
ar
X

iv
:1

30
9.

17
96

v1
 [

cs
.S

E
]

7
S

ep
 2

01
3

VisIt: Experiences with Sustainable Software
Sean Ahern

Oak Ridge Nat’l Lab.
ahern@ornl.gov

Eric Brugger
Lawrence Livermore Nat’l Lab.

brugger1@llnl.gov

Brad Whitlock
Intelligent Light, Inc.

bjw@ilight.com

Jeremy S. Meredith
Oak Ridge Nat’l Lab.
jsmeredith@ornl.gov

Kathleen Biagas
Lawrence Livermore Nat’l Lab.

biagas2@llnl.gov

Mark C. Miller
Lawrence Livermore Nat’l Lab.

markmiller@llnl.gov

Hank Childs
Lawrence Berkeley Nat’l Lab. &

The University of Oregon
hchilds@lbl.gov, hank@uoregon.edu

I. I NTRODUCTION

Visualization tools have long been fundamental to the
process of scientific discovery. Nowhere is this more true than
in the field of high-performance simulation, where data sets
now run into the tens of petabytes in size. As the growth
of simulation data has exploded in the last decade, so too
has the need for scalable and nimble tools to provide insight
into these complex results. At the same time that virtually all
fields of science have seen data grow in size and complexity,
the computing systems upon which simulations are run and
data analyses are performed have become similarly complex.
Parallel computing has become the dominant method by which
scientific simulations are done, and visualization infrastruc-
tures have had to embrace this same method to continue to
provide capabilities for scientific understanding.

VisIt was developed in response to these emerging needs.
It is an open-source project for visualizing and analyzing
extremely large data sets, while still exploiting the graphics
capabilities of users’ desktops. The project has evolved around
three focal points: (1) enabling data understanding, (2) scalable
support for extremely large data, and (3) providing a robust
and usable product for end users and researchers.

In turn, these focal points have made VisIt a very popular
tool for visualizing and analyzing the data sets generated on
the world’s largest supercomputers. VisIt received an R&D100
Award in 2005 for the tool’s capabilities in understanding large
data sets, it has been downloaded hundreds of thousands of
times, and it is used all over the world.

VisIt’s success has been wholly dependent upon the culture
and practices of software development that have fostered its
welcome by users and embrace by developers and researchers.
In the following paper, we, the founding developers and
designers of VisIt, summarize some of the major efforts, both
successful and unsuccessful, that we have undertaken in the
last thirteen years to foster community, encourage research,
create a sustainable open-source development model, measure
impact, and support production software. We also provide
commentary about the career paths that our development work
has engendered.

II. FUNDING AND ADOPTION

Thirteen years ago there was a fundamental change in
the way scientific simulation was being used, where ever
increasing numbers of users were running simulations gener-
ating large amounts of data. This was especially true within
the United States’ Stockpile Stewardship program, and the
heroic computational effort known as Advanced Simulation
and Computing (ASC). It quickly became apparent the existing
tools were not scaling to the size of newer data sets, and it
was no longer feasible to have visualization experts develop
and utilize a host of specialized tools to analyze users’ data
for them. What was needed was a robust, flexible, and general-
purpose tool with which end users could analyze and visualize
their data. A group of visualization developers were able to
convince management at the Lawrence Livermore National
Laboratory (LLNL) that what was needed was a new open-
source tool, itself built with open-source software, that would
enable data understanding while providing a foundation for
implementing future scalable algorithms. Included in this
mission was a mandate to provide a robust and usable product
for end users. VisIt was born.

A small group within LLNL worked for the next several
years to develop and polish this new tool. Using an Agile
development model, the team released new versions frequently
while working closely with users. This resulted in a popular
tool for visualizing and analyzing data sets on the world’s
largest supercomputers and culminated in an R&D100 award
in 2005.

