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ABSTRACT
As computational capabilities increasingly outpace disk speeds on leading supercomputers, scientists will, in turn, be
increasingly unable to save their simulation data at its native resolution. One solution to this problem is to compress these
data sets as they are generated and visualize the compressed results afterwards. We explore this approach, specifically
subsampling velocity data and the resulting errors for particle advection-based flow visualization. We compare three
techniques: random selection of subsamples, selection at regular locations corresponding to multi-resolution reduction,
and introduce a novel technique for informed selection of subsamples. Furthermore, we explore an adaptive system which
exchanges the subsampling budget over parallel tasks, to ensure that subsampling occurs at the highest rate in the areas that
need it most. We perform supercomputing runs to measure the effectiveness of the selection and adaptation techniques.
Overall, we find that adaptation is very effective, and, among selection techniques, our informed selection provides the most
accurate results, followed by the multi-resolution selection, and with the worst accuracy coming from random subsamples.
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1. INTRODUCTION
To allow supercomputers to become ever larger, hardware architects must make tradeoffs to optimize overall machine cost,
computational ability, and power consumption. Increasingly, these architects are selecting disks with I/O rates that are
decreasing relative to their machine’s computational power. Saying it another way, disk speeds are rising on supercom-
puters, but they are not rising nearly as fast as their ability to generate data.1 As leading-edge machines march towards
exascale computing (i.e., calculating 1018 floating point operations per second), disks will become progressively incapable
of keeping pace with the simulation, partly because of the prohibitive financial costs for disks that can maintain sufficient
bandwidth and partly because of the prohibitive power costs for moving full resolution simulation data from CPU memory
to disk.2

These hardware constraints create new challenges for visualization. Specifically, the traditional approach where sim-
ulations save their full-resolution data to disk, which visualization software then reads — so-called post-processing — is
incongruent with the data movement challenges upcoming in high-performance computing. One solution to this problem
is to process the data in situ, i.e., having the visualization algorithms run at the same time as the simulation, and producing
results without involving the disk. This approach is predicted to play a large role in the future,3 and there have been many
successful examples recently. That said, in situ processing works best when end users know what they want to visualize
a priori. Unfortunately, when users explore data — a very common visualization use case — they do not know what
they want to visualize ahead of time. This makes explorative visualization with in situ processing problematic to carry
out in real-time, since it requires the end user to be actively involved while the simulation runs, likely slowing down the
simulation and causing the supercomputer to be used inefficiently.

Researchers have been studying an alternative to real-time explorative visualization with in situ processing, which is to
use in situ processing only to compress the data set, and then writing this compressed data set to the disk, where the user
can explore the data in the traditional post-processing setting.4 This is clearly not ideal for simulation scientists, who would
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obviously prefer visualizations that reflect the full resolution data. But the constraints upcoming in data movement will
not allow for this ideal scenario; simulation scientists will be forced to make compromises. Therefore the focus shifts to
the tension between achieving the highest compression rates possible and producing the most accurate answer. Mandating
very hire compression rates will often erode accuracy, while mandating very high accuracy will often limit the potential
for compression.

An important class of visualization techniques for many scientists is that of flow visualization. Flow visualization
encompasses many techniques, many of which depend on particle advection.5 A particle advection operation seeds a
massless particle at an initial location and displaces the particle along a trajectory that is tangent to the velocity field at every
point. Particle advection is especially sensitive to compression, since the errors introduced by the compression process can
cause the particle to displace to the wrong location. Initial errors will likely be subtle, with the particle trajectory only
diverging slightly away from the ground truth. But these errors can accumulate, possibly leading the particle to end up at
a vastly different end location. Note that many visualization techniques do not share this problem; with isosurfacing, for
example, error from compression will always remain local to those cells that differ from ground truth. That said, scientists
are familiar with sensitive results for particle advection — even without compression — since slight changes in seed
location can lead to dramatically different trajectories. As a result, many scientists already employ practices to understand
the stability of flow visualizations, such as placing a cluster of seeds around a location and checking for consistent behavior.

Data compression techniques transform data to new forms that use fewer bits than its original representation. There are
many approaches for compression, some of which introduce no error (“lossless”), and some of which do introduce error
(“lossy”). In this work, we explore subsampling-based compression, a lossy technique. With subsampling, vectors are
selected at locations throughout the volume to form a basis of the velocity field. The particle advection operation depends
on evaluating the velocity at potentially any location in the volume, requiring interpolation from the basis velocity vectors.
It is this interpolation that introduces the error in the advection process.

