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ABSTRACT
We extend the method for particle advection that parallelizes over
particles to work in an in situ setting. We then compare our method
with the typical method for in situ, parallelizing over data. Our
experiments consist of parallelism at 512 cores, a data set with 67
million cells, and ten billion total advection steps. Our findings
show that parallelizing over particles can be more than ten times
faster for some workloads, for reasonable memory cost. Overall,
the significance of these findings is to demonstrate that moving
data can be worthwhile in some in situ settings.

CCS CONCEPTS
• Human-centered computing → Scientific visualization; •
Computingmethodologies→Massively parallel algorithms.
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1 INTRODUCTION
Particle advection is a fundamental building block for many flow
visualization algorithms. The term refers to displacing a massless
particle according to a velocity field. In practice, this is accomplished
by advancing a given particle in small steps, called advection steps.
Advection steps calculate a particle’s direction of travel by solving
an ordinary differential equation using a numerical technique like
Runge-Kutta. The resulting trajectory, or trajectories when there is
a set of particles, can then be used as the basis for flow visualization
algorithms, such as streamlines, pathlines, stream surfaces, FTLE,
etc.

Some particle advection workloads require many advection steps,
and thus can be very computationally expensive. Some flow visu-
alization algorithms require millions, or possibly even billions, of
particles. Other algorithms advect the particles for long distances,
requiring tens of thousands of steps per particle. In some cases, the
technique requires both many particles and long distances. Worse,
computational meshes can be very fine, containing billions of cells;
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these meshes often are too large to fit into memory, and thus need to
be decomposed into blocks. Further, particles will move from block
to block with regularity, which creates difficulties in designing al-
gorithms. For particle advection problems with many advection
steps and fine computational meshes, the most common solution is
to incorporate parallel processing.

Most of the work over the last two decades on parallelizing
particle advection algorithms has come in the context of post hoc
processing. In the post hoc setting, there is typically enough avail-
able memory for a given processing element (i.e., MPI task) to load
multiple blocks, and also to store blocks redundantly across the
processing elements. Further, acquiring a given block in a post hoc
setting typically means reading it from disk, meaning that all blocks
acquisitions (reads) take the same amount of time.

The assumptions made by post hoc algorithms change in a
“tightly-coupled” in situ setting (i.e., where the simulation code
and visualization routines share the same memory space). First,
memory is assumed to be very precious because it is shared with
the simulation code, which discourages acquiring multiple blocks
and also having redundant blocks. Second, each processing element
already has one block (i.e., the one the simulation code is operating
on) and so the assumption is that the visualization routines should
also operate on that same block, to save on memory. Finally, block
acquisitions would no longer translate to reading data from disk,
but instead acquiring data from another processing element via
network communication.

Only one of the existing particle advection parallelization meth-
ods, parallelize-over-data (POD), aligns with in situ constraints.
With this method, each processing element operates on a given
block (or blocks) and particles are sent over the network as they
move between blocks. In the tightly-coupled in situ setting, the
block for a given processing element would be the same one the
simulation code is operating on, minimizing memory usage.

The purpose of this work is to explore whether choices aside
from POD are suitable for tightly-coupled in situ processing as well.
While POD will minimize memory usage, it may be a poor choice
with respect to execution time, which is also a very important
consideration. In particular, POD performs poorly when particles
are located in a small subset of the blocks, as this condition creates
load imbalance.

To explore this theme, we introduce a straightforward variant of
the parallelize-over-particle (POP) algorithm that is appropriate for
in situ processing. The basic idea of POP is that particles are dis-
tributed among processing elements, and each processing element
advects its particles, fetching data blocks as needed to resolve the
velocity field surrounding its particles. The key difference between
our in situ algorithm and traditional (post hoc) POP is that in our
algorithm a block is acquired via network communication from
another processing element, while traditional POP acquires blocks
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from disk. In our experiments, we allowed each processing element
to store up to two additional blocks (costing 40MB each), and found
that runtimes improved by 10X over POD for some workloads.
While this additional memory overhead may be prohibitive in some
settings, we feel our approach is useful in the settings where there
is available memory.

Overall, we feel the main contribution of this work is to show
that the wide body of previous research on parallelizing particle
advection from the post hoc setting may still have a place in an in
situ setting.

