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A Scalable Hybrid Scheme for Ray-Casting of
Unstructured Volume Data

Roba Binyahib, Tom Peterka, Matthew Larsen, Kwan-Liu Ma, and Hank Childs

Abstract—We present an algorithm for parallel volume rendering that is a hybrid between classical object order and image order
techniques. The algorithm operates on unstructured grids (and structured ones), and thus can deal with block boundaries interleaving
in complex ways. It also deals effectively with cases that are prone to load imbalance, i.e., cases where cell sizes differ dramatically,
either because of the nature of the input data, or because of the effects of the camera transformation. The algorithm divides work over
resources such that each phase of its processing is bounded in the amount of computation it can perform. We demonstrate its efficacy
through a series of studies, varying over camera position, data set size, transfer function, image size, and processor count. At its
biggest, our experiments scaled up to 8,192 processors and operated on data sets with more than one billion cells. In total, we find that
our hybrid algorithm performs well in all cases. This is because our algorithm naturally adapts its computation based on workload, and
can operate like either an object order technique or an image order technique in scenarios where those techniques are efficient.

Index Terms—Volume rendering, parallel visualization, large scale visualization.
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1 INTRODUCTION

COMPUTATIONAL power has been increasing tremen-
dously in recent years, allowing scientists to simulate

larger time-varying 3D physical phenomena at higher reso-
lutions, leading to larger data sets to analyze and visualize.
Volume rendering is an important method for visualizing
such data, as it provides insight into the entire data set.
Application areas that regularly make use of volume ren-
dering include astrophysics, biomedical, combustion, and
nuclear reactor simulations, among others. However, when
data sets become so large that they can not fit in the memory
of a single computer, serial volume rendering techniques
are insufficient. Parallel volume rendering is frequently
used to visualize these data sets. The two most studied
approaches for parallel volume rendering are object order
(parallelization over input data, also known as sort-last)
and image order (parallelization over output pixels, also
known as sort-first). While both of these approaches have
been used successfully, they can become highly inefficient
for some volume rendering workloads, particularly when
the cell sizes in the mesh vary greatly or when the camera
position emphasizes some regions of the scene over others.
In these cases, performance can decrease significantly, which
has negative ramifications on both post hoc and in situ
processing.

In 2006, Childs et al. [1] devised a parallel volume ren-
dering approach for unstructured meshes that was a hybrid
method between object-order and image-order techniques.
While their approach was novel and interesting, the work
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was lacking in three major respects: (1) their evaluation was
insufficient to demonstrate the necessity of their technique,
(2) the technique required unnecessarily large amounts of
memory to store intermediate results, which affected both
timing information and led to crashes, and (3) no consid-
eration was taken for many-core architectures. With our
work, we address these three shortcomings. Specifically,
we perform an evaluation that considers multiple camera
positions, data sets, and scales. The resulting cross-product
of workloads clearly demonstrates the benefit of the hybrid
approach in a way that was not done in their original
work. We also introduce the concept of partial composites
to their original algorithm as a way to reduce memory foot-
print. Finally, we add support for many-core architectures.
This support is important since many-core processors are
already widely deployed on current supercomputers, and
it is expected to become even more dominant in the fu-
ture. Further, the balance of computing and communication
changes in the context of many-core computing, requiring
new evaluation in this context. This study contains this
new evaluation. Overall, the results presented in this work
demonstrate that the hybrid approach (i.e., between object-
order and image-order) outperforms traditional approaches
in most cases. Specifically, it is superior on workloads
that have previously led to load imbalance conditions, and
equally good for the remaining workloads.

2 BACKGROUND AND RELATED WORK

2.1 Distributed-Memory Parallel Volume Rendering
Techniques

For both image order and object order distributed-memory
parallel volume rendering, the main idea is to distribute
work among different processors, perform some operations
in parallel, and then gather results into one image. We or-
ganize our discussion of related work on techniques around
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these two approaches. We also discuss image compositing,
as it is an important step for the object order approach.

2.1.1 Image Order
With the image order approach, pixels are partitioned
among processors. The partitioning creates groups of con-
secutive pixels, also known as tiles. Each processor begins
by loading the cells that contribute to its tile. Then each
processor generates the portion of the image corresponding
to its tile, by operating on the cells that it loaded. The portion
of the image produced by each processor is also known as a
sub-image. The sub-images from all the processors are then
collected onto one processor to produce the final image. The
image order technique has two main disadvantages with
respect to distributed-memory parallelism:

• Image order does not guarantee equal cell distribu-
tion among processors. When one tile contains more
cells than the other tiles, its corresponding processor
performs more work, resulting in load imbalance.

• Cells can cover more than one tile of the image,
resulting in replicated loading of these cells.

One interesting use of the image order approach was
for multi-projector rendering systems [2]. In this work,
the authors rendered the volume onto multiple screens.
Each processor was responsible for a projector. With this
approach, a problem could occur when the data assigned to
one screen contained a large number of cells, resulting in one
processor performing more work than the others. To solve
this problem, the authors distributed virtual tiles that could
be of any shape or size. The distribution of these virtual tiles
depended on the size and complexity of the data contribut-
ing to the tile. This allowed processors to sample and render
their virtual tiles while maintaining load balance. Erol et
al. [3] presented a dynamic load balancing approach based
on cross-segment load balancing. Their solution divided
the workload into segments and used previous rendering
times to assign more processors to segments that had higher
workloads.

2.1.2 Object Order
With the object order approach, data is divided into blocks
among processors. Each processor volume renders its own
cells independently of the other processors. Then the contri-
butions from all the processors are composited together to
produce a final image.

There are multiple approaches for object order volume
rendering. With our approach, we assume the data is par-
titioned by the simulation code, and all data is resident in
main memory. These assumptions are often necessary for in
situ processing. However, other approaches consider repar-
titioning of the data to improve load balance and also do not
require all data to be resident in main memory. These latter
approaches enable techniques such as data compression [4],
multi-resolution, and out of core processing [5].