A propitious property of subsampling is that it produces a natural “knob” to balance between compression rate and data
integrity. Selecting a basis with more vectors will increase accuracy and have less compression, while a basis with less
vectors will decrease accuracy but have higher compression. The research in this paper considers this selection process.
Assuming a simulation scientist fixes a specific budget for storage and assuming the simulation scientist decides to use a
subsampling-based compression to meet this budget, then the work aims at answering the following question: what are the
best methods for choosing a basis that maximizes accuracy?

The contributions of this paper are:

• A novel method for informed selection of basis vectors to minimize error.
• A method for adapting subsampling budget across processors in a parallel run, including a technique for adapting

the budget based on vector field complexity.
• A study exploring the effects of subsampling-based compression on the accuracy of particle advection, including a

comparison of multiple methods for subsampling and adaptation.

In §3, we present an overview of the technique, which includes a description of our informed picking in §3.2.3. In §4,
we present an overview of our study, and, in §5, we describe our results.

2. RELATED WORK
We are not aware of any previous work directly in the area of subsampling-based compression for flow visualization. How-
ever, there have been many related efforts, including work on topology-based compression for flow visualization (§2.1),
preprocessing data in situ for subsequent exploratory visualization (§2.2), general compression techniques visualization
(§2.3), and selecting important subregions of vector fields (§2.4).

2.1 Topology-Based Compression for Flow Visualization
There have been several efforts on topology-based compression for flow visualization. Lodha et al. found critical points
and similarly provided users a “knob” to control compression.6 Theisel et al. collapsed critical points and reduced the
problem to mesh reduction.7 Later, Theisel et al. continued their work and provided a threshold to distinguish important
features for filtering.8



Of all the previous work considered, these efforts are the most similar to our own, especially with respect to method-
ologies for testing and evaluation. However, none of these works considered the problem of running in situ, which creates
additional constraints for execution time and memory overhead. Two of the works reported that their techniques took over
five minutes to run, and the third work did not report timing information at all. These long durations would not be viable
in an in situ environment. Further, advances in computing power since these works were published will not change this
situation, since they were looking at very small data sets, and would be slower still for the data sets considered in this
effort.

Our own work contrasts with these techniques in that it is appropriate for the constraints of the in situ environment.

2.2 Using In Situ Techniques to Reduce Data for Post-processing
Although in situ techniques have been used for some time, they have been primarily used for cases with a priori knowledge
about what to visualize. There are only a handful of instances of using in situ techniques to compress data in situ for
subsequent explorative post-processing. In one such study, Tikhonova et al. transformed (and compressed) large scale
simulation data to enable exploration through volume rendering.9 In another study, Wang et al. examined flow fields,
calculating the uniqueness of each block in a volume and then creating an importance field that characterizes the flow
field.10 Finally, Wang et al. explored a related direction, this time on combustion data, by using importance fields to guide
compression in a manner that does not deter from quality rendering.11

2.3 General Compression in Visualization
Multi-resolution techniques, especially wavelet-based multiresolution, are well studied in visualization.12, 13 The approach
is so popular that the VAPOR visualization tool14 is designed entirely around the benefits of wavelet compression.

Compression can be more broadly defined to include transforms that reduce data. Techniques such as data subset-
ting15–19 and feature identification and tracking20–23 have also been well studied.

2.4 Informed Selection of the Vector Basis
Our method for informed selection of the basis vectors follows the intuition that vectors in self-similar regions should
contribute less samples and those in varied areas should contribute more samples. This intuition reflects the results from
several previous works. Chen et al. also consider methods for picking (seed points) that depend on similarity.24 Xu et
al. consider the contribution of each vector from the perspective of an information-theoretic framework.25 And Chen et
al. consider the effects of editing the vector field for Morse decomposition.26

3. TECHNIQUE
3.1 Overview
Our method consists of two primary phases. We assume that the budget for how many subsamples can be selected is
specified by the simulation scientist prior to the subsampling.

The first phase is to perform vector subsampling. In a parallel setting, we begin this phase by identifying which proces-
sors have the most complex vector fields and adapting our overall budget so those processors can store more subsamples
(§3.3). We then select the subsamples, using one of three techniques (§3.2). The subsamples we select are the only data
written to disk. Although the budget adaptation occurs before the selection, we present the selection first, since concepts
key to the informed selection algorithm inform strategies behind budget adaptation.

