to describe the integral curve per unit length of
the curve. The χ2 test is used to measure dissimilarity be-
tween streamlines and is performed for all streamline pairs
generating a similarity matrix which enables fast lookup
for the clustering process. Additionally, given the streamline
signature is streamline proximity independent, a Euclidean
distance measure parameter can be used to supplement the
χ2 similarity measure. Addressing issues of alignment of
bins when comparing a pair of streamlines, the authors limit
placement of initial seed points to rakes orthogonal to the
local flow and consider a hierarchical signature for each
streamline. The algorithm was demonstrated to be orders-
of-magnitude faster than the approach by Chen et al. [48].

Chen et al. [128] adopt an entropy-guided seed place-
ment strategy to generate an initial set of streamlines.
Streamlines are then clustered using a two-stage k-means
clustering algorithm. The first stage only considers the start,
middle, and end point of a streamline for clustering. Each
cluster after the first stage is further subdivided into clusters
by considering the linear and angular entropy of streamline
segments. The use of the two stage k-means algorithm is
preferred to single-linkage clustering with mean of closest
point distances due to the quadratic computational com-
plexity of the latter. The authors use additional visualiza-
tion (directional information) cues to aid flow field explo-
ration.

Lu et al. [70] propose a similarity measure based on the
statistical distribution of measurements along a streamline
trajectory. Given the approach is based on distributions,
compared to previous approaches the similarity measure
is less sensitive to length, spatial location, and orientation.
A streamline is recursively segmented until a minimum
length threshold is reached or a segment cannot be split into
two segments which are dissimilar enough. Further, a 1D
histogram is constructed to represent every segment, and a

21

2D histogram to represent the entire curve. The use of the 2D
histogram is to essentially capture the order of the segments
and avoid two dissimilar streamlines with similar feature
distributions appearing similar. Given streamlines may be
represented by a varying number of segments, a mapping
between two sets of segments is performed by using Dy-
namic Time Warping [129]. The difference between two his-
tograms is measured using earth mover’s distance (EMD).
The authors use curvature, torsion, and curl as measures
along a streamline to demonstrate the distribution-based
approach. Their proposed agglomerative hierarchical clus-
tering scheme, in addition to using a distance measure (for
example, single-linkage), they use a balance parameter which
accounts for number of streamlines in a cluster and can force
smaller clusters to merge early in the process to produce
a more balanced tree. The algorithm was demonstrated to
be much faster than using distance measures to identify
similarity.

Li et al. [73] propose to use a similar feature vector
description approach to measure streamline similarity. To
address the issue of dissimilar streamlines having very
similar feature distributions, they use a feature descriptor
that encodes the spatial relations among the features. The
encoding used mitigates the need to segment the stream-
line and find mappings between two streamlines during
similarity evaluation. Beside using local streamline metrics
like curvature and torsion, Li et al. use global geometric
properties of tortuosity and velocity direction entropy to
describe a streamline. A weighted Manhattan distance be-
tween constructed feature vectors of two streamlines mea-
sures the similarity between them. Following a pairwise
similarity measure evaluation between all streamlines, affin-
ity propagation [130] is used to cluster streamlines and form
a hierarchy. The affinity propagation algorithm accepts the
measured similarity values, used as preference values for
each data point, as input and simultaneously considers all
the data points as possible cluster centers. The algorithm
then exchanges real-valued messages between data points
until it converges to produce a set of cluster centers of high
quality.

FlowString is a framework for partial streamline match-
ing proposed by Tao et al. [72] that models streamlines as
strings. Streamlines are first resampled on the basis of wind-
ing angle, using a threshold small enough to capture rela-
tively simple patterns of the streamline segment between
neighboring sample points. All sample points are then eval-
uated pairwise for a dissimilarity measure, the Procrustes
distance(a metric to quantify dissimilarity for 3D shapes and
is extensively used in biological morphometrics), followed
by applying affinity propagation for clustering using a GPU.
The resultant clusters after two levels of affinity propagation
serve as the local shapes for the data set. The local shapes
are used as characters, which together form an alphabet,
using which words can be formed by concatenating char-
acters together. A suffix tree, built to represent all strings,
is used for efficient exact search, and approximate searches
are achieved using dynamic programming. This work was
the first to pursue labeling and classification of streamline
segments.

Summary
Use of features along a streamline allowed for compar-

ison between streamlines in a proximity, scale and orien-
tation invariant manner. Streamlines were either identified
by the feature attributes of points along the curve or by
attributes of segments of the curve. The use of attributes
to describe segments of a streamlines reduced the large
number of distance tests performed when comparing simi-
larity using points. Initially, similarity between streamlines
was limited to those generated from a rake of seed points.
Later works considered distribution of feature attributes and
the order in which they appear to identify streamlines that
are scale, proximity, and orientation invariant. The affine
propagation method of clustering has found application in
clustering similar segments of streamlines when tackling
multiple tasks. In addition to the use of accelerators for clus-
tering, the use of segmentation as opposed to performing
large numbers of Euclidean distance checks has resulted in
significant speed ups. However, these similarity measures
are being performed on relatively small number of curves
and extending these techniques to scale by using more
computationally efficient similarity or dissimilarty measures
is a current research area.

2.3.3 Machine Learning

The application of machine learning techniques to scientific
visualization problems has been a recent development in
the field. With respect to flow visualization and specifically
the use of streamlines there has been recent activity. Li et
al. [74] improve on their previous approach of similarity
calculation using machine learning techniques. In previous
works, similarity measures calculated via segmentation do
not account for human perception, i.e., human-judged sim-
ilarity may not match a weighted Manhatten distance or
some such distance measure.