With the type of object order processing we consider (no
repartitioning and all data in main memory), there are two
main disadvantages with respect to distributed-memory
parallelism:

• Data exchange between processors (e.g., image com-
positing) can become a bottleneck [6].

• Uneven work distribution might occur. For example,
when dealing with unstructured data, one processor
can own larger cells than the others, which can mean
more work. Another example is when the camera
view focuses on a region of the data that is owned
by one processor. Both of these scenarios result in an
unequal amount of work (load imbalance).

Several object order solutions have been proposed.
Marchesin et al. [7] presented a solution to guarantee load
balance. They divided data into blocks and performed an
estimation step of the rendering cost. The transfer function
and camera view were used to discard any blocks that
were out of the camera view or that had no opacity. The
remaining blocks were then distributed among processors,
and each node rendered its data. Finally, binary swap [8]
was used to composite the final image. Strengert et al. [9]
used hierarchical compression for their texture-based vol-
ume rendering. They incorporated a wavelet compression
technique by Guthe et al. [10] to reduce the size of the data
blocks.

Ma [11] used a graph-based data-partitioning software
package to achieve equal sub-volume distribution among
processors. While this approach maintained load balance for
most cases, it failed to achieve load balance in cases where
the camera was inside the volume. Ma et al. [12] presented
a solution that uses round robin cells assignment to achieve
approximate load balance by performing interleaved cell
partitioning. In most cases cells that are spatially connected
have similar sizes, thus assigning connected cells to different
processors helps to balance the workload. This distribution
method also helps in cases where the camera is focused on
a region of the data. For each pixel, they stored the different
ray partitions using a linked list. Processors render cells of
the same image space at the same time using cell-projection
to allow early merge of ray partitions. Image space regions
are calculated using a k-d tree, and all processors have the
same k-d tree communicated by a host processor.

Steiner et al. [13] presented a dynamic load balancing
technique that used a work package pulling mechanism
within the Equalizer [14] framework. The server divided the
work into equal packages and inserted them into a queue.
When a client completed the work for its assigned packages,
it requested more work from the server. They compared
their method to the traditional method within Equalizer,
also known as Load Equalizer. Their solution showed im-
proved load balance for the object order approach.

Muller et al. [15] demonstrated a dynamic load balanc-
ing technique, where the balance of each processor was
calculated while sampling the cells. Blocks of data were
transferred between processors to balance work. The draw-
back of their method was the cost of moving data between
processors. In addition, it may still fail to maintain equal
workloads among processors, if the camera is zoomed into
a particular region. This would result in a heavier workload
for one processor.

Our approach solves this problem by deferring pro-
cessing of large cells, and distributes the workload among
processors in a later phase.
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2.1.3 Image Compositing

The final step in the object order approach is image com-
positing. This step orders data in the correct depth order.
Image compositing can be the most expensive step in the
object order approach [6]. As a result, several techniques
have been developed to perform image compositing and
reduce its cost.

Direct send [16] is the simplest method, where all proces-
sors communicate with each other. Image tiles are assigned
to processors, and processors exchange data. Direct send has
been used often in prior work [16], [17].

Another image compositing approach is binary swap [8].
This method requires the number of processors to be a
power of two. Binary swap divides the communication
between processors over different rounds. The number of
rounds is equal to log2(N), where N is the number of
processors. The size of the exchanged tiles gets reduced by
half in each round. Processors communicate in pairs, and
then swap pairs. Although binary swap reduces network
congestion, it requires the number of processors to a be
a power of two, and it has a synchronization overhead
after each round. A modified version, 2-3 swap, was im-
plemented by Yu et al. [18] to overcome the limitation
that the number of processors had to be a power of two.
Their algorithm allows any number of processors to be used
and performs the communication in multiple rounds. These
processors are divided into groups of twos or threes, and
each group exchanges data using the direct send approach.

Peterka et al. proposed an approach [19], known as
radix-k, that combines the flexibility of direct send and
the performance of binary swap. This method divides the
communication into multiple rounds, and defines a group
size ki, for each round, where i is the current round. For
this algorithm, the product of all ki must be equal to N ,
where N is the number of processors. Processors within
each group exchange data using a direct send method, with
each processor owning a region of the current image.

2.2 Hybrid Distributed-Memory Parallel Volume Ren-
dering

Traditional distributed-memory parallel volume rendering
techniques can suffer from load imbalance. Load imbalance
impacts the performance of the algorithm since the execu-
tion time is determined by the time of the slowest processor.
As a result, resources are wasted. Using a hybrid solution
that combines object order and image order approaches can
reduce load imbalance by ensuring equal distribution of
work and thus better performance.

An initial hybrid approach was developed by Montani
et al. [20]. In their approach, processors were grouped into
clusters, and the image order approach was used to assign
a tile for each cluster. The data was copied to each cluster
and distributed among its processors using the object order
approach. Their solution helped to achieve data scalability
by using object order at the node level while reducing the
amount of data replication. Load imbalance could happen
at the cluster level if one tile of the image had larger cells,
causing a group of processors to do more work. It might also
occur among the processors of a cluster if the data assigned

to one processor had a larger region of the tile than other
processors.

Childs et al. [1] developed another hybrid approach. This
approach is the basis for our own work. Their algorithm
classified cells as small or large, depending on the number
of samples per cell. The algorithm had three phases: small
cell sampling, exchange, and large cell sampling. With their
algorithm, data was first distributed among processors us-
ing the object order approach. Small cells were sampled and
large cells were deferred into a later stage. Second, data was
exchanged, specifically large cells and samples. Next, each
processor sampled the large cells that it owned using an
image order approach and composited its pixels to generate
a sub-image. Our solution is similar to this previous work, in
its three main phases. However, we extend their algorithm
to take advantage of many-core architectures and we also
significantly reduce their memory costs.