External collaboration initially came from Sandia and Los
Alamos National Laboratories. As adoption grew in the wider
scientific community, VisIt received funding from the Depart-
ment of Energy (DOE) Scientific Discovery through Advanced
Computing (SciDAC) program as part of the Visualization
and Analytics Center for Enabling Technologies (VACET). To
enable visualization researchers and developers from multiple
institutions to contribute efficiently, development was transi-
tioned from a LLNL-internal model to a distributed model.
This led to a period of growth in functionality where new state-
of-the-art visualization and analysis techniques were added
to the tool from institutions that were leaders in the areas
of visualization and analysis, such as Lawrence Berkeley

http://arxiv.org/abs/1309.1796v1

National Laboratory, Oak Ridge National Laboratory, The
University of California Davis, and the University of Utah.

This led to an even wider adoption of VisIt and commercial
interest from companies such as Intelligent Light, Tech-X,and
Allinea. These companies would either use VisIt to enhance
their existing products or create new products using VisIt.They
also contributed to the user support, answering questions on
the mailing lists.

III. F OSTERINGCOMMUNITY

VisIt is a general-purpose visualization tool, and it has
been used effectively in myriad application domains: climate,
astrophysics, turbulence, thermal hydraulics, engineering, com-
putational fluid dynamics, medical, and many more. Thus, it
has a large potential customer base compared to other HPC
applications. As a result, more features and improved quality
of implementation can lead to increases in “market share,”
which can in turn lead to more funding opportunities.

This observation was taken to heart by VisIt developers,
perhaps subconsciously. After gaining adoption in the ASC
program, VisIt developers decided to make investments that
would encourage adoption from new developers and customers.
For funding agencies, the benefit of such investments is that
they encourage investment by other agencies, resulting in
either reduced cost for the same product, or in a superior
product for the same cost.

The efforts to foster the customer and developer communi-
ties were different, and they are treated separately here.

A. Customer Community

For our project, every developer has played roles spanning
from researcher to software engineer to customer support
liaison. In the early phases of the project, the customer base
was small enough that the primary means of user education
was personal coaching from developers on tool usage. But, as
user adoption increased, this model quickly became infeasible,
as the proportion of time developers spent doing customer
support would have grown with each new user. Making
investments that scaled developer expertise to many customers
became a good return on investment.

We discuss four methods for our support: traditional docu-
mentation, web support, education, and interactive support.

Traditional documentation. Our project has four main
manuals. These manuals, by and large, were written by a single
developer who recognized their need. Because of this, the
manuals would regularly fall out of date, eventually attracting
the attention of the user community. This would ultimately
prompt a developer to refresh a given manual, which happened
at the rate of every two to three years per manual. Our
fundamental problem was that we did not effectively establish
project norms that new capabilities and changes in the interface
mandated corresponding changes in documentation. This was
exacerbated by the fact that we did not move rapidly to open
standards for collaborative document editing and publication.
Going forward, we need to encourage our developers to feel
shared ownership of the quality of the manuals and to develop
processes where documentation updates happen regularly.

Web support. The primary face to our project is our web
site. Surprisingly, googling the word “visit” has returnedour
project page as the #1 result for several years now. This
project page provides access to the source code, pre-compiled
binaries, and documentation, and is fairly static. The page
is complemented by our“visitusers.org” site, which is an
evolving site that provides a wiki and a forum.“visitusers.org”
was started with the goal of being a community-based site
where VisIt users would publish content and interact via
a forum. We find that the VisIt community is often more
interested with obtaining help than regularly contributing
back to the community. Once consequence of this behavior
is that “visitusers.org” has effectively become a repository
for superusers—who often double as developers—for scripts
and techniques that enable complex analyses. It also is a
place where developers list recipes for doing certain typesof
visualization, complementing the more formal manuals.

Education. We have had two primary education activities:
tutorials and classes.