Algorithms Using SVM For Segmentation
Streamline segmentation has growing importance given

their application in identifying the similarity between
streamlines and assisting in selecting a representative set
of streamlines. However, current measures of segmentation
and similarity measurement do not account for human
perception or what a human considers important. Li et
al. [74] adopt a user-guided approach that employs a binary
support vector machine (SVM) to perform streamline seg-
mentation. The approach begins by first generating a pool of
random streamlines, followed by the use of affinity propaga-
tion for clustering based on a similarity metric that uses cur-
vature and torsion 1D histograms. Users are then required to
choose segmentation points along the set of representative
streamlines from each cluster. For every segmentation point,
the algorithm computes a feature vector comprising velocity
direction ratio, tortuosity ratio, the curvature and torsion
histograms, and the volume ratio of minimum bounding
ellipsoids using varying neighborhood sizes. User selected
segmentation points are positive training samples, while
all non-segmentation points are negative training samples
used to train an SVM classifier. The streamline segmentation
process is carried out for the remaining streamlines using
the classifier. If a group of nearby points is selected as

22

segmentation candidates, a post-processing step chooses
the point with the smallest ratio of minimum bounding
ellipsoids as the final segmentation point. The algorithm
presented by Li et al. is the first to use supervised machine
learning for streamline segmentation. They demonstrated
superior segmentation and feature capturing in comparison
to previous similarity-based methods that used segmenta-
tion.

Algorithms Using DNN For Feature Description
Han et al. [76] use a deep neural net, named FlowNet, to

identify a representative set of streamlines for a given flow
field. They utilize an autoencoder which features both con-
volutional and fully-connected layers enabling the network
to learn a complex data representation by using both local
and non-linear combinations of neurons. FlowNet accepts
voxelized and downsampled representations of streamlines
as input to learn features by non-linearly mapping each
representation to a feature descriptor of 1024 dimensions.
They employ a binary cross-entropy loss function to train
FlowNet. To explore the feature descriptors generated they
apply t-SNE [131] for dimensionality reduction, followed
by interactively tuning the parameters of their clustering
method DBSCAN [132] to find a suitable number of clusters
or set the minimum number of samples in a cluster. A
representative streamline is then identified as one whose
sum of Euclidean distance to all other points in the cluster is
the minimum. Han et al. don’t explicitly use any streamline
attributes, but instead, are the first to employ a deep neural
net to calculate flow features before clustering and selec-
tion. They demonstrate streamline selection which results in
lower vector field reconstruction error compared to Tao et
al. [69] and Xu et al. [66]. However, training the network
can require days to complete and is a current shortcoming
of this approach.

Summary
The use of machine learning for scientific visualization

tasks is increasing in recent years. The first use of an SVM
for streamline segmentation is by Li et al. who use it to
segment streamlines in a cluster of similar streamlines, by a
user choosing segmentation points along the streamline. The
approach allowed the user to specify what is a considered
important feature by selecting segmentation points. Han
et al. use machine learning to learn feature attributes of
streamlines automatically and then cluster them based on
similarity to identify a representative set. The drawbacks of
these methods as of now are they need to subsample the
data set in order for it to be feasible to process and they
still require long run times. Further, the features learned are
data set specific and require each data set to be processed.
Future efforts can aim to build a large database to train
neural networks to identify flow features. Thus, there is
room for further research with respect to the application of
machine learning techniques to unsteady flow visualization
and overall computational improvements.

3 MANUAL TECHNIQUES

Manual placement or specification of initial seed positions
is a common first step when using streamlines to study a

flow field. Interactive flow visualization techniques were
introduced two decades ago and have since evolved to
give the user varying degrees of control of the generated
visualization. While several interactive flow visualization
techniques exist, in this section, we limit our study to
manual techniques involving tools for placement of seeds,
density control, and the use of domain information to do the
same.
Use of Interactive Seed Placement and Streamline Control
Tools

The virtual windtunnel project [77] was an immersive
virtual reality-based system used for the investigation of
airflow around a Space Shuttle. In this work, Bryson et
al. described the use of a hand position sensitive glove
controller for injecting particles into a three-dimensional
unsteady flow. To study areas of interest in the flow, such as
boundary layers and turbulent regions, they interactively se-
lect the locations of seed points, numerically integrate their
trajectories, followed by visualizing and manipulating the
resultant graphics objects. In addition to rapid placement
of seed points, their environment supported repositioning,
the grouping of seeds as a rake, and deletion of existing
seed points using hand gestures. Hardware limitations at
the time meant spatial subsampling of the vector field was
required for interactivity or use of a supercomputer and
dedicated graphics resources.

Schulz et al. [78] aimed to improve the interactivity of
a virtual reality-based exploration system. PowerFLOW, a
lattice-based flow code with locally refined cartesian grids,
used for aerodynamic simulations in car body development
required particle tracing to account for collisions with the
car body. They proposed specific data structures and inter-
polation techniques for fast particle tracing with the initial
positions of seeds, specified using a freely movable probe
similar to Bryson et al. [77], aligned on a rake or inside
a cube. Laramee et al. [63] propose the use of a manual

Fig. 22: Laramee et al. propose the usage of a seeding plane
to manually place seed points in a 3D flow field [63]. The
plane can be oriented and scaled as needed.

seeding tool which allows for six degrees of freedom. The
seed placement tool, shown in Figure 22, is a two dimen-
sional seeding plane grid. Initial seed locations are set at
the grid points before streamlines are calculated. Besides
offering grid resolution control, the seeding plane that can
be translated, rotated, and scaled enabling convenient seed
placement options.