The second phase is to visualize the data with particle advection techniques, as part of a post-processing visual explo-
ration. Users select particles and our software evaluates their trajectory, i.e., where these particles advect to. We support
streamlines and pathlines, but any particle advection-based flow visualization could be supported. We use the fourth order
Runge-Kutta (RK4) technique to advance a particle. This technique depends on evaluating the vector field at arbitrary
locations; the details of the interpolating the vector field from the subsamples is described in §3.4.



Figure 1. These three images show the placement of subsamples (colored in red) for a two-dimensional steady-state jet data set and
4X compression. The top image is of the Random technique (§3.2.1), the middle image is of the Uniform technique (§3.2.2), and the
bottom image is of our Informed Selection technique (§3.2.3). The turbulence of the flow field is colored in grayscale for context, with
non-turbulent areas colored white and turbulent regions colored black.

3.2 Selection Techniques
We study three selection techniques: Random (§3.2.1), Uniform (§3.2.2), and Informed Selection (§3.2.3). In all cases, we
take the budget specified by the simulation scientist (of how much data can be stored to disk) and translate this to a number
of vectors to extract from the volume. An example of the subsamples selected by each of the three techniques is plotted in
Figure 1.

3.2.1 Random

The Random technique chooses subsamples (i.e., vectors) at random locations throughout the volume. The locations are
not constrained to the mesh’s grid points, and rarely overlap with these grid points.

3.2.2 Uniform

The Uniform technique chooses subsamples at regular locations throughout the volume. In special cases, this technique
is similar to multi-resolution sampling. For example, if the specified budget for a two-dimensional data set was to select
one subsample for every four grid points, then the resulting subsampling would effectively be at a resolution two times
coarser in both dimensions. For this reason, we consider the Uniform technique to be a surrogate for comparisons with
multi-resolution methods, which is also used for compression (§2.3). However, we note that, for multi-resolution methods,



the values for coarse refinement levels are often selected to represent all the values in the finer grid, where Uniform simply
chooses one of the values from the finer grids. We believe that the difference in error between Uniform and a true multi-
resolution method is negligible.

3.2.3 Informed Selection

The Informed Selection technique chooses subsamples by taking cues from the underlying flow field. The algorithm targets
areas experiencing turbulence and rotation, increasing its sampling budget in those regions.

The algorithm has two primary phases: it first calculates the deformation at each point in space (“Detecting Non-
Laminar Flow”), and then chooses vectors based on assessments of this deformation (“Choosing Vectors”).

Detecting Non-Laminar Flow: the goal of this phase is to assess the amount of turbulence and rotation throughout the
volume, specifically by creating a scalar value at each point to denote the flow metrics at its location.

To analyze local changes within the flow field, we introduce second-order tensors, or matrices, which hold the scalar
values acting on the vector-spaces. These values are responsible for the linear deformations exhibited along all axes. A
3× 3 matrix/tensor A ∈ R3×3 is a linear mapping between vectors v and w ∈ R3. Within the vector field, we calculate
the so called velocity gradient tensors ∇v of a flow field f : R3→ R3 which describes a local linearized rate of change in
velocity:
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where ∇v reveals information on how the velocity is changing in space. The characteristics of this tensor provides

important deformation descriptors such as magnitude and direction.

To analyze the effects of the instantaneous change in velocity in the region, we consider the volumetric neighborhood
within it, represented by a coordinate frame set using the identity matrix, I. As a volume, this coordinate frame represents
the three major axes of a sphere. Mapping the velocity gradient onto this volume, (I+∇v), the neighborhood is deformed
according to the effects of the flow field. This would be analogous to deforming a spherical volume in the directions of the
instantaneous changes in velocity.

To quantify the spatial changes given by the velocity gradient tensor, we take a closer look at the eigenvectors and
eigenvalues of the deformed volume, which give the maximal and minimal directions and magnitude, providing principle
components of the deformation. When looking for turbulence, the deformation may be categorized by calculating the
fractional anisotropy (FA), which approximates how line-like a neighborhood becomes after a distortion. The FA is a
scalar value between zero and one that describes the degree of anisotropy during the deformation process, giving an idea
as to how line-like a neighborhood has become after distortion. A fractional anisotropy of zero would be a perfect sphere,
while an FA of one would cause the ellipse to degenerate into a line. The equation for calculating the fractional anisotropy
is

FA(T) =
√

3
2

√
(λ1− tr(T))2 +(λ2− tr(T))2 +(λ3− tr(T))2√

λ 2
1 +λ 2

2 +λ 2
3

(1)

where tr(T) is the normalized trace of the accumulated deformation gradient tensor and the λ ’s are the eigenvalues of the
same tensor.