We have conducted well over thirty tutorials, ranging in
duration from two to eight hours, at venues geared towards
visualization experts (i.e., the IEEE Visualization conference),
high-performance computing experts (i.e., Supercomputing),
and customers (i.e., the SciDAC conference). The tutorials
were generally well received, but their role in increasing tool
usage is not clear. The primary struggles with the tutorialsare
two-fold: (i) how to teach material to attendees with varying
backgrounds and varying expertise with VisIt? and (ii) how
to get significant material across in a short period of time?
The contents of the tutorial has gradually changed over the
years. Originally, the tutorial was paced most appropriately
for visualization experts, and many of the demonstrations were
designed to inform the audience about the capabilities of the
tool. Now, the tutorial has many more beginner activities, and
the demonstrations are designed to allow all attendees to have
at least a few successful experiences with the tool.

The VisIt class is taught in a classroom setting where
every student has a computer with VisIt pre-installed. Many
classes have been taught in partnership with the DOE and
National Science Foundation supercomputing centers (e.g., the
Oak Ridge Leadership Computing Facility). In this format,
an instructor goes through features one by one, and the
students reproduce the results. The class has one- and two-
day versions and has been very well received. The classes
taught at computing centers appear to have a correlation to
tool adoption. Unfortunately, in contrast with tutorials that can
be easily offered at conferences, classes are a less traditional
format for HPC tools. As a result, the class is taught less
frequently and has generally only been taught at institutions
who wish to provide training for their specific users.

Interactive support. Documentation and training are ef-
fective, but we have found that users often need immediate
assistance. We created two mechanisms for this: mailing lists
for the general user community and priority support for our
paying customers.

We feel the “users” mailing list has been very effective.

Any user may post, but users can only post if they also
subscribe. Ideally, the users would be able to answer each
other’s questions. Unfortunately, this does not often happen,
and developers answer many questions. This is partly because
many of the questions are regarding compilation errors and
crashes, and fewer are regarding effective tool usage. Never-
theless, we view the users mailing list as a success; it provides
access to experts for all users, and expert support often comes
quickly, which users appreciate.

For customer groups who financially support the program,
we provide a higher level of support. First, we have a separate
email list that goes directly to developers and gets priority.
Second, we created a phone hotline that allows priority users
to speak to an expert. We have found that these mechanisms
have been well-received by our user community. Visualization
is an interactive process, and the ability to receive coaching
on demand prevents frustrating experiences.

Finally, as our developer community has grown, we have
discovered that many HPC centers have a staff “expert” for
VisIt who is able to provide direct local support for users
of that center, then falling back upon the wider developer
community as necessary. In the future, commercial companies
that contribute to VisIt may offer paid consulting support to
the wider VisIt user community.

B. Developer Community

Our team employs software engineering practices that en-
able effective distributed support. We use a public Subversion
repository located at LBNL for revision control and follow a
model with a branch for releases and a branch for the trunk.
We have a bug tracker and, for many bugs, we schedule the
release for when particular bugs will be fixed. We run a nightly
regression test, with results posted to the web, to catch anynew
bugs that might have been introduced. Overall, these practices
appear to be effective.

In VisIt’s early years, when all development happened
within LLNL, the software systems that supported the activi-
ties of revision control, bug tracking, and revision testing were
all done on internal systems with no outside access, sometimes
on commercial software development platforms. Though these
practices were successful, the need to embrace contributions
from external contributors required us to migrate all of these
roles to publicly-accessible servers and open systems. Though
this process took several years, it is now complete and has
proven valuable in nurturing our developer community.

The first five years of VisIt’s development occurred with all
of its primary developers within one hallway. This co-location
was excellent for maintaining consistency in the code and
very efficient for this team of developers, but it likely stunted
developer documentation. As external developers joined in,
documentation began to appear as questions arose from the
new developers, primarily in the form of wiki pages on

“visitusers.org.” There is a mailing list for developers to ask
other developers questions about how to develop code. This
list has been successful, and we have found that all developers
are eager to participate on issues where they have expertise.