23

Laramee [62] proposed a system, named Streamrunner,
which attempted to tackle previously unaddressed prob-
lems of occlusion, lack of directional and depth cues when
interactively using streamlines in 3D flow fields. Stream-
runner gave the user control over placement of seeds and
then the evolution of streamlines from the time they are
seeds until they reach full length. This provided users with
a sense of direction of flow and depth when observing the
growth of the streamlines. Additionally, it allowed the user
to manually control the streamline seeding density in the
flow field.
Use of Domain-Information for Seed Placement

Manual placement of seed points or rakes is most suit-
able when the nature of the flow field is known and scien-
tists can generate informative visualizations by intelligently
placing seed points. For example, Figure 23 illustrates seed
points placed in multiple rakes to capture the behavior of an
unsteady state flow field containing a Tornado vortex [133].
Alternatively, seed points may be manually placed near
local maxima of an interesting scalar derived from the vector
field or near critical points of the vector field topology [134].
Several flow visualization works adopt this approach.

Fig. 23: Visualization of a Tornado vortex using pathlines,
with initial seeds placed along multiple rakes (left-bottom
of the image)

For certain applications, knowledge of moving objects
in the domain or specific component design assists in de-
ciding seed point locations. Engineers are often required to
evaluate the pattern of flow, such as a swirl or tumble flow,
in the combustion chamber of an automobile in order to
achieve efficient and stable combustion. Laramee et al. [63]
strategically place a seeding plane near the intake ports of a
combustion chamber from where fluid enters to evaluate
swirl flow. They manually place multiple seeding planes
and limit the length of the generated streamlines in the
combustion chamber to capture tumble motion. In another
study involving the complex geometry of an automotive en-
gine cooling jacket, Laramee et al. [64] generate seed points
at the inlet of the cooling jacket. To maintain seed density
they adopt a scheme similar to that of Bauer et al. [85] and
allow particles to travel along integral curves until they
hit a boundary or leave through the outlet. Interactively
exploring the cooling jacket proved tedious given the rapid
visual clutter created by complicated twisted paths and the
difficulty in identifying recirculation zones unless particles
reached those regions.

In a biology-inspired CFD simulation, Koehler presents
a visual flow analysis of insect flight, with the domain
containing multiple dynamically deforming flapping wings

of a dragonfly [80]. With the objective of capturing the for-
mation, attachment, and shedding of leading-edge vortices
and identifying unsteady lift production mechanisms which
could be applied to developing efficient micro air vehicles,
the authors present a novel seed placement method. Tradi-
tional methods of using static seed points suffer in situations
where there are immersed boundaries in the flow field. The
proposed method is based on the premise that interesting
flow phenomena generally occur near and move with the
wings.

Fig. 24: Placement of seeds (left-hand side image) and the
corresponding generated seed curves (right-hand side im-
age) [80]

Seeds are bound in the direction of the vertex normal of
user selected points near the surface of the immersed objects
(for this application the wings). The user is given control of
the seed density and how far in the normal direction seeds
are placed. Seed curves are obtained by connecting points
at neighboring time steps that are the same distance in the
normal direction of the same point on the wing mesh. Seed
curves are then color-mapped to a scalar of interest such
as velocity, vorticity or λ2. The user can then choose seed
curves that are informative and be used further to generate
various integration-based flow lines. Figure 24 illustrates the
seed placement and the generated seed curves.

4 CONCLUSION

In this report, we presented a survey of strategies for seed
placement and streamline selection. The extensive use of
streamlines for flow visualization has resulted in several
methods and suggested approaches regarding how to use
them to explore a flow field. Our classification and catego-
rization of these algorithms resulted in 18 strategies for au-
tomatic techniques and 2 strategies for manual techniques.
Further, we show a grouping of works based on the context,
dimension, and state of flow they are applied to. In addition
to existing qualitative and quantitative comparisons, we
evaluate techniques to compare and relate them along three
axes, namely, redundancy, regions of interest and computa-
tion (Figure 25). Our evaluation assists in identifying viable
and suitable approaches for in situ methods to adopt or
build on.

Future work will focus on utilizing the advantages of
feature and similarity-based approaches within the in situ
context to guide particle placement to extract or generate
a smart sampling of the flow field. We believe there is
potential in leveraging accelerators to reduce the burden
on the simulation execution time. To a large extent, the
problem of selecting a representative set of streamlines has

24

Fig. 25: Using axes representing regions of interest, redun-
dancy, and computation cost to compare and relate strate-
gies for seed placement and streamline selection.

been solved under the post hoc paradigm. Application of
these techniques to pathlines and under in situ constraints
will present new challenges to flow visualization and infor-
mation extraction.

REFERENCES

[1] V. Verma, D. Kao, and A. Pang, “A flow-guided streamline seed-
ing strategy,” in Proceedings of the conference on Visualization’00.
IEEE Computer Society Press, 2000, pp. 163–170.

[2] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion,
B. Gevecik, M. Rasquin, and K. E. Jansen, “The paraview copro-
cessing library: A scalable, general purpose in situ visualization
library,” in Large Data Analysis and Visualization (LDAV), 2011
IEEE Symposium on. IEEE, 2011, pp. 89–96.

[3] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in
situ coupling of simulation with a fully featured visualization
system,” in Proceedings of the 11th Eurographics Conference on
Parallel Graphics and Visualization, ser. EGPGV ’11. Eurographics
Association, 2011, pp. 101–109. [Online]. Available: http:
//dx.doi.org/10.2312/EGPGV/EGPGV11/101-109

[4] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki,
V. Vishwanath, N. Fabian, C. Docan, M. Parashar, M. Hereld
et al., “Examples of in transit visualization,” in Proceedings of the
2nd international workshop on Petascal data analytics: challenges and
opportunities. ACM, 2011, pp. 1–6.