2 RELATEDWORK
2.1 Parallel Particle Advection
There are only two main parallelization approaches for particle
advection (POD and POP), although these approaches have mul-
tiple variants [15]. Most extensions to these two approaches aim
to improve load balance. For POD, improvements have come via
techniques such as round-robin block assignment [13] and pre-
processing [4, 12, 21]. For POP, extensions have included tech-
niques to balance the workload, such as work requesting [8, 11],
and dynamic load balancing [10]. Other extensions focused on re-
ducing I/O cost by using techniques such as extending the memory
hierarchy [3], and data prefetching [2, 17]. Finally, some studies
proposed hybrid algorithms [6, 14], where the algorithm used both
parallelization techniques (POP and POD) to balance the workload.

2.2 In Situ Parallel Particle Advection
Several works have employed particle advection techniques in situ.
Most notably, Vetter et al. [20] presented an in situ framework
for large unsteady flow data. Their solution used POD as a par-
allelization method. Further, an emerging in situ data reduction
approach for vector fields uses parallel particle advection to calcu-
late Lagrangian basis flows [1, 18, 19]. These works also use POD.

3 ALGORITHM
In this section, we present our POP implementation for an in situ
context. For ease of reference, we abbreviate the term Processing
Element as “PE” in our description. A PE equates to one MPI task.
It also could equate to one compute node, provided there is one
MPI task per node.

As discussed earlier, POP distributes particles across PEs, and
the needed data blocks are acquired by each PE on demand. In a
post hoc context, the data block is acquired by reading data from
disk. To adapt the algorithm to work in an in situ framework, PEs
in our algorithm acquire needed data blocks from other PEs. We
hypothesize that improvements in load balance will offset the cost
of communicating data blocks, which can be high. Finally, our
algorithm dedicates a separate thread for communication to hide
the communication cost.

An important consideration for in situ POP is memory consump-
tion. A PE acquiring many data blocks runs the risk of exceeding
the budget allocated by the simulation for in situ processing. In-
stead, total memory needs to be controlled. Our algorithm allows
the user to set the number of data blocks allowed in memory of a
given PE. Before each data request, the algorithm checks if there is

available space to make sure not to exceed the number of allowed
data blocks. If the algorithm reached the maximum number of data
blocks, it removes a block to make space for the new block. For our
experiments, we set the maximum block size at two.

Algorithm 1 shows the pseudocode for the worker thread. It uses
the following building blocks:

• Particle: a data structure that represents a particle in the
vector field. The structure contains the particle id, position,
current block id, and can also store the trajectory of the
particle.
• ParticleArray: a data structure that stores an array of Parti-
cles.
• ArrayOfParticleArrays: a data structure that stores multiple
elements of ParticleArray. Each of these elements stores
multiple elements of Particle.
• SortParticleByBlock(): a function that sorts Particles depend-
ing on their current block id and returns two elements: Array-
OfParticleArrays and a vector containing the ids of needed
blocks. All Particles that belongs to block i are stored in
index i of ArrayOfParticleArrays.
• Advect(): a function that advects the Particles of a Parti-
cleArray until they exit the current block or terminate. This
function returns two ParticleArray elements: the first one
contains the completed particles, and the second one con-
tains particles that need another data block.
• CheckForIncomingMessages(): a function that checks for
incoming messages from other PEs. These messages can
be data requests from other PEs or notifications of particle
terminations.
• SendData(): a function that sends a data block to the request-
ing PE.
• RequestData(): a function that requests a data block from
another PE.

The algorithm starts by distributing P particles across N PEs,
assigning P

N particles to each PE. Each PE then begins the process
of advecting its particles. First, each PE starts by sorting particles
by block and identifying the needed data blocks. Next, the worker
thread advects the particles located in its local data block.We use the
VTK-m [9] library for particle advection within a PE, specifically
the module developed by Pugmire, et al. [16]. Simultaneous to
advection, the communication thread requests needed data blocks;
this is described inAlgorithm 2.When a PE receives a requested data
block, the PE’s particles located in that data blockwould be advected.
The algorithm completes when all particles are terminated, either
by reaching the maximum advection step or exiting the problem
domain.

An important consideration for our algorithm was the cost to
send data. When a PE’s block is requested, it employs a multi-
threaded approach to serialize the data into a byte string. It also
caches this byte string to prevent repeated serialization costs.