2.3 Unstructured Data and Volume Rendering
Unstructured meshes create particular difficulties for vol-
ume rendering since their cell sizes can vary dramatically
(leading to load imbalance), since they can present inter-
leaving conditions that affect compositing ordering, and
since they do not have a native layout and ordering (like
structured grids). As a result, there have been several works
that have addressed volume rendering of unstructured grids
specifically.

Ma [11] computed cell connectivity as a pre-step that
was used to traverse points along a ray. The pre-step
also determined the exterior faces (i.e., faces that are not
shared between different cells). He used a hierarchical
data structure (HDS) to store face-node, cell-face, and cell-
node relationships. Their algorithm worked as follows. Each
processor performed the cell connectivity pre-step. Next,
cells that are outside the camera view were excluded. Each
processor applied the ray-casting algorithm to its data. Each
ray entered the volume from an exterior face and used the
connectivity information to determine the next cell. When a
ray intersected a second exterior face, it exited the volume.
Later, image pixels were assigned to different processors
and HDS was used to exchange rays. Rays were composited
to produce the final image.

Max et al. [21] used a slicing based approach to render
unstructured data. For each cell, three slices were generated
perpendicular to the X, Y, and Z axes. The camera view
determined which of these slices was used. The value of
each sample was computed by interpolating the cell ver-
tices. Each corresponding scalar value was used as a 1D
texture coordinate to obtain the color. Slices were rendered
depending on their distance from the viewing direction in
a back-to-front order. Colors were blended to generate the
final pixel color.

Our solution adapts a many-core sampler (EAVL) im-
plemented by Larsen et al. [22], where cells were sampled
in parallel using multi-threading. The samples of each cell
were stored in a shared buffer. The index of each sample was
calculated depending on its screen space coordinates (x, y,
and z). In the compositing stage, the samples of each ray
were combined to produce the final color. We incorporated
their routine to work within a distributed system since their
routine was designed for a single node only.
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3 ALGORITHM

This section presents our distributed-memory parallel vol-
ume rendering algorithm, which extends the algorithm by
Childs et al. [1]. The algorithm works on both structured
and unstructured grids, but it is designed with unstruc-
tured grids in mind, since this mesh type is prone to load
imbalance issues. To prevent load imbalance, we use a
hybrid between object order and image order approaches.
Our algorithm performs ray-casting, evaluating samples
along each ray. However, it combines the contributions of
samples from different processors in a way that ensures the
correct picture. Specifically, when an unstructured mesh is
partitioned into blocks and distributed over processors, and
when block boundaries interleave in complex ways, then we
create the correct picture even when a ray enters and exits a
pair of blocks multiple times (see Figure 1).

Block 0

Block 1

  . . . . . . . . . . . . . . . . . . . . . Ray

Fig. 1: A ray going through two interleaving blocks. The
green color indicates the first block (Block 0) and the gray
color indicates the second block (Block 1). Our algorithm is
able to correctly order the contributions from the first span
through Block 0, then the contributions from Block 1, and
then the second span through Block 0.

Conceptually, our algorithm creates a buffer that stores
all samples along all rays. Such an approach is typically
not advisable in a serial setting, since this buffer will likely
have a billion samples or more (e.g., 1024× 1024 pixels and
1000 samples along each pixel’s ray). However, it is more
viable to store this buffer in a distributed-memory parallel
setting, since there is access to more memory. That said, a
key difference between our work and the predecessor work
by Childs et al. [1] is that we combine consecutive samples
(into so-called “partial composites”) to minimize memory
usage, while their work allocated memory for every sample
(although distributed across processors). Our predecessor
work, which has been deployed in VisIt [23] for the past
decade, has proven to be prone to excessive memory usage,
prompting this improvement.

Our algorithm has two sampling phases: one is per-
formed in an object order setting and the other is performed
in an image order setting. For each cell, we compare the es-
timated number of samples per cell with a given threshold.
We refer to cells with fewer samples than the threshold as
“small,” and those with more samples as “large.” Small cells
are sampled in the first sampling phase (object order) and
large cells are sampled in the second sampling phase (image
order). If the threshold is equal to one, the hybrid approach
classifies all cells to be large and behaves exactly like the
image order approach. On the other hand, if the threshold is
large, then the hybrid approach classifies all cells to be small
and behaves like the object order approach (see Figure 2).

The hybrid approach bounds the amount of work done by
each processor in each phase, promoting load balance.

Image Order Object Order
Hybrid

Threshold = ∞Threshold = 1

Small CellsLarge Cells

Fig. 2: For extreme choices of threshold value, our hybrid
algorithm can act as either an object order and image order
volume rendering algorithm. For threshold values between
these extremes, it acts as a new algorithm with characteris-
tics of both.

Our algorithm works as follows:

1) Object Order Sampling Phase
Data is distributed among processors and each pro-
cessor samples its small cells.

2) Exchange Phase
The algorithm partitions image pixels over proces-
sors. The processors exchange the results of the first
sampling phase among themselves, as well as the
large cells that were not sampled.

3) Image Order Sampling Phase
Each processor samples the large cells that con-
tribute to its pixels. For each pixel, the samples are
composited, producing a sub-image.

These phases are illustrated in Figure 3.

In the remainder of this section, we describe the algo-
rithm in more depth. We begin by describing the founda-
tional concepts of partial composites in Section 3.1. Section
3.2 through 3.4 describe the object order sampling phase, the
exchange phase, and the image order phase, respectively.