[5] V. Vishwanath, M. Hereld, and M. E. Papka, “Toward simulation-
time data analysis and i/o acceleration on leadership-class sys-
tems,” in Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on. IEEE, 2011, pp. 9–14.

[6] J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H. Rogers,
and M. Petersen, “An image-based approach to extreme scale in
situ visualization and analysis,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Press, 2014, pp. 424–434.

[7] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma, “In
situ visualization for large-scale combustion simulations,” IEEE
computer graphics and applications, vol. 30, no. 3, pp. 45–57, 2010.

[8] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock et al., “In situ
methods, infrastructures, and applications on high performance
computing platforms,” in Computer Graphics Forum, vol. 35, no. 3.
Wiley Online Library, 2016, pp. 577–597.

[9] M. Vetter and S. Olbrich, “Development and integration of an
in-situ framework for flow visualization of large-scale, unsteady
phenomena in icon,” Supercomputing Frontiers and Innovations,
vol. 4, no. 3, pp. 55–67, 2017.

[10] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy, and
H. Childs, “Improved post hoc flow analysis via lagrangian
representations,” in Large Data Analysis and Visualization (LDAV),
2014 IEEE 4th Symposium on. IEEE, 2014, pp. 67–75.

[11] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang, “Flow
field reduction via reconstructing vector data from 3d streamlines
using deep learning.”

[12] M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Hierarchical line inte-
gration,” IEEE transactions on visualization and computer graphics,
vol. 17, no. 8, pp. 1148–1163, 2011.

[13] A. Agranovsky, C. Garth, and K. I. Joy, “Extracting flow struc-
tures using sparse particles.” in VMV, 2011, pp. 153–160.

[14] J. Chandler, H. Obermaier, and K. I. Joy, “Interpolation-based
pathline tracing in particle-based flow visualization,” IEEE trans-
actions on visualization and computer graphics, vol. 21, no. 1, pp.
68–80, 2015.

[15] S. Sane, R. Bujack, and H. Childs, “Revisiting the Evaluation of In
Situ Lagrangian Analysis,” in Eurographics Symposium on Parallel
Graphics and Visualization, H. Childs and F. Cucchietti, Eds. The
Eurographics Association, 2018.

[16] J. Chandler, R. Bujack, and K. I. Joy, “Analysis of error in
interpolation-based pathline tracing,” in Proceedings of the Eu-
rographics/IEEE VGTC Conference on Visualization: Short Papers.
Eurographics Association, 2016, pp. 1–5.

[17] R. Bujack and K. I. Joy, “Lagrangian representations of flow fields
with parameter curves,” in Large Data Analysis and Visualization
(LDAV), 2015 IEEE 5th Symposium on. IEEE, 2015, pp. 41–48.

[18] M. Hummel, R. Bujack, K. I. Joy, and C. Garth, “Error estimates
for lagrangian flow field representations,” in Proceedings of the
Eurographics/IEEE VGTC Conference on Visualization: Short Papers.
Eurographics Association, 2016, pp. 7–11.

[19] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch,
“The state of the art in flow visualisation: Feature extraction and
tracking,” in Computer Graphics Forum, vol. 22, no. 4. Wiley
Online Library, 2003, pp. 775–792.

25

http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109

[20] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, “The state of the art in flow visualization: Dense and
texture-based techniques,” in Computer Graphics Forum, vol. 23,
no. 2. Wiley Online Library, 2004, pp. 203–221.

[21] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post, “Topology-
based flow visualization, the state of the art,” in Topology-based
methods in visualization. Springer, 2007, pp. 1–19.

[22] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen,
“Over Two Decades of Integration-Based, Geometric Flow Visu-
alization,” in EG 2009 - State of the Art Reports, 2009, pp. 73–92.

[23] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn,
H. Theisel, K. Matković, and H. Hauser, “The state of the art
in topology-based visualization of unsteady flow,” in Computer
Graphics Forum, vol. 30, no. 6. Wiley Online Library, 2011, pp.
1789–1811.

[24] B. Jobard and W. Lefer, “Creating evenly-spaced streamlines
of arbitrary density,” in Visualization in Scientific Computing?97.
Springer, 1997, pp. 43–55.

[25] ——, “Multiresolution flow visualization,” 2001.
[26] A. Mebarki, P. Alliez, and O. Devillers, “Farthest point seeding

for efficient placement of streamlines,” in Visualization, 2005. VIS
05. IEEE. IEEE, 2005, pp. 479–486.

[27] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and
E. Zhang, “Vector field editing and periodic orbit extraction
using morse decomposition,” IEEE Transactions on Visualization
& Computer Graphics, no. 4, pp. 769–785, 2007.

[28] W. Zhang and J. Deng, “Topology-driven streamline seeding for
2d vector field visualization,” in Systems, Man and Cybernetics,
2009. SMC 2009. IEEE International Conference on. IEEE, 2009,
pp. 4901–4905.

[29] K. Wu, Z. Liu, S. Zhang, and R. J. Moorhead II, “Topology-
aware evenly spaced streamline placement,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16, no. 5, pp. 791–801,
2010.

[30] W. Zhang, B. Sun, and Y. Wang, “A streamline placement method
highlighting flow field topology,” in Computational Intelligence and
Security (CIS), 2010 International Conference on. IEEE, 2010, pp.
238–242.

[31] W. Zhang, M. Zhang, and B. Sun, “Multiresolution streamline
placement for 2d flow fields,” in Computational Intelligence and
Security (CIS), 2011 Seventh International Conference on. IEEE,
2011, pp. 1174–1178.

[32] W. Zhang, Y. Wang, J. Zhan, B. Liu, and J. Ning, “Parallel
streamline placement for 2d flow fields,” IEEE transactions on
visualization and computer graphics, vol. 19, no. 7, pp. 1185–1198,
2013.