To examine local changes to the flow field due to rotation, we take a look back at the velocity gradient tensor. De-
composing ∇v into its anti-symmetric component describes the deformation due to rotation, which because the rotational
tensor has only three independent elements, may be expressed as a vector
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which is commonly referred to as the vorticity or the tendency of particles in a fluid to rotate. The length of this vector
gives the angular velocity of the rotation.

The scaling provided by the fractional anisotropy and the magnitude of the vorticity allows for the identification of
velocity vectors residing in regions of non-laminar flow. Given a constraint on the number of vectors that may be chosen,
the FA and vorticity guides the vector selection in such a way that samples more densely in areas of increased fluid flow
effects.

Choosing Vectors All velocity vectors now have a measure of turbulence and vorticity, but, before vectors can be chosen
according to these metrics, coverage must be guaranteed throughout the data set, even in laminar regions. Therefore, from
the overall budget B, a fraction is allocated towards uniformly subsampling the entire space. This fraction is defined as
one uniform resolution coarser than that needed to maximally cover the entire domain given the budget constraint. The
following equation is used to calculate the aforementioned maximum grid resolution:

RM = ceil

(
log2

Dimx×Dimy×Dimz
B

k

)
(3)

where k is the number of dimensions and Dimx, Dimy, and Dimz are the sizes of each respective dimension. The amount of
velocity vectors needed to uniformly cover the space using our selection method is calculated using RM:

FR =
Dimx

RM +1
×

Dimy

RM +1
× Dimz

RM +1
(4)

where the resolution grid one compression level higher, RC, is used to calculate the fraction of the budget associated
with general space coverage. The remaining number of velocity vectors, B−FR will be distributed using the turbulence
and rotation metrics described earlier.

The continuation of the informed selection algorithm involves choosing velocity vectors in areas of increased fluid flow
effect. The process begins by examining the fractional anisotropy and vorticity of all vectors within the cells of grid RC.
For both metrics, if the average within the cell is higher than that of the average fractional anisotropy or vorticity across all
vectors, then the cell is refined one level of resolution higher creating cells akin in size to those of RM .

The formulation of grid RC assures that at this stage of the selection process, velocity vectors are still available from the
constrained budget. The refined cells are sorted in order by highest fractional anisotropy and vorticity value and a velocity
vector is chosen in the middle of the cell, going down both lists from highest to lowest, until the budget is exhausted. If a
budget still remains, vectors with high turbulence and/or high rotation are chosen regardless of position as needed. At the
conclusion of the informed selection algorithm, areas of non-laminar flow are sampled densely while non-turbulent areas
are sampled sparsely yet uniformly to ensure coverage.

3.3 Adaptive Budget Selection
When working on a distributed system, the overall budget B must be dispersed among all tasks, as it limits the total amount
of velocity vectors chosen. The simplest approach would be to split the budget evenly, giving each task an equal allowance
of vectors to choose. However, depending on the area covered by an individual task, evenly splitting the budget may result
in over-sampling in areas of laminar flow and under-sampling in areas of increased turbulence and rotation. Therefore, an
adaptive budget may be preferred to limit the over-sampling and increase selection availability in areas of interest.

The insight of fluid flow effects gained through the Informed Selection technique may also be used to vary the budget
between tasks. During the selection process, cells are refined one resolution higher according to turbulence and vorticity.
Any remaining budget is then focused on the center points of these cells and any other velocity vectors in areas of high



deformation. This aforementioned remaining budget can be evenly or adaptively spread among the tasks, using the number
of cells refined within each task as a starting point. However, if no cells have been refined, then the task will receive only
enough of the budget to allow for the general sub-sampling of the space used to evenly sample the area.