3.1 Partial Composites
3.1.1 General Description
Partial composites refers to the technique to reduce memory
and communication cost. This technique reduces the mem-
ory size by compositing a group of consecutive samples into
color, opacity, and depth information. Partial composites are
calculated as follows. First, the transfer function is used to
assign a color and opacity to each sample. Next, these colors
are composited in front-to-back order using the following
equation:

Cout = C + (1− α) ∗ Cin ∗ αin (1)

Where Cout is the RGBA value of the output partial compos-
ite, C is the color of the current partial composite, Cin is the
color of the current sample, α is the accumulated opacity,
and αin is the opacity of the current sample.

3.1.2 Implementation
Without partial composites, the cost of storing and exchang-
ing samples can be high. Assuming that each sample is
represented by a floating point value (4 bytes), then:

Costbytes = 4 ∗ SPR ∗ P (2)
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Fig. 3: The algorithm pipeline highlights the three main
phases: object order, exchange, and image order. SC denotes
small cells, and LC denotes large cells.

Where Costbytes is the cost in bytes, SPR is the number
of samples per pixel, and P is the number of pixels. For
an image with a million pixels and 1000 samples per ray,
the cost will be 4 GB. But partial composites combine con-
secutive samples into color, opacity, and depth information,
which uses 24 bytes no matter how many samples are in a
consecutive run. Revising the example with a million pixels
and 1000 samples per ray, the cost with partial composites
can drop to as low as 24 MB.

Consider the following example of representing consec-
utive samples with a partial composite. Assume the first
sample in the sequence, denoted as Zs, is located at the
third sample along the ray. Further assume that the last
sample in the sequence, denoted as Ze, is located at the
102nd index along the ray. Then Zs = 3 and Ze = 102. This
sequence contains 100 samples, and, assuming four bytes
per sample, would occupy 400 bytes overall. Compositing
these samples into a color RGB and opacity A (represented
as Cout in the previous equation), will result in 4 floating
point values (RGBA). Two additional integers are used to
track the depth information. The first additional integer (Zs)
stores the depth of the first value in the partial composite
(i.e., Zs = 3). The second (Ze) stores the depth of the final
sample in the partial composite (i.e., Ze = 102). This will
result in 4 floating point values and 2 integer point values
instead of 100 thus reducing the storage from 400 bytes to
24 bytes, benefiting both communication and memory.

The final pixel color is obtained by accumulating the
partial composites after sorting them in the correct z-depth
order by using the depth information (Zs and Ze) for each
partial composite. For example, assume a processor has
three partial composites after the exchange, PC1, PC2, and
PC3, with the following depth information respectively:
(Z1s = 501, Z1e = 1000), (Z2s = 0, Z2e = 2) and (Z3s = 3,
Z3e = 500). These partial composites will be sorted front-to-
back in the following order: PC2, PC3 and then PC1.

3.2 Object Order Sampling Phase

3.2.1 Distribute Data

The first step of the algorithm is to distribute data over pro-
cessors. Our implementation supports two options, reading
the data from a single file or reading multiple decomposed
blocks. In the first case when the data is not decomposed,

each processor reads
C

P
cells, where C is the number of cells

and P is the number of processors. In the second case, each
processor reads a block.

3.2.2 Cell Assessment

In this step, the algorithm evaluates the properties of each
cell. We estimate the number of samples per cell by consider-
ing its bounding box in image space. Our estimate is based
on the product of two factors: first, the number of pixels
covered by the bounding box, and second, the number
of samples in depth overlapping the bounding box. This
overestimates the possible number of samples. Next, we
classify cells as small or large by comparing the estimated
number of samples with a given threshold.

3.2.3 Small Cell Processing

This step contains two sub-stages: 1) sampling small cells
and 2) generating partial composites along each ray. To
perform the sampling, we adapt a multi-threaded imple-
mentation by Larsen et al. [22]. Parallelism is achieved by
working on different cells simultaneously. As the cells are
sampled, their values are stored in the sample buffer.

Next, partial composites are generated for each pixel.
Parallelization occurs by working on different pixels simul-
taneously. For each group of continuous samples along the
depth-axis, samples are composited into a partial composite.

3.3 Exchange Phase

3.3.1 Distribute Pixels

In preparation for the image order phase, image tiles are
assigned to different processors, and each processor receives
the data contributing to its tile. Image pixels are distributed
among processors by dividing the image into tiles. The size
of the tile assigned to each processor is (W/

√
N)∗(H/

√
N),

where W is the width of the image, H is the height of the
image, and N is the number of processors. This simple
scheme was sufficient for our study but can be adapted
easily in the future.



6

3.3.2 Communication

In this phase, two types of data are being exchanged:
1) large cells and 2) partial composites. After destination
processors are determined, the data is packed into a buffer.
Then, processors perform the exchange in a direct send
approach using the Message Passing Interface (MPI) [24].
Each processor receives its data and unpacks the messages
into a defined structure (partial composite or large cell).

We experimented with different data exchange methods
and found direct send to perform the best for our algorithm.

3.4 Image Order Sampling Phase

3.4.1 Large Cell Processing

In this sub-phase large cells are sampled, and then partial
composites are generated. Both of these operations are per-
formed using multi-threading. While sampling large cells,
each processor restricts its sampling to its tile boundaries
so that only the contributing part of the cell is considered.
This removes redundant sampling that could occur over
different processors. At this point, each processor has the
data it needs to generate its sub-image.

3.4.2 Compositing

In this step, each processor orders and combines its partial
composites to produce the final color of the pixel. The depth
information, stored as Zs and Ze (described in Section 3.1),
is used to order the partial composites. Finally, these partials
are combined in a front-to-back order using the following
equation:

Cout = Cin + (1− α) ∗ C (3)

Where Cout is the RGB value of the pixel, Cin is the color
of the current partial composite, and α is the accumulated
opacity. This equation combines the colors of the partial
composites computed earlier, so it does not need to take
the opacity of each sample into consideration, as it was
calculated already in Equation 1.