[33] L. Li, H.-H. Hsieh, and H.-W. Shen, “Illustrative streamline
placement and visualization,” in Visualization Symposium, 2008.
PacificVIS’08. IEEE Pacific. IEEE, 2008, pp. 79–86.

[34] L. Zheng, W. Wang, and S. Li, “Feature-based streamline selection
method for 2d flow fields,” in Computer-Aided Design and Com-
puter Graphics (CAD/Graphics), 2015 14th International Conference
on. IEEE, 2015, pp. 129–136.

[35] G. Turk and D. Banks, “Image-guided streamline placement,” in
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. ACM, 1996, pp. 453–460.

[36] C. Luo, I. Safa, and Y. Wang, “Feature-aware streamline genera-
tion of planar vector fields via topological methods,” Computers
& Graphics, vol. 36, no. 6, pp. 754–766, 2012.

[37] B. Jobard and W. Lefer, “Unsteady flow visualization by ani-
mating evenly-spaced streamlines,” in Computer Graphics Forum,
vol. 19, no. 3. Wiley Online Library, 2000, pp. 31–39.

[38] Z. Ding, X. Zhang, W. Chen, X. Tricoche, D. Peng, and Q. Peng,
“Coherent streamline generation for 2-d vector fields,” Tsinghua
Science and Technology, vol. 17, no. 4, pp. 463–470, 2012.

[39] N. Max, R. Crawfis, and C. Grant, “Visualizing 3d velocity
fields near contour surfaces,” in Proceedings of the conference on
Visualization’94. IEEE Computer Society Press, 1994, pp. 248–
255.

[40] O. Rosanwo, C. Petz, S. Prohaska, H.-C. Hege, and I. Hotz, “Dual
streamline seeding,” in Visualization Symposium, 2009. PacificVis’
09. IEEE Pacific. IEEE, 2009, pp. 9–16.

[41] X. Mao, Y. Hatanaka, H. Higashida, and A. Imamiya, “Image-
guided streamline placement on curvilinear grid surfaces,” in
Visualization’98. Proceedings. IEEE, 1998, pp. 135–142.

[42] Z. Liu and R. J. Moorhead, “Interactive view-driven evenly
spaced streamline placement,” in Visualization and Data Analysis

2008, vol. 6809. International Society for Optics and Photonics,
2008, p. 68090A.

[43] B. Spencer, R. S. Laramee, G. Chen, and E. Zhang, “Evenly spaced
streamlines for surfaces: An image-based approach,” in Computer
Graphics Forum, vol. 28, no. 6. Wiley Online Library, 2009, pp.
1618–1631.

[44] O. Mattausch, T. Theußl, H. Hauser, and E. Gröller, “Strategies
for interactive exploration of 3d flow using evenly-spaced illu-
minated streamlines,” in Proceedings of the 19th spring conference
on Computer graphics. ACM, 2003, pp. 213–222.

[45] X. Ye, D. Kao, and A. Pang, “Strategy for seeding 3d streamlines,”
in Visualization, 2005. VIS 05. IEEE. IEEE, 2005, pp. 471–478.

[46] Z. Liu, R. Moorhead, and J. Groner, “An advanced evenly-
spaced streamline placement algorithm,” IEEE Transactions on
Visualization and Computer Graphics, vol. 12, no. 5, pp. 965–972,
2006.

[47] Z. Liu and R. J. Moorhead II, “Robust loop detection for interac-
tively placing evenly spaced streamlines,” Computing in Science &
Engineering, vol. 9, no. 4, pp. 86–91, 2007.

[48] Y. Chen, J. Cohen, and J. Krolik, “Similarity-guided streamline
placement with error evaluation,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 13, no. 6, pp. 1448–1455, 2007.

[49] W. Zhang, J. Ning, M. Zhang, Y. Pei, B. Liu, and B. Sun, “Multires-
olution streamline placement based on control grids,” Integrated
Computer-Aided Engineering, vol. 21, no. 1, pp. 47–57, 2014.

[50] L. Li and H.-W. Shen, “Image-based streamline generation and
rendering,” IEEE Transactions on Visualization & Computer Graph-
ics, no. 3, pp. 630–640, 2007.

[51] S. Marchesin, C.-K. Chen, C. Ho, and K.-L. Ma, “View-dependent
streamlines for 3d vector fields,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 1578–1586, 2010.

[52] T.-Y. Lee, O. Mishchenko, H.-W. Shen, and R. Crawfis, “View
point evaluation and streamline filtering for flow visualization,”
in Visualization Symposium (PacificVis), 2011 IEEE Pacific. IEEE,
2011, pp. 83–90.

[53] T. Günther, K. Bürger, R. Westermann, and H. Theisel, “A view-
dependent and inter-frame coherent visualization of integral
lines using screen contribution.” in VMV, 2011, pp. 215–222.

[54] T. Günther, C. Rössl, and H. Theisel, “Opacity optimization for
3d line fields,” ACM Transactions on Graphics (TOG), vol. 32, no. 4,
p. 120, 2013.

[55] J. Ma, C. Wang, and C.-K. Shene, “Coherent view-dependent
streamline selection for importance-driven flow visualization,”
in Visualization and Data Analysis 2013, vol. 8654. International
Society for Optics and Photonics, 2013, p. 865407.

[56] M. Kanzler, F. Ferstl, and R. Westermann, “Line density control in
screen-space via balanced line hierarchies,” Computers & Graphics,
vol. 61, pp. 29–39, 2016.

[57] T. Annen, H. Theisel, C. Rössl, G. Ziegler, and H.-P. Seidel,
“Vector field contours,” in Proceedings of Graphics Interface 2008.
Canadian Information Processing Society, 2008, pp. 97–105.