Before the budget can be distributed between tasks that have had cell refinements, it must be adjusted to compensate
for the number of already required vectors. This required budget Breq includes the velocities chosen to generally sample
the entire data set and those that make up the refined cells within each task. An additional estimation must be made before
Brem, the amount of budget remaining for adaptive selection, is calculated. Recall that the step of the Informed Selection
algorithm after initial cell refinement is to choose the velocity vector at the center of the refined cells. If the number of
refined cells over the entire data set, CRtotal , is greater than B−Breq, then there is not enough budget left to put a vector
at the center of each cell. Therefore, the remaining budget becomes Brem = B−Breq and the adaptive budget per task is
calculated as a fraction of the number of refined cells that task owns,

Bi = Brem ∗ (
CRi

CRtotal
)+Bi

req (5)

where Bi is the budget allocated for task i, CRi is the number of refined cells in task i, and Bi is the budget task i requires.

If, however, there is enough budget remaining to select a velocity vector for each refined cell, then the remaining budget
becomes Brem = B− (Breq +CRtotal) and the adaptive budget per task is to be primarily based on fluid flow effects. Now
that it is assured that every task will have enough of the budget to fill the refined cells, the remaining velocity vectors within
each will be chosen in areas of high rotation and high turbulence. To better distinguish large values of fractional anisotropy
and vorticity among the tasks, the average FA and VORT in task i are cubed and a summation is formed from all tasks.
The average of the two metrics will determine the amount of budget received:

Bi = Brem ∗
[
0.5∗ FAi

FAtotal
+

VORT i

VORTtotal

]
+Bi

req +CRi (6)

where FAi and VORT i are the average fractional anisotropy and vorticity cubed, and FAtota and VORTtota are the cubed
amounts summed over all tasks. The individual budget also includes the amount task i requires plus the number needed to
choose a vector at the center of each refined cell.

The motivation behind two different adaptive schemes is to be able to target areas of interest while maintaining a general
covering of the those same areas. If the remaining budget is small, it is more advantageous to cover a larger area. However,
if this type of coverage is available with a large budget, the focus turns to better capturing high valued deformations within
the flow field. This adaptation of the budget can be applied to the Informed Selection method, as well as the Random
method, increasing the utility of both. While it may be applied to the Uniform method as well, the uniformity constraint
may lead to a severe under utilization of the allotted budget and is therefore not recommended.

3.4 Interpolation
Accurate interpolation is critical for the success of the technique. Subsampling the vector field already introduces error;
if the interpolation method introduces undue error, it could erode the efficacy of the sampling. Further, if interpolation
problems are severe, then they would prevent acceptable accuracy even if there was no compression (i.e., if the subsampling
selected all the vectors in the data set as the basis). We considered multiple interpolation techniques:

• Shepard’s Method - A form of inverse distance weighting interpolation, Shepard’s method analyzes all velocity
vectors in the global space and weights individual vector information according to its distance from the particle
position.

• Moving Least Squares Interpolation - Commonly referred to as MLS, Moving Least Squares builds a local interpo-
lation neighborhood around the particle position, offering continuous reconstruction.

• Barycentric Coordinate Interpolation - Forming a convex hull around the particle, this method interpolates the ve-
locity vector values that form the bounding triangle or tetrahedron in 2D and 3D respectively.



Figure 2. This figure shows an accuracy comparison between the three interpolation methods: Shepard’s Method, Moving Least Squares
interpolation, and interpolation over barycentric coordinates. The accuracy measurement considers the average distance between particle
positions along advected path-lines in comparison to a trajectory advected using all available information. The average distance is then
shown with respect to the cell size of the base data resolution.

To further examine the varying interpolation strategies, all methods were given an identical field of velocity vectors,
chosen by our informed picking technique with a budget totaling a quarter of the vectors provided for the data set. As
a test of interpolation accuracy, each method was used on the same starting particle positions within a flow field, where
the particles were advected for an identical length of time: short, medium, and long. Each of the approximated pathlines
was then compared point-wise to a ground truth trajectory computed using traditional bilinear interpolation over the full
resolution of the data set. The final extracted metric is the average distance between all interpolated particles and ground
truth particles, divided by the cell size of the base data resolution, graphed in Figure 2. From the comparison chart, we
conclude that barycentric coordinate interpolation is the top choice among the three methods, providing the most accurate
results. The lower number of velocity vectors used in this method minimizes the smoothing that occurs with MLS and
Shepard’s interpolation. For the purposes of quickly finding a bounding tetrahedron, we have used the Computational
Geometry Algorithms Library (CGAL)27 to perform a Delaunay triangulation on the field of velocity vectors prior to
interpolation.

As a result of this pre-study, we opted to use barycentric coordinate interpolation, as it contributes the least error of the
interpolation methods we studied.