3.4.3 Collecting Final Image

Image tiles are collected to produce the final image. One
processor acts as the host, and all other processors send
their tiles to the host. The host processor receives the tiles
and arranges them according to the assignment of each
processor.

3.5 Lighting

In the present study, the volume renderings do not employ
a lighting model. That said, the hybrid approach for parallel
volume rendering has been previously extended to perform
lighting [23], by treating the gradient of the underlying
scalar field as the normals for a Phong lighting model. If
this study were to have included lighting, then the impacts
would depend on how the gradients were obtained. Calcu-
lating gradients during sampling would increase execution
time, while using a pre-calculated gradient would increase
memory footprint and data exchanges.

4 ANALYSIS OF COMPLEXITY

4.1 Performance
In this section, we compare the performance of the three
approaches, i.e., object order, image order, and hybrid. We
analyze each phase considering computational complexity,
and the analysis is summarized in Table 1. We define the
following abbreviations, which we use throughout the rest
of the paper:

• OO: Object Order approach.
• IO: Image Order approach.
• HB: HyBrid approach.
• P : the total number of pixels.
• N : the total number of processors.
• SPR: the number of samples per ray.
• Ci: the number of cells owned by processor i.
• SCi: the number of small cells owned by processor i.
• LCi: the number of large cells owned by processor i.
• PCi: the number of partial composites owned by

processor i.
• SPCij : the estimated number of samples for cell j

owned by processor i.

As mentioned in Section 3, our approach has three main
phases: object order sampling, exchange, and image order
sampling. Our analysis in this section considers all three
approaches within the context of these three phases. For the
object order approach, all cells would be sampled in the
object order sampling phase, and no work occurs during the
image order sampling phase. For the image order approach,
there are two cases. The first case is when the data is small
and it is replicated on each node. In this case, only the image
order sampling phase of our model occurs. The second case
is when the data is large and is distributed across different
nodes, which is representative of the case when operating
in situ. In this case, nodes exchange data and thus both the
exchange phase and the image order sampling phase are
performed. For our analysis, we assume this latter case.

4.1.1 Object Order Sampling
In the object order sampling phase, the performance varies
between the approaches. In the hybrid approach, only small
cells are sampled. Further, because the cells are small, the
number of samples for each cell is fixed, and therefore
bounded by a constant. Thus the time for this phase is
proportional to the number of small cells owned by the
processor (SCi). In the object order approach, all cells are
sampled. Thus the performance of processor i depends on
the number of cells owned by that processor (Ci) and on
the number of samples for each cell (SPCij).

Since the object order approach samples all the cells,
load imbalance can happen if the number of samples varies
between processors. This can happen when the camera is
zoomed into one of the regions owned by one processor, or
when dealing with an unstructured mesh that has unequal
cell sizes. In these cases, the object order approach will have
unequal distribution of samples, resulting in load imbalance
and increased execution time. The hybrid approach avoids
that by deferring sampling of large cells, thus preventing
any processor from doing significantly more work than
expected.
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TABLE 1: Analysis of a processor’s execution time for the object order, image order, and hybrid approaches. The † symbol
denotes the possibility of extreme load imbalance. For the hybrid approach, the work performed by each processor is
bounded, and load imbalance only occurs when some processors do less work than their upper limit.

Steps Object Order Hybrid Image Order

Object Order Sampling O(Ci) +O(
∑

j=0 SPCij)† O(SCi) –

Exchange
n∑

i=0

PCi

n∑
i=0

PCi +

n∑
i=0

LCi

n∑
i=0

Ci

Image Order Sampling – O(
P ∗ SPR

N
) O(Ci) +O(

P ∗ SPR

N
)†

4.1.2 Exchange

While both the object order and hybrid approaches ex-
change partial composites (PCi), the hybrid approach has
an additional cost in the exchange phase, which is the
cost of exchanging large cells (LCi). Both the object order
and hybrid approaches have a fixed data exchange, since
the amount of data exchanged is dependent only on the
number of samples and image size and not dependent on
the size of data. For the image order approach, the data
is distributed across the nodes, therefore the image order
approach exchanges cells (Ci). When the number of cells
is very large, the image order approach may have high
exchange time.

4.1.3 Image Order Sampling

In the image order sampling phase, the performance varies
between the approaches. In the hybrid approach, the num-
ber of cells is smaller than the number of samples, so the
number of cells it processes is bounded. This number is
bounded by the potential number of samples in its tile,
specifically the number of pixels (P ) multiplied by the
number of samples per ray (SPR) divided by the num-
ber of processors (N). In the image order approach, the
possible number of samples to extract is the same as the
hybrid approach. However, in the image order approach,
processors might have different numbers of cells, which can
result in load imbalance. For example, when the camera is
zoomed out, a processor might have a part of the image
that has more cells contributing to it. Using the image order
approach for this case results in unequal distribution of cells
per processor since some processors may have more data in
their tile.

4.1.4 Summary

The performance for ray-casting is proportional to the num-
ber of cells and the number of samples. The object order
approach has a bound on the number of cells per processor,
but it does not guarantee equal distribution of samples per
processor. And the image order approach has a bound on
the number of samples per processor, but it does not guar-
antee equal distribution of cells per processor. Therefore,
both the object order and the image order approaches are
susceptible to load imbalance. The hybrid approach, on the
other hand, addresses these limitations by ensuring equal
distribution of both cells and sampling per processor.

5 STUDY OVERVIEW

This section describes the details of our study, which is
composed of two main parts:

• Algorithm Comparison
In this part, we compare the performance and load
imbalance of our hybrid approach against both object
and image order approaches using different factors,
which are described in the following subsection.

• Distributed Memory Scalability
In this part, we test scalability since our algorithm
is designed to achieve high performance and load
balance on a distributed system.