4 EXPERIMENTAL OVERVIEW
This section provides an overview of our experiments: experiment
configurations (4.1) and the metrics we use to evaluate performance
(4.2).
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Algorithm 1 Pseudocode of the worker thread for one PE.
1: function POP-Advect(ParticleArray pv)
2: keepGoinд← true
3: ArrayO f ParticleArrays pva[NUMBLOCKS]
4: (pva,neededDataBlocks) ← SortParticlesByBlock(pv)
5: allCompletedParticles ← ∅
6: while keepGoing do
7: contParticles ← ∅
8: for i in NUMBLOCKS do
9: if pva[i].size() > 0 then
10: ParticleArray completed, continuinд
11: (completed, continuinд) ← Advect(pva[i],b)
12: allCompletedParticles + = completed
13: contParticles + = continuinд
14: end if
15: end for
16: if contParticles.size() > 0 then
17: pva ← SortParticlesByBlock(contParticles)
18: else
19: keepGoinд← f alse
20: end if
21: end while
22: end function

Algorithm 2 Pseudocode of the communication thread for one PE.
1: function POP-Communicate(int* neededDataBlocks)
2: for i in neededDataBlocks do
3: owner ← GetOwnerNode(i)
4: dataBu f f er ← RequestData(owner , i)
5: end for
6: if numActive > 0 then
7: keepCommunicatinд← true
8: end if
9: while keepCommunicating do
10: MSG ← CheckForIncominдMessaдes()
11: if MSG = PARTICLES_TERMINATED then
12: numActive -= MSG.numTerminated
13: else if MSG = NEED_DATA then
14: SendData(MSG .blockID)
15: end if
16: if numActive < 0 then
17: keepCommunicatinд← f alse
18: end if
19: end while
20: end function

4.1 Experiment Configurations
Data Set: Our study used an astrophysics data set consisting of
32 blocks, with each block containing 1283 cells. It came from a
simulation data of a magnetic field surrounding a solar core collapse,
which results in a supernova. The simulation was performed via the
GenASiS [5] code, which is a multi-physics code for astrophysical
systems involving nuclear matter.

Level of concurrency: We ran all experiments using 32 MPI
tasks on 16 nodes of Cori, a machine at Lawrence Berkeley National

(a) (b)

Figure 1: Streamlines visualization for our (a) dense and (b)
uniform seed distributions.

Laboratory’s NERSC facility. Cori has both Xeon Phi and Intel
Xeon “Haswell” processor nodes; our experiments were run on the
Haswells. We used 16 cores per MPI task, for a total of 512 cores in
each run. We declined to use the hyper-threading feature, since it
did not boost performance for the VTK-m code base we were using.
Each Haswell node on Cori has 128GB of memory.

Parallelization Techniques:We consider both the POD algo-
rithm and the POP extension we introduced in this paper. The POP
algorithm running on each PE was allowed to cache up to two
blocks it acquired from other PEs. While in this study we limited
the cache size to two additional blocks, the user can choose to
increase the number of allowed data blocks in cache to improve
performance but at the cost of a higher memory consumption. It
is important to note that while our POP algorithm is designed for
in situ, we ran in a so-called “theoretical” in situ environment, as
our algorithm was not connected to a running simulation. Instead,
before executing the algorithm, each PE acquired one block of data
from disk. From this point forward, the disk was not consulted, and
data was exchanged via network as it would be in an in situ setting.
No I/O timings are reported, since we feel it is not relevant to our
study.

ParticleWorkload:Weused onemillion particles, and advected
each particle 10K steps (or fewer in the relatively rare cases where
a particle exited the volume), for a total of approximately 10 billion
advection steps. Particles were advected using velocity. We consider
two extremes of seeding distributions: dense and uniform. In our
study, the dense distribution was so concentrated that all of the
particles begin in a single block, which is very likely to lead to load
imbalance when using POD. Our uniform distribution had particles
spread evenly throughout the volume, increasing communication
cost when using POP, since more data blocks are required. Figure 1
shows a visualization of the two distributions.

4.2 Performance Measurement
For each phase, we display the execution time of the slowest PE,
the maximum memory consumption needed to store the data, and
the load imbalance. The load imbalance impacts the performance
because the execution time is determined by the time of the slowest
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Work Idle

(a) (b)

Figure 2: Performance of the two algorithms (a) POD, (b)
POP, using 32 PEs to advect 1 million particles for 10 thou-
sands steps for a dense distribution of seeds. The POD fig-
ure shows one task working the whole time (the task at the
bottom), while the POP figure has more PEs involved. This
figure is horizontally scaled based on run-time; POD ran for
307s, while POP ran for 26.6s.