We adopted a software plug-in model in the early years of
the project and made the main VisIt code only be aware of the
abstractions for rendering and data manipulation techniques
and file format readers. We believe that new developers
succeed most often when working on new plug-ins (i.e.,
new derived types of the abstractions for rendering, data
manipulation, or file format readers), likely because they are
protected from the complexities of VisIt’s implementationand
can focus on their own self-contained code. On the other hand,
developers who must work on the main code face a steeper
learning code. In short, the software components we designed
to be most easily extensible have been highly maintainable,
but the rest of the code base, though still well-designed and
modular, does not show the same degree of flexibility and
independence.

We have found that the developer team grows by existing
developers hiring new developers at their own institution and
training them. Often, the project spreads to new institutions
from developer migration, not from new developers at a site
picking up the tool and learning it in isolation. This may
indicate a failure in terms of fostering developer community,
but we note that the goal is hard; learning how to develop a
program that exceeds a million lines of code is difficult even
with excellent documentation.

IV. RESEARCH ANDARCHITECTURE

Understanding how visualization research is critical to the
success of any future-looking scientific discovery effort,we
architected VisIt to be amenable to a wide range of research
activities. The plug-in model mentioned above is also critical
to the transition of research into deployed software.

VisIt uses a “client/server” model, where the bulk of the
I/O and computation occurs at the large HPC centers, close to
the data, while the interactive rendering occurs at the user’s
desktop. This model allows for the easy deployment of remote
visualization capabilities.

Internally, VisIt uses data-parallel pipelines for task- and
data-independence [1]. Each “filter,” or component, of a
pipeline is by-and-large independent from any other filter,
allowing for a vast array of possible data analysis and visu-
alization activities to be applied to arbitrary data sets. This
method has proven very popular, being the basis of a number
of visualization tools over the last two decades. This indepen-
dence also provides a fertile ground for research to explore
a particular element of data analysis or visualization without
having to implement basic functionality like I/O, rendering, or
data model development.

V. GOVERNANCE

The VisIt team at LLNL is responsible for ensuring that
the software development practices are followed, that quality
standards for the tool are met, that it passes the nightly regres-
sion suite, for setting the release schedule, and for creating the
releases. Changes to the visualization infrastructure arevetted
among VisIt developers via the visit-developers mailing list to
ensure that they adhere to the VisIt design philosophy.

VisIt is funded by several stable long term DOE funding
streams, including the National Nuclear Security Administra-
tion and the Office of Science. It also receives shorter-term
funding for specific enhancements that are of benefit to small
user communities such as the DOE Office of Nuclear Energy.
VisIt has also seen increasing funding from other federal
agencies like the National Science Foundation.

The VisIt project attempts to be as inclusive as possible
and will allow most types of changes as long as it meets basic
software engineering standards and doesn’t negatively affect
existing users. Changes that are localized to a small portion
of VisIt that don’t impact other user groups (such as new
database reader, operator, or plot) are readily accepted aslong
as the code will compile on all the supported platforms. More
fundamental changes are first discussed on the visit-developers
mailing list to build consensus about the best way to make the
change. The software architect is also heavily involved in this
process. New VisIt developers are paired up with experienced
developers in an informal mentoring program where they can
learn about the processes and discuss changes to the code.

VI. CAREER PATHS

We believe that the project’s developers have benefited
from their participation in the project. The majority of these
developers were hired fresh out of college, and many of them
had opportunities to rise above the individual contributorstatus
within three to five years. One reason for this success is
that there were several multi-institution grants, which created
additional opportunities for co-PI status for the development
team. Furthermore, each of the developers acted as the VisIt
expert at their home institution and thus often had the first
opportunity to pursue local visualization-related activities over
remote VisIt developers who may have been even more
qualified for the collaboration. We note that this contrasts
with projects where the majority of developers are all at one
institution and the lead developer at that institution attracts
the lion’s share of grant opportunities, speaking engagements,
etc. Finally, we note that supporting a visualization tool like
VisIt creates significant opportunity to network, as the large
majority of the HPC community are potential customers. As
a result, developers on projects like VisIt may have additional
opportunities in terms of attending workshops, grants, and
speaking engagements.