The configurations for the first part of our study are
described in Subsection 5.1, and the configurations for the
second part are in Subsection 5.2.

5.1 Algorithm Comparison Factors
The first part of our study is composed of four phases. Each
phase varies one of four factors, while holding the other
three constant. The four factors are:

• Camera position (4 options)
• Data set (24 options)
• Image size (4 options)
• Transfer function (5 options)

In total, we considered 37 (= 4 + 24 + 4 + 5) config-
urations in this part of our study. For each configuration,
we ran three experiments, one for each algorithm, meaning
111 experiments overall. We ran the experiments on 256
nodes, with 1 MPI task per node and 12 threads of on-
node parallelism. Each of these factors and their options is
discussed in the following subsections.

5.1.1 Camera Position
As discussed in Section 4, varying the camera position can
have a high impact on algorithm performance. We consider
four camera positions:

• Zoom out
• Mid zoom
• Zoom in
• Inside

Figure 5 shows a data set at these camera positions.
For each position, we measure the execution time for the

exchange step, the sampling step, and the total execution
time. We then compare performance and load balance across
algorithm and camera position.
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       (a)                        (b)                        (c)                       (d)                      (e)

Fig. 4: The five settings for transfer function opacity in our study: (a) Almost Transparent, (b) Light, (c) Middle, (d) Dense,
(e) Nearly Opaque.

         (a)                           (b)                                  

         (c)                           (d)                                  

Fig. 5: The four settings for camera positions in our study:
(a) zoom out, (b) mid zoom, (c) zoom in, and (d) inside.

5.1.2 Data Set

We test the performance of our algorithm using different
sizes of two data sets: Enzo and Ice. As the data set size
increases, the number of cells increases, which mean the
sizes of the cells decrease. This impacts our algorithm since
small cells are sampled in a different sampling phase than
large cells. The data sets we consider are:

• Enzo-1M: A cosmology data set from the Enzo sim-
ulation code [25]. The data set was originally on a
rectilinear grid but was mapped to a tetrahedral grid.

• Enzo-10M: A 10.2M tetrahedron version of Enzo-1M.
• Enzo-80M: An 83.9M tetrahedron version of Enzo-

1M.
• Enzo-1B: A 1 billion tetrahedron version of Enzo-1M.
• Ice-6M: A simulation of a high speed train and the

surrounding conditions. This data set is tetrahedral,

and its 6M tetrahedrons significantly vary in size.
• Ice-1B: A 1 billion tetrahedron version of Ice-6M.

For each of the six data sets, we test four camera posi-
tions, zoom out, mid zoom, zoom in and inside, meaning
this phase has 24 options overall.

         (a)                                                         (b)    

Fig. 6: The two data sets used in our study: (a) Enzo and (b)
Ice.

5.1.3 Image Size
The image size affects both sampling and compositing. Four
image sizes are considered:

• 100× 100

• 200× 200

• 500× 500

• 1024× 1024

5.1.4 Transfer Function
As all three approaches exclude cells that have zero opacity,
we study the effect of different opacity values on the exe-
cution time. We picked five transfer functions with varying
opacities and denote them as:

• Almost Transparent
• Light
• Middle
• Dense
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• Nearly Opaque

Volume renderings using these transfer functions are
plotted in Figure 4.

5.2 Distributed Memory Scalability

In the second section of our study, we test the performance
scaling of our algorithm by varying the number of nodes as
follows: 1, 2, 3, 4, 8, 12, 16, 32, 64, 128, 256, 512, and 1024. We
use 8 MPI tasks per node resulting in a maximum of 8192
MPI tasks. We test the scalability for two camera positions:
zoom in and zoom out. For both positions we use the Middle
opacity transfer function, an image size of 1024× 1024, and
1000 samples per ray. For the zoom in camera position we
test the Enzo-1M data set, and for the zoom out camera
position, we test the Enzo-10M data set.

5.3 Hardware Used

• Edison: We performed the first part of our experi-
ments on Edison, a machine at Lawrence Berkeley
National Laboratory’s NERSC facility. It contains
5,586 nodes, with each node running two Intel “Ivy
Bridge” processors at 2.4 GHz. There are 12 cores and
64 GB of memory per node.

• Vesta: We performed the second part of our exper-
iments on Vesta, a supercomputer at Argonne Na-
tional Laboratory. It contains 2,048 nodes, with each
node running a “PowerPC A2” processor at 1.6 GHz.
There are 16 cores and 16 GB of memory per node.

5.4 Performance Measurement

We measure the non-idle execution time for every phase on
every processor.

From these measurements, we can derive load imbal-
ance. Load imbalance affects the performance because the
execution time is determined by the time of the slowest
processor. In addition, load imbalance results in wasted
resources that are idle. Let Tp be the total non-idle execution
time for processor P , and Ts is the total non-idle execution
time of the slowest processor. We define load imbalance with
the following equation:

Load imbalance =
Ts∑

0<p<N Tp/N

6 RESULTS

We compare the performance of our hybrid approach with
the object order and image order approaches. In Section 6.1,
we present the first part of our study, i.e., parallelism at 256
nodes while varying other factors. In Section 6.2, we present
the second part of our study, i.e., the scalability of the three
approaches.

6.1 Algorithm Comparison

Our comparison happens in phases, with each phase vary-
ing one of the factors described in Section 5.1.