4. STUDY OVERVIEW
4.1 Configurations
Our study was designed to provide coverage over a variety of configurations. We varied three factors:

1. Reduction Factor (3 options)
2. Data Set (4 options)
3. Selection Techniques (5 options)

We ran the cross-product, meaning 3×4×5 = 60 tests overall. The variants for each factor are discussed below.

4.1.1 Reduction Factor

We considered three reduction factors: 8X, 64X, and 512X.

4.1.2 Data Set

We considered four simulation data sets: a star exploding, thermal hydraulics, flow around a tokamak, and jet flow in a
box. All data sets were on rectilinear grids, with the jet flow’s size at 128×256×128, and the rest with a size of 2563.



4.1.3 Selection Techniques

We use the three selection techniques described in §3.2: Random (§3.2.1), Uniform (§3.2.2), and Informed Selection
(§3.2.3). Again, an example of the subsamples selected by each of the three techniques is plotted in Figure 1. We also
employ adaptive budgeting (§3.3) to two of the schemes, to create Informed Selection (adaptive) and Random (adaptive)
variants. Thus the total number of selection techniques is give.

4.2 Runtime Environments
We ran this on 64 processors on NERSC’s Hopper machine. Each data set was decomposed evenly over processors,
meaning each processor operated on a 643 piece of the overall data set.

4.3 Measurements
To measure accuracy, we placed a seed in every cell of the data set. For each seed, we measured the distance traveled by
the particle and the final location, both for the compressed vector field and for the original vector field. We also measured
the memory and execution time for the compression operations, to understand impacts in in situ environments.

4.4 Error Evaluation
Our error metric, E, measures how closely the end positions match when advecting a seed point using both the original
vector field and the compressed vector field. Seeing as error accumulates throughout the advection process, the end
positions are good candidates for comparison. The distance between the end positions is normalized by the distance
traveled by the particle. The motivation here is that users will tolerate more error in end position if the particle has traveled
further. If a particle travels 100 units, and the end points are 1 apart, then users will likely find such results useful. For this
case, our E would be 1÷100 = 0.01. However, if the particles travel only 1 unit, and the end points are 0.5 apart, then the
users would likely deem the result misleading, since, proportionally, the result was quite far off. For this case, our E would
be 0.5÷1 = 0.5.

Formally, let:

• S denote a seed location,
• D denote the duration to advect,
• V denote the original vector field,
• V denote the vector field after a compression process,
• Advect(a,b,c) denote a function that returns the position resulting from advecting a seed a for duration b using

vector field c,
• Pathlength(a,b,c) denote a function that returns the total length traveled from advecting a seed a for duration b

using vector field c, and
• Dist(a,b) denote a function that returns the Euclidean distance between points a and b.

Then we define our error metric, E, as:

E(S,D,V ,V ) =
Dist(Advect(S,D,V ),Advect(S,D,V ))

Pathlength(S,D,V )
(7)

The focus on end position has the potential to overlook the importance of the entire trajectory. For example, if the
trajectory from the compressed data ends at the same location, but takes a different route to get there, then end users likely
would object. However, our study looks at multiple time durations. So if the trajectories happen to coincide after a given
duration (but not during the time leading up), it will still be penalized when the shorter durations are considered.

PathLength(S,D,V ) is always non-negative, but combinations of S, D, and V that return 0 — corresponding to a zero-
length path, which will occur when a seed is placed at a 0-velocity location — are problematic and we omit such points
from analysis. It is also possible to have (S, D, V , V ) tuples that cause E to be greater than 1. For example, if V and V
had totally divergent directions at S, then the particles would travel in opposite directions and the distance between their
end points could be greater than the length of the trajectory for S from V . These cases are rare (approximately one in ten
thousand) and we cap the E value for such cases at 1.



Therefore, E has a range from 0 to 1. 0 corresponds to an exact match of end points and 1 corresponds to the end points
being very far away. Further, a compression method can be evaluated by looking at statistics of E. For our purposes, the
best compression method is the one that has E values that skew more towards 0 than the other compression methods.

5. RESULTS
5.1 Comparing Error Across Experiments
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Figure 3. This sample chart illustrates the focus of the error metric E on analyzing accuracy across the compression levels. A vertical
cross section of a compression curve defines what percentage of particles are within a desired accuracy range. In this figure, labels A,
B, and, C mark a 10% distance error (E = 0.1) with 98% of the particles for 8X compression, 80% for 64X, and 53% for 512X being
within the range.