The discussion above represents our observations of the
positives that assisted in career development. The obvious
negative, for a research-oriented developer, is the additional
overhead of developing high-quality software.

VII. U SAGE

As is the case with many open-source software packages,
direct measures of usage are difficult. We rely upon the
following mostly indirect metrics:

• Usage statistics at individual sites.At LLNL, developers
collect information on VisIt startups on a per-user name
basis and see approximately 300 unique user names
launching VisIt every month. At most sites, however, we
do not gather this information.

• Downloads.We measure the number of downloads of
both source code and pre-compiled binaries. Our binaries
have been downloaded over 200,000 times from more
than 70 countries internationally. However, we cannot
distinguish multiple downloads by the same user, nor
can we distinguish downloads from actual use, whether
routine or occasional. Traffic at“visitusers.org” averages
over 35,000 visits per month, indicating strong interest
from VisIt users.

• User inquiries.We measure activity on our users email
lists as well as the institutions from which they orig-
inate. There are approximately 400 routine subscribers
generating about 300 emails per month. Over the history
of our lists, we have had regular communication with
participants from over 200 worldwide institutions.

• Citations. We measure citations of the definitive VisIt
publications. For example, according to Google Scholar,
[1] has received 128 citations, [2] has received 35, [3]
has 35, [4] has 31, [5] has 29, [6] has 24, and [7] has 23.

These indirect usage metrics necessarily tell an incomplete
story. However, the alternative — gathering information atev-
ery startup of user name and site — is impossible for classified
environments where VisIt is used, and where such tracking is
possible, it is distasteful to many users. The developers eschew
these tactics in order to encourage adoption, but the price is a
lack of more direct usage metrics.

VIII. C ONCLUSION

VisIt’s thirteen years of development have seen a significant
amount of success in deploying a scalable open-source tool
that has been fundamental to scientific discovery for the nation.
It has also shown a successful model for nurturing research and
fostering its deployment into production for end user scientists.
Though there have been stumbling blocks along the way, as is
expected in any long-term effort, we believe that the lessons
learned by the VisIt team can be instructive to software efforts
looking to have similar impact and success.

REFERENCES

[1] H. Childs, E. S. Brugger, K. S. Bonnell, J. S. Meredith, M.Miller,
B. J. Whitlock, and N. Max, “A Contract-Based System for Large Data
Visualization,” in IEEE Visualization, Oct. 2005.

[2] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison,Prabhat,
G. Weber, and E. W. Bethel, “Extreme Scaling of Production Visualiza-
tion Software on Diverse Architectures,”IEEE Computer Graphics and
Applications, 2010.

[3] H. Childs, M. Duchaineau, and K.-L. Ma, “A scalable, hybrid scheme
for volume rendering massive data sets,” inEurographics conference on
Parallel Graphics and Visualization. Eurographics Association, 2006.

[4] O. Rübel, K. Wu, H. Childs, J. Meredith, C. G. Geddes, E. Cormier-
Michel, S. Ahern, G. H. Weber, P. Messmer, H. Hagenet al., “High
performance multivariate visual data exploration for extremely large data,”
in Supercomputing, 2008.

[5] T. Fogal, H. Childs, S. Shankar, J. Krüger, R. D. Bergeron, and P. Hatcher,
“Large Data Visualization on Distributed Memory Multi-GPUClusters,”
in High Performance Graphics, 2010.

[6] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber,“Scalable
Computation of Streamlines on Very Large Datasets,” inSC’09, 2009.

[7] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel insitu coupling
of simulation with a fully featured visualization system,”in Eurograph-
ics conference on Parallel Graphics and Visualization. Eurographics
Association, 2011.

	I Introduction
	II Funding and Adoption
	III Fostering Community
	III-A Customer Community
	III-B Developer Community

	IV Research and Architecture
	V Governance
	VI Career Paths
	VII Usage
	VIII Conclusion
	References