6.1.1 Camera Position
In this phase we vary the camera position, using the follow-
ing configuration:

• Data set: Enzo-1M data set
• Nodes: 256 nodes, 1 MPI task per node
• Cores: 12 cores per node for multi-threading
• Machine: Edison
• Image size: 1024× 1024

• Samples per ray: 1000
• Transfer function: Middle

The results of this phase are presented in Table 2.
For the zoom out camera position, the hybrid approach is

faster than the image order approach because it reduces load
imbalance. Further, the performance of the hybrid approach
is equal to the object order approach. The hybrid approach
produces comparable results to the object order approach
since the number of samples per cell is small and thus all
cells are sampled in the first sampling phase. In this case, the
sampling for the hybrid approach is identical to that of the
object order approach. For the mid zoom camera position,
the hybrid approach is closer to the object order approach,
which means most of the sampling is performed in the
first phase (object order sampling phase). Although the
hybrid approach has a higher execution time than the object
order and image order approaches due to the extra work
it is performing (two sampling phases and two exchange
operations), it has better load balance. The extra operations
of the hybrid approach pay off when the size of the data is
large, as presented later in Table 4.

For both the zoom in and the inside camera position, the
situation reverses. The hybrid approach is faster than the
object order approach because it reduces load imbalance,
while it performs similarly to the image order approach.

For all three camera positions, the hybrid approach
maintains good performance due to its low load imbalance.
The hybrid approach achieves this by adapting its behavior
according to the configuration. The two other approaches,
however, can suffer from significant load imbalance. When
the camera is zoomed into the data set, the object order ap-
proach has unequal work distribution, which leads to a high
execution time. As the camera moves further from the data,
the execution time for the image order approach increases,
since there are more cells to exchange (i.e., not just a small
subset that is visible as a result of zooming in). In addition,
the distribution of cells per tile becomes less balanced,
resulting in unequal work distribution among processors.
The hybrid approach maintains good performance and low
load imbalance in this case, because the work performed by
each processor is bounded at each step of the algorithm (see
Section 4).

6.1.2 Data Set
In this phase we vary the data set, using the following
configuration:

• Nodes: 256 nodes, 1 MPI task per node
• Cores: 12 cores per node for multi-threading
• Machine: Edison
• Image size: 1024× 1024
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TABLE 2: Results using 256 nodes, and varying the camera
position.

Zoom out

OO HB IO

Exchange 0.043s 0.043s 0.054s

Sampling 0.179s 0.179s 0.38s

Total 0.23s 0.23s 0.461s

Load Imbalance 1.31x 1.31x 1.531x

Mid zoom

OO HB IO

Exchange 0.054s 0.069s 0.097s

Sampling 0.375s 0.44s 0.023s

Total 0.440s 0.521 0.164s

Load Imbalance 1.258x 1.167x 1.228x

Zoom in

OO HB IO

Exchange 0.057s 0.013s 0.013s

Sampling 0.86s 0.089s 0.089s

Total 0.927s 0.141s 0.141s

Load Imbalance 1.44x 1.08x 1.08x

Inside

OO HB IO

Exchange 0.47s 0.18s 0.18s

Sampling 4.65s 0.11s 0.11s

Total 5.12s 0.32s 0.32s

Load Imbalance 2.59x 1.10x 1.10x

• Samples per ray: 1000
• Transfer function: Middle

The results of this phase demonstrate that using the
hybrid approach reduces the execution time for both small
and large data sets. This improved performance can be un-
derstood by considering the number of samples per cell. As

TABLE 3: Results using 256 nodes, and varying data sets for
the zoom out camera position.

Data Set Camera OO HB IO

Enzo-1M zoom out 0.23s 0.23s 0.461s

Enzo-10M zoom out 0.257s 0.251s 0.568s

Enzo-80M zoom out 0.275s 0.275s 1.508s

Enzo-1B zoom out 0.777s 0.773s 12.575s

Ice-6M zoom out 0.246s 0.247s 0.487s

Ice-1B zoom out 0.795s 0.792s 12.799s

TABLE 4: Results using 256 nodes, and varying data sets for
the mid-zoom camera position.

Data Set Camera OO HB IO

Enzo-1M mid-zoom 0.440s 0.521s 0.164s

Enzo-10M mid-zoom 0.443s 0.457s 0.330s

Enzo-80M mid-zoom 0.450s 0.425s 1.07s

Enzo-1B mid-zoom 0.875s 0.888s 9.947s

Ice-6M mid-zoom 0.530s 0.413s 0.290s

Ice-1B mid-zoom 1.055s 0.891s 9.610s

TABLE 5: Results using 256 nodes, and varying data sets for
the zoom in camera position.

Data Set Camera OO HB IO

Enzo-1M zoom in 0.927s 0.141s 0.141s

Enzo-10M zoom in 0.661s 0.457s 0.314s

Enzo-80M zoom in 0.529s 0.529s 0.601s

Enzo-1B zoom in 0.921s 0.922s 2.741s

Ice-6M zoom in 1.095s 0.300s 0.302s

Ice-1B zoom in 0.940s 0.936s 2.831s

the number of cells increases, the size of the cells becomes
smaller, which means less samples per cell.

When the camera is far from the data set, the number of
small cells increases. For the zoom out camera position, the
hybrid approach samples all cells in the first sampling phase
(object order sampling phase), as presented in Table 3. The
results from Table 4 show that the difference between the
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TABLE 6: Results using 256 nodes, and varying data sets
when the camera is inside the data.

Data Set Camera OO HB IO

Enzo-1M inside 5.12s 0.32s 0.32s

Enzo-10M inside 6.71s 0.73s 0.75s

Enzo-80M inside 5.19s 0.98s 1.85s

Enzo-1B inside 7.80s 1.27s 2.98s

Ice-6M inside 6.47s 0.652s 0.651s

Ice-1B inside 9.083s 1.301s 3.056s

execution time for the hybrid and object order approaches
for the mid-zoom position is larger than the zoom out
position. The hybrid approach takes more time when the
data size is small due to the extra cost mentioned previously
(two sampling phases and two exchange operations). This
cost pays off when the size of the data gets larger (Enzo-
80M, Enzo-1B, and Ice-1B). Finally, the modest increase in
the execution time for the Ice data and object order approach
compared to the Enzo data is because the mid-zoom camera
position for the Ice data is somewhat closer than that for the
Enzo data.