We used the error metric E (§4.4) to assess accuracy across the various selection techniques. We now refer the reader
to Figure 3, which assists in explaining how we measure error. This figure plots the results for only three compression
levels, and using only the Informed Selection method. The x-axis is over our error metric, E, which represents an error
percentage with values ranging from 0 to 1. The y-axis is a cumulative distribution function (CDF) of the particles. This
tells us what proportion of the particles have a given value of E or less. Saying it another way, by drawing a vertical line
from any point on the x-axis, the intersection with the curve shows what percentage of particles are within that accuracy
range. The labels A, B, and C in Figure 3 are points on each of the different levels of compression, 8X, 64X, and 512X,
representing a 10% error. Point A tells us that 98% of the particles are within a 10% error when using 8X compression,
while point B shows 80% for 64X, and point C marks 53% for 512X. We can see in Figure 3 that higher compression rates
lead to a lower amount of particles within a specified error bound, which is an expected result as we have less data to draw
from during particle advection.

5.2 Analyzing Accuracy Achieved In a Variety of Configurations
The results of our study — all 60 tests — are plotted in Figure 4. Each figure of the image represents a different data
set, measuring accuracy for advection. Within each chart, we compare the various picking techniques at varying levels of
compression.

Comparison of Average Error Distance for all Compres-
sions

Astro Thermal Jet Fusion Average

Informed (A) is X more accurate than Informed (N-A) 24.98% 11.43% 27.89% 21.43% 21.43%
Informed (A) is X more accurate than Uniform (N-A) 41.85% 34.80% 36.01% 53.78% 41.61%
Uniform (N-A) is X more accurate than Random (A) 63.69% 14.63% 55.19% -11.41% 30.52%
Random (A) is X more accurate than Random (N-A) 18.22% 7.81% 18.32% 6.37% 12.68%

Table 1. Comparative Average Distance between methods for the data sets. Informed Selection (Adaptive) is more accurate than all
other methods. Overall, it performs 41% better than Uniform and 21% better than Informed Selection (Non-Adaptive). While Random
(Adaptive) does better than Random (Non-Adaptive), overall it performs 30% worse than Uniform.
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Figure 4. Four charts showing the accuracy achieved for our four data sets and three compression levels. The X axis is the error metric
E, discussed in §4.4 and the Y axis is the cumulative distribution function (CDF) of particles. Discussion of how to interpret these
charts can be found in Figure 3 and §5.1. The charts are laid out in a 2x2 matrix, with each focusing on a separate data set. Each chart
contains fifteen curves, corresponding to the cross-product of three compression ratios and five picking varieties. The colors are based
on the picking method and the line styles on the compression ratio. These charts are in response to the research question posed in the
Introduction, regarding which picking methods are best for maximizing accuracy. We envision that a simulation scientist would study
tables like these when deciding what picking method to use and what compression level to use. The observations we make from these
charts are discussed in §5.2.

The last column of Table 1 shows the general pattern for the performance of the three major picking techniques. On
average, the Informed Selection method performs 41% more accurately than the Uniform method, which out performs
Random by 30%. The trends for the individual data sets, mostly follow the averages from Table 1, and exemplified in
Figure 4. As compression increases, a general pattern forms where the Informed Selection method performs more and
more like Uniform as it attempts to broadly cover more space with an increasingly limited budget. On the other hand,
Random performs much worse as compression increases because it may utilize its limited budget to sample densely in



certain areas and sparsely in others. However, one notable exception is with the Fusion data set, where Random out
performs Uniform as the intensity of the flow field requires highly concentrated seeding for accurate measures and the
arbitrary dense areas that form with Random sampling significantly improve its performance.

Selection Jet Met 0.5273 Fusion Met 1.0508 Astro Met 0.91758 Thermal Met 1.87002
512x 8x 512x 8x 512x 8x 512x 8x

Informed (A) 0.04834 0.061199 0.98186 0.99693 0.23477 0.22993 1.21052 1.23929
Informed (N-A) 0.052076 0.052367 0.9906 0.989923 0.29122 0.26009 1.2497 1.2613
Uniform (N-A) 0.000946 0.001105 0.004065 0.005037 0.006104 0.006788 0.00402 0.004597

Random (A) 0.038909 0.054269 0.97899 0.980653 0.242241 0.271331 1.2263 1.23411
Random (N-A) 0.001045 0.002594 0.00427 0.010482 0.0064234 0.010521 0.004176 0.010521

Table 2. Execution time for picking vectors with our five subsampling techniques in various configurations. The amount of picking time
is proportional to the number of vectors to pick for Random and Uniform. Informed Selection has a sorting step that prevents a linear
speedup.