[58] S. Furuya and T. Itoh, “A streamline selection technique for inte-
grated scalar and vector visualization,” Vis Š08: IEEE Visualization
Poster Session, vol. 2, no. 4, 2008.

[59] J. Wei, C. Wang, H. Yu, and K.-L. Ma, “A sketch-based interface
for classifying and visualizing vector fields,” in Visualization
Symposium (PacificVis), 2010 IEEE Pacific. IEEE, 2010, pp. 129–
136.

[60] M. Zockler, D. Stalling, and H.-C. Hege, “Interactive visualization
of 3d-vector fields using illuminated stream lines,” in Visualiza-
tion’96. Proceedings. IEEE, 1996, pp. 107–113.

[61] L. A. Treinish, “Multi-resolution visualization techniques for
nested weather models,” in Proceedings of the conference on Vi-
sualization’00. IEEE Computer Society Press, 2000, pp. 513–516.

[62] R. S. Laramee, “Interactive 3d flow visualization using a stream-
runner,” in Conference on Human Factors in Computing Systems:
CHI’02 extended abstracts on Human factors in computing systems,
vol. 20, no. 25, 2002, pp. 804–805.

[63] R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser, “Investi-
gating swirl and tumble flow with a comparison of visualization
techniques,” in Visualization, 2004. IEEE. IEEE, 2004, pp. 51–58.

[64] R. S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser,
and H. Hagen, “Visual analysis and exploration of fluid flow in a
cooling jacket,” in Visualization, 2005. VIS 05. IEEE. IEEE, 2005,
pp. 623–630.

26

[65] M. Schlemmer, I. Hotz, B. Hamann, F. Morr, and H. Hagen, “Pri-
ority streamlines: A context-based visualization of flow fields.”
in EuroVis, 2007, pp. 227–234.

[66] L. Xu, T.-Y. Lee, and H.-W. Shen, “An information-theoretic
framework for flow visualization,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 16, no. 6, pp. 1216–1224, 2010.

[67] Y. Wang, W. Zhang, and J. Ning, “Streamline-based visualization
of 3d explosion fields,” in Computational Intelligence and Security
(CIS), 2011 Seventh International Conference on. IEEE, 2011, pp.
1224–1228.

[68] H. Yu, C. Wang, C.-K. Shene, and J. H. Chen, “Hierarchical
streamline bundles,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 18, no. 8, pp. 1353–1367, 2012.

[69] J. Tao, J. Ma, C. Wang, and C.-K. Shene, “A unified approach to
streamline selection and viewpoint selection for 3d flow visual-
ization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, no. 3, pp. 393–406, 2013.

[70] K. Lu, A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and P. C. Wong,
“Exploring vector fields with distribution-based streamline anal-
ysis.” in PacificVis. Citeseer, 2013, pp. 257–264.

[71] J. Ma, J. Walker, C. Wang, S. Kuhl, and C. K. Shene, “Flowtour:
An automatic guide for exploring internal flow features,” in
Visualization Symposium (PacificVis), 2014 IEEE Pacific. IEEE, 2014,
pp. 25–32.

[72] J. Tao, C. Wang, and C. K. Shene, “Flowstring: Partial stream-
line matching using shape invariant similarity measure for ex-
ploratory flow visualization,” in Visualization Symposium (Paci-
ficVis), 2014 IEEE Pacific. IEEE, 2014, pp. 9–16.

[73] Y. Li, C. Wang, and C.-K. Shene, “Streamline similarity analysis
using bag-of-features,” in Visualization and Data Analysis 2014,
vol. 9017. International Society for Optics and Photonics, 2014,
p. 90170N.

[74] ——, “Extracting flow features via supervised streamline seg-
mentation,” Computers & Graphics, vol. 52, pp. 79–92, 2015.

[75] H.-W. Shen, R. Vasko, and R. Wenger, “Visualizing flow fields
using fractal dimensions,” in Proceedings of the Eurographics/IEEE
VGTC Conference on Visualization: Short Papers. Eurographics
Association, 2016, pp. 25–29.

[76] J. Han, J. Tao, and C. Wang, “Flownet: A deep learning frame-
work for clustering and selection of streamlines and stream
surfaces,” IEEE transactions on visualization and computer graphics,
2018.

[77] S. Bryson, S. Johan, L. Schlecht, B. Green, D. Kenwright, and
M. Gerald-Yamasaki, “The virtual windtunnel,” in Computational
Fluid Dynamics Review 1998: (In 2 Volumes). World Scientific,
1998, pp. 1113–1130.

[78] M. Schulz, F. Reck, W. Bartelheimer, and T. Ertl, “Interactive
visualization of fluid dynamics simulations in locally refined
cartesian grids (case study),” in Proceedings of the conference on
Visualization’99: celebrating ten years. IEEE Computer Society
Press, 1999, pp. 413–416.

[79] A. Wiebel and G. Scheuermann, “Eyelet particle tracing-steady
visualization of unsteady flow,” in Visualization, 2005. VIS 05.
IEEE. IEEE, 2005, pp. 607–614.

[80] C. Koehler, T. Wischgoll, H. Dong, and Z. Gaston, “Vortex vi-
sualization in ultra low reynolds number insect flight,” IEEE
Transactions on Visualization & Computer Graphics, no. 12, pp. 2071–
2079, 2011.

[81] T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters,
and C. D. Hansen, “Similarity measures for enhancing interac-
tive streamline seeding,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 8, pp. 1342–1353, 2013.

[82] L. Zhang, G. Chen, R. S. Laramee, D. Thompson, and A. Sescu,
“Flow visualization based on a derived rotation field,” Electronic
Imaging, vol. 2016, no. 1, pp. 1–10, 2016.