PE. We define load imbalance with the following equation:

Load imbalance = Ts∑
0<p<N Tp/N

where Tp is the total execution time for PE P , and Ts is the total
execution time of the slowest PE.

5 RESULTS
This section presents the results of our study.We divide our analysis
based on the seed distribution: dense (5.1) and uniform (5.2).

5.1 Dense Distribution
Table 1: Comparing the performance andmemory consump-
tion of the two algorithms for a dense particle distribu-
tion. Initialization time measures the time to initialize vari-
ables and generate initial seeds. Advection time measures
the time to advect particles and to process the advection re-
sults (e.g., terminate). Communication time measures the
time to request or send data blocks or particles to other PEs
and to inform other PEs of termination. Idle time is the dif-
ference between total time and the sum of the other time
measurements.

POD POP

Total time 307s 26.6s
Initialization time 0.97s 0.33s
Advection time 303s 16.9s
Communication time 0.18s 4.22s
Sort particle time 0.02s 0.1s
Load imbalance 30.34x 1.2x
Memory to store data 46.99MB 93.99 MB

The results for dense seeding are presented in Table 1. The results
show that using POP improves performance by a factor of 11.5X
over POD.

POD has a high execution time of 307s, due to the high load
imbalance between PEs. This phenomenon is plotted in Figure 2.
Since all particles are located in one data block (block0), there is
one PE advecting all particles.

Using POP distributes the workload and reduces the execution
time to 26.6s. Even though the communication takes 4.2s, the overall
execution time is lower than POD. As discussed in Section 3, we
took care to optimize serialization time, which is an important
component of communication time.We found that serializing a 1283
data block took about one-eighth of a second. (Previous versions
over our code that serialized with a single core were much slower.)
Figure 2 shows that there is idle time for each PE after advecting
the particles located in its block. This idle time is the time spent
waiting to receive the required data block.

Using POP increases the memory requirement needed to store
the data. This is because each PE is storing its data block and its
received data blocks. In the case of dense distribution, only one
extra block was needed, meaning that the cache of size two was
only half-filled. The memory consumption presented in the table is
representing the number of MB needed to store the velocity data;
if a simulation code was calculating extra quantities (temperature,
density, etc.), then the proportional increase in memory would be
lower.

5.2 Uniform Distribution
Table 2: Comparing the performance andmemory consump-
tion of the two algorithms for uniform seeding. The terms
in this table are described in Table 1.

POD POP

Total time 23.9s 210s
Initialization time 0.65s 0.75s
Advection time 17.6s 99.7s
Communication time 4.34s 21.8s
Sort particle time 0.01s 13.9s
Load imbalance 1.19x 1.41x
Memory to store data 47.12MB 140.9MB

The results for uniform seeding are presented in Table 2. With
uniform seeding, POD performs 9.9X better than POP. This is be-
cause POP’s PEs needed to request data blocks from the other 31
PEs, since its particles are scattered across the whole data domain.
This leads to a higher communication time, in addition to idle time
waiting for data blocks.

In this test, the PEsmade use of both slots in its cache. This means
at any given time, each PE could store amaximum of 140.9MB of vec-
tor field data. We anticipate that a larger cache could substantially
reduce execution time. When the size is small, a smaller number
of blocks can be requested at the same time, since our algorithm
checks for available slots before each request. As a result, PEs might
need to request the same data block more than once for cases where
particles advect toward a previous data block.

6 CONCLUSION AND FUTUREWORK
The contribution of this paper is an extension of the POP algorithm
to work on an in situ context. We adapt the algorithm to acquire
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data blocks from other PEs instead of reading it from disk. The
paper compares between the main particle advection paralleliza-
tion methods (POD and POP), and shows that our POP extension is
superior for the workload where POD is known to perform poorly.
Further, the study provides evidence that other parallelization tech-
niques designed for post hoc processing may also be useful for in
situ processing.

For future work, we plan to integrate our algorithm with Ascent
[7] and study the performance with more simulations. We also
plan to study the impact of cache size (i.e., memory usage) on the
performance. Finally, we plan to test the algorithms at larger scale.
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