Continuing our analysis, we elaborate on the differences between the adaptive and non-adaptive techniques. In all tests,
the adaptive version of the selection method in question performs more accurately than the non-adaptive version. When
working on a distributed system, the adaptive budget attempts to compensate for the inability of one part of the data to
freely communicate with another. Cases may occur where one task holds a section of data where the flow is particularly
laminar while another encapsulates highly turbulent and rotational fluid flow effects. The adaptive budget allows for less
vector field samples to be taken in the laminar case, giving a greater budget for sampling the deformation occurring the
later task. With the adaptive budgeting consistently outperforming the non-adaptive budgeting, we conclude that these type
of cases occur frequently enough to advocate for an adaptive budget on distributed systems. Table 3 shows the magnitude
of the adaptation in budget.

Test Maximum Average Minimum
Jet, 8X 45203 8192 1088

Jet, 64X 5845 1024 128
Jet, 512X 4090 128 16
Star, 8X 306835 32768 4096
Star, 64X 35306 4096 512

Star, 512X 4473 512 64
Fusion, 8X 75881 32768 7683

Fusion, 64X 8509 4096 1218
Fusion, 512X 878 512 180

TH, 8X 59727 32768 4096
TH, 64X 8063 4096 512
TH, 512X 1007 512 64

Table 3. This table informs the extent that the budget is adapted across processors. For a given test (e.g., “Jet, 8X”), the maximum
budget over all processors is listed in the maximum column, and the minimum budget over all processors is listed in the minimum
column. Since the budget does not change based on data complexity, the average column represents the budget for each processor if
there were no adaptation.

5.3 Suitability for In Situ Processing on Leading-Edge Supercomputers
Although our subsampling compression techniques do not occur in situ as part of a significantly large-scale simulation, we
can still collect evidence about their suitability from the 64 task test. Specifically, we can measure:

• the memory overhead for our techniques, since memory will be a precious commodity on future high end supercom-
puters, and

• the execution time, since the simulation will require the compression technique to finish within some time budget,
so it can continue advancing in time.



There is no memory used for Random and Uniform. For Informed Selection, we store an additional array (for fractional
anisotropy and vorticity), and this array is proportional to the size of the mesh. The cost of calculating the fractional
anisotropy and vorticity is shown in the top row of Table 2. Although the data sets are similar in size, the computation
cost varies according to the eigenvalue and eigenvector calculations required which can be skewed depending on the linear
system (calculated using the CGAL math library). However, the time to do the selection of vectors is smaller in comparison
to the calculation of the fluid flow metrics. While lower, the Informed Selection has a sorting step that prevents a linear
speedup and whose time to completion also heavily depends on the data. Additionally, two AllReduce communication
calls are made between the tasks. The first call calculates the average fractional anisotropy and average vorticity and the
second communicates the required budget and total number of refined cells across the data set. In total, 2 f loat and 2 int
values are communicated between the tasks.

Summarizing the suitability for in situ processing, the Informed Section method requires more memory and more
execution time, especially during initialization. However, we believe the amounts are still within acceptable limits and that
the selection technique is still viable, especially in light of the low amount of communication required to create an adaptive
budgeting scheme which can therefore be applied to the Informed Section method, greatly increasing accuracy measures.

6. CONCLUSION AND FUTURE WORK
This work explores the direction of subsampling-based compression for particle advection-based flow visualization, in the
context of in situ-fueled exploration, and illuminates tradeoffs between accuracy and compression. We feel the primary
contributions of our study are three-fold: (i) the results that compare the error involved with varied configurations (144
tests overall), (ii) a novel technique for subsample selection, and (iii) exploration of of adapting the reduction budget over
a distributed-memory environment.

This work suggests many interesting future directions. First, our algorithm for informed selection is (mostly) better than
the other methods we studied, but it may not be optimal; studying improvements to this algorithm — both in accuracy and
in execution time and memory footprint — would be interesting and beneficial to simulation scientists. Second, users often
know a priori the most interesting regions to do flow analysis; exploring controls for prioritizing where the compression
occurs could significantly improve results. Finally, additional analysis on which regions are best and worst represented
would benefit users, and such analysis could be combined with uncertainty visualization techniques in novel ways.
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