[83] T. Günther, C. Rössl, and H. Theisel, “Hierarchical opacity opti-
mization for sets of 3d line fields,” in Computer Graphics Forum,
vol. 33, no. 2. Wiley Online Library, 2014, pp. 507–516.

[84] J. P. M. Hultquist, “Constructing stream surfaces in steady 3d
vector fields,” in Proceedings Visualization ’92, Oct 1992, pp. 171–
178.

[85] D. Bauer, R. Peikert, M. Sato, and M. Sick, “A case study in
selective visualization of unsteady 3d flow,” in Proceedings of the
conference on Visualization’02. IEEE Computer Society, 2002, pp.
525–528.

[86] W. Engelke, K. Lawonn, B. Preim, and I. Hotz, “Autonomous
particles for interactive flow visualization,” in Computer Graphics
Forum. Wiley Online Library, 2018.

[87] G.-S. Li, U. D. Bordoloi, and H.-W. Shen, “Chameleon: An inter-
active texture-based rendering framework for visualizing three-
dimensional vector fields,” in Visualization, 2003. VIS 2003. IEEE.
IEEE, 2003, pp. 241–248.

[88] H.-W. Shen, U. D. Bordoloi, and G.-S. Li, “Interactive visualiza-
tion of three-dimensional vector fields with flexible appearance
control,” IEEE Transactions on Visualization and Computer Graphics,
vol. 10, no. 4, pp. 434–445, 2004.

[89] A. Helgeland and T. Elboth, “High-quality and interactive ani-
mations of 3d time-varying vector fields,” IEEE Transactions on
Visualization and Computer Graphics, vol. 12, no. 6, pp. 1535–1546,
2006.

[90] S. Guthe, S. Gumhold, and W. Straßer, “Interactive visualization
of volumetric vector fields using texture based particles,” 2002.

[91] A. Vilanova, G. Berenschot, and C. Van Pul, “Dti visualization
with streamsurfaces and evenly-spaced volume seeding,” in Pro-
ceedings of the Sixth Joint Eurographics-IEEE TCVG conference on
Visualization. Eurographics Association, 2004, pp. 173–182.

[92] D. Merhof, M. Sonntag, F. Enders, P. Hastreiter, R. Fahlbusch,
C. Nimsky, and G. Greiner, “Visualization of diffusion tensor data
using evenly spaced streamlines,” 2005.

[93] A. Helgeland and O. Andreassen, “Visualization of vector fields
using seed lic and volume rendering,” IEEE Transactions on Visu-
alization & Computer Graphics, no. 6, pp. 673–682, 2004.

[94] L. P. Chew, “Guaranteed-quality mesh generation for curved
surfaces,” in Proceedings of the ninth annual symposium on Com-
putational geometry. ACM, 1993, pp. 274–280.

[95] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest
point strategy for progressive image sampling,” IEEE Transactions
on Image Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[96] H. Edelsbrunner and D. Guoy, “Sink-insertion for mesh im-
provement,” in Proceedings of the seventeenth annual symposium on
Computational geometry. ACM, 2001, pp. 115–123.

[97] S. Oudot and J.-D. Boissonnat, “Provably good surface sampling
and approximation.” in Symposium on Geometry Processing, 2003,
pp. 9–18.

[98] G. V. Bancroft, F. J. Merritt, T. C. Plessel, P. G. Kelaita, R. K. Mc-
Cabe, and A. Globus, “Fast: a multi-processed environment for
visualization of computational fluid dynamics,” in Visualization,
1990. Visualization’90., Proceedings of the First IEEE Conference on.
IEEE, 1990, pp. 14–27.

[99] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh genera-
tor and delaunay triangulator,” in Applied computational geometry
towards geometric engineering. Springer, 1996, pp. 203–222.

[100] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel, “Saddle
connectors-an approach to visualizing the topological skeleton of
complex 3d vector fields,” in Visualization, 2003. VIS 2003. IEEE.
IEEE, 2003, pp. 225–232.

[101] K. Mahrous, J. Bennett, G. Scheuermann, B. Hamann, and
K. I. Joy, “Topological segmentation in three-dimensional vector
fields,” IEEE Transactions on Visualization & Computer Graphics,
no. 2, pp. 198–205, 2004.

[102] R. L. Cook, “Stochastic sampling in computer graphics,” ACM
Transactions on Graphics (TOG), vol. 5, no. 1, pp. 51–72, 1986.

[103] W. Zhang and J. Su, “Extraction of limit streamlines in 2d flow
field using virtual boundary,” in Computational Intelligence and
Security, 2009. CIS’09. International Conference on, vol. 1. IEEE,
2009, pp. 171–175.

[104] T. Weinkauf and H. Theisel, “Curvature measures of 3d vector
fields and their applications,” 2002.

[105] T. Weinkauf, H.-C. Hege, B. R. Noack, M. Schlegel, and A. Dill-
mann, “Coherent structures in a transitional flow around a
backward-facing step,” Physics of Fluids, vol. 15, no. 9, pp. S3–
S3, 2003.

[106] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis,
and applications. Springer Science & Business Media, 2012,
vol. 75.

[107] D. Stalling and H.-C. Hege, “Fast and resolution independent line
integral convolution,” in Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques. ACM, 1995, pp.
249–256.

[108] A. Fuhrmann and E. Gröller, “Real-time techniques for 3d flow
visualization,” in Proceedings of the conference on Visualization’98.
IEEE Computer Society Press, 1998, pp. 305–312.

27

[109] J. Kruger, P. Kipfer, P. Konclratieva, and R. Westermann, “A
particle system for interactive visualization of 3d flows,” IEEE
Transactions on visualization and computer graphics, vol. 11, no. 6,
pp. 744–756, 2005.

[110] K. Burger, P. Kondratieva, J. Kruger, and R. Westermann,
“Importance-driven particle techniques for flow visualization,”
in Visualization Symposium, 2008. PacificVIS’08. IEEE Pacific. Cite-
seer, 2008, pp. 71–78.

[111] R. Van Pelt, J. O. Bescos, M. Breeuwer, R. E. Clough, M. E.
Groller, B. ter Haar Romenij, and A. Vilanova, “Interactive virtual
probing of 4d mri blood-flow,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 12, pp. 2153–2162, 2011.

[112] A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and R. Wenger, “Exploring
flow fields using space-filling analysis of streamlines,” IEEE
transactions on visualization and computer graphics, vol. 20, no. 10,
pp. 1392–1404, 2014.

[113] T. Salzbrunn and G. Scheuermann, “Streamline predicates,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 6,
pp. 1601–1612, 2006.

[114] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer, “Pathline
predicates and unsteady flow structures,” The Visual Computer,
vol. 24, no. 12, pp. 1039–1051, 2008.

[115] A. Brun, H. Knutsson, H.-J. Park, M. E. Shenton, and C.-F. Westin,
“Clustering fiber traces using normalized cuts,” in International
Conference on Medical Image Computing and Computer-Assisted In-
tervention. Springer, 2004, pp. 368–375.

[116] B. Moberts, A. Vilanova, and J. J. Van Wijk, “Evaluation of fiber
clustering methods for diffusion tensor imaging,” in Visualization,
2005. VIS 05. IEEE. IEEE, 2005, pp. 65–72.

[117] L. ODonnell and C.-F. Westin, “White matter tract clustering
and correspondence in populations,” in International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, 2005, pp. 140–147.

[118] A. Tsai, C.-F. Westin, A. O. Hero, and A. S. Willsky, “Fiber tract
clustering on manifolds with dual rooted-graphs,” in Computer
Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on.
IEEE, 2007, pp. 1–6.

[119] M. Maddah, W. E. L. Grimson, S. K. Warfield, and W. M. Wells,
“A unified framework for clustering and quantitative analysis of
white matter fiber tracts,” Medical image analysis, vol. 12, no. 2,
pp. 191–202, 2008.

[120] S. Oeltze, D. J. Lehmann, A. Kuhn, G. Janiga, H. Theisel, and
B. Preim, “Blood flow clustering and applications invirtual stent-
ing of intracranial aneurysms,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 5, pp. 686–701, 2014.

[121] L. Shi and G. Chen, “Metric-based curve clustering and feature
extraction in flow visualization,” 2017.

[122] J. Ebling and G. Scheuermann, “Clifford convolution and pattern
matching on vector fields,” in Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03). IEEE Computer Society, 2003, p. 26.

[123] ——, “Segmentation of flow fields using pattern matching,” in
Proceedings of the Eighth Joint Eurographics/IEEE VGTC conference
on Visualization. Eurographics Association, 2006, pp. 147–154.

[124] E. Heiberg, T. Ebbers, L. Wigstrom, and M. Karlsson, “Three-
dimensional flow characterization using vector pattern match-
ing,” IEEE Transactions on Visualization and Computer Graphics,
vol. 9, no. 3, pp. 313–319, 2003.

[125] M. Schlemmer, M. Heringer, F. Morr, I. Hotz, M. Hering-Bertram,
C. Garth, W. Kollmann, B. Hamann, and H. Hagen, “Moment
invariants for the analysis of 2d flow fields,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1743–1750,
2007.

[126] R. Bujack, I. Hotz, G. Scheuermann, and E. Hitzer, “Moment
invariants for 2d flow fields using normalization,” in Visualization
Symposium (PacificVis), 2014 IEEE Pacific. IEEE, 2014, pp. 41–48.

[127] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” Journal of the ACM (JACM), vol. 21, no. 1, pp. 168–173,
1974.

[128] C.-K. Chen, S. Yan, H. Yu, N. Max, and K.-L. Ma, “An illustra-
tive visualization framework for 3d vector fields,” in Computer
Graphics Forum, vol. 30, no. 7. Wiley Online Library, 2011, pp.
1941–1951.

[129] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, 1994, pp. 359–370.

[130] B. J. Frey and D. Dueck, “Clustering by passing messages be-
tween data points,” science, vol. 315, no. 5814, pp. 972–976, 2007.

[131] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[132] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[133] L. Orf, R. Wilhelmson, and L. Wicker, “Visualization of a simu-
lated long-track ef5 tornado embedded within a supercell thun-
derstorm,” Parallel Computing, vol. 55, pp. 28–34, 2016.

[134] D. Sujudi and R. Haimes, “Identification of swirling flow in 3-
d vector fields,” in 12th Computational Fluid Dynamics Conference,
1995, p. 1715.

28

	1 Introduction
	1.1 Motivation
	1.2 Challenges in Seed Placement and Streamline Selection
	1.2.1 Desired Characteristics of a Streamline Visualization
	1.2.2 Evaluation
	1.2.3 In Situ Methods

	1.3 Classification
	1.4 Contribution
	1.5 Definitions

	2 Automatic Techniques
	2.1 Density-based
	2.1.1 View-Independent Techniques
	2.1.2 View-Dependent or Image-Guided Techniques

	2.2 Feature-based
	2.2.1 Explicit Flow Topology Guided Techniques
	2.2.2 Scalar or Derived Field Guided Techniques

	2.3 Similarity-based
	2.3.1 Spatial Distance Techniques
	2.3.2 Feature Attributes
	2.3.3 Machine Learning

	3 Manual Techniques
	4 Conclusion
	References