Table 5 shows the results for the zoom in camera posi-
tion. As the camera moves closer to the data, the number
of large cells increases. This explains the decrease in the
difference between the performance of the hybrid and image
order approaches and the increase in the difference between
the performance of the hybrid and object order approaches.
In the smallest data set, Enzo-1M, the cells are larger, so
the hybrid approach defers sampling of these cells into the
second sampling phase (image order sampling phase). As
the data set gets larger, the cells sizes get smaller, so most of
the cells are sampled in the object order sampling phase of
our algorithm. Therefore, the execution time for the object
order approach decreases as the number of cells increases,
because the distribution of work among processors gets
more balanced. The same case can be noticed for the Ice-6M
and Ice-1B. For the object order approach, the distribution of
cells for Enzo data is more balanced than the Ice data. Thus
the execution time for the Ice data is higher than the Enzo
data.

Table 6 presents the results of the three approaches when
the camera is inside the data. The object order approach
consistently performs poorly due to load imbalance. While
the image order approach achieves good performance when
the size of the data is small, as the data size increases
the performance gets worse due to the time of exchanging
cells. On the other hand, the hybrid approach achieves good
performance and load balance for all data sizes.

6.1.3 Image Size

In this phase we vary the image size, using the following
configuration:

• Data set: Enzo-1M data set
• Nodes: 256 nodes, 1 MPI task per node
• Cores: 12 cores per node for multi-threading
• Machine: Edison
• Camera position: Zoom in
• Samples per ray: 1000
• Transfer function: Middle

TABLE 7: Results using 256 nodes, and varying the image
size.

Image Size OO HB IO

100× 100 0.017s 0.066s 0.066s

200× 200 0.063s 0.101s 0.101s

500× 500 0.91s 0.124s 0.124s

1024× 1024 0.927s 0.141s 0.141s

Table 7 shows that the impact of varying the image size
on the three algorithms. As the size of the image increases,
the number of samples per cell increases, which means the
number of larger cells increases. This explains the increase
in the difference between the object order execution time
and the hybrid execution time. When the size of the image is
small, there are few large cells, and thus the hybrid approach
samples most of the cells in the object order sampling phase.
With the increase in the image size, the hybrid approach
samples more cells in the image order sampling phase.

6.1.4 Transfer Function
In this phase we vary the transfer function, using the fol-
lowing configuration:

• Data set: Enzo-1M data set
• Nodes: 256 nodes, 1 MPI task per node
• Cores: 12 cores per node for multi-threading
• Machine: Edison
• Camera position: Zoom in
• Image size: 1024× 1024

• Samples per ray: 1000

The opacity of the transfer function determines the
amount of visible data. A more dense transfer function
results in computing more samples, thus higher execution
time. Table 8 shows that the influence of transfer function
on the execution time is small, and that all three approaches
increase proportionally as the opacity increases.

6.2 Distributed Memory Scalability

In this section, we study the scalability of our algorithm.
This phase uses the following configuration:

• Data set: Enzo-1M and Enzo-10M data sets
• MPI tasks: 8 MPI task per node
• Cores: 1 per node, no multi-threading
• Machine: Vesta
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Fig. 7: Scalability of the three algorithms with the Enzo-1M
data set and the zoom in camera position.
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Fig. 8: Scalability of sampling and exchange for the three
algorithms with the Enzo-1M data set and the zoom in
camera position. This figure looks at the same results as
Figure 7, but instead presents the information on a per
phase bases.
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Fig. 9: Scalability of the three algorithms with the Enzo-
10M data set and the zoom out camera position.
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Fig. 10: Scalability of sampling and exchange for the three
algorithms with the Enzo-10M data set and the zoom out
camera position. This figure looks at the same results as
Figure 9, but instead presents the information on a per
phase bases.
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TABLE 8: Results using 256 nodes, and varying the opacity
of the transfer function.

Transfer Function OO HB IO

Almost Transparent 0.885s 0.098s 0.10s

Light 0.915s 0.129s 0.128s

Middle 0.927s 0.141s 0.141s

Dense 0.934s 0.151s 0.152s

Nearly Opaque 0.938s 0.155s 0.155s

• Camera positions: zoom in and zoom out
• Image size: 1024× 1024

• Samples per ray: 1000
• Transfer function: Middle

Figure 7 presents the results for the zoomed in camera
position. In this case, the object order approach is taking
much more time because there is an unequal distribution
of work among processors. Adding more processors is not
helpful for the algorithm, since the workload is not being
distributed evenly and the cost of exchanging partial com-
posites increases. Since the hybrid approach is equivalent to
the image order approach in the zoom-in camera position
case, both approaches have similar scaling rate. Figure 8
presents the individual scalability curves for the sampling
and the exchange steps. While the sampling step has a better
scaling rate than the exchange step for all three algorithms,
the sampling scaling rate reduces when reaching a large
number of processors. This happens because the amount of
actual sampling computation reduces, and the fixed time
of the initialization step dominates the time of the total
sampling step.

Figure 9 demonstrates the case where the camera is
zoomed out. This experiment uses the Enzo-10M data set to
test the scaling of the three algorithms. As mentioned earlier
in Section 5.1.2, as the number of cells increases the size of
the cells becomes smaller. The Enzo-10M data set is enough
to make the number of samples per cell below our threshold
for the hybrid algorithm. The hybrid approach samples all
the cells in the first sampling phase (object order sampling
phase), thus the hybrid approach is effectively equal to the
object order approach. Since the camera is zoomed out,
some tiles have more cells, which means the number of cells
across tiles is not equal. Using the image order approach will
then result in unequal distribution of cells, which will create
load imbalance. As the number of processors increases,
the image order approach will have many processors with
empty tiles. Processors owning the middle of the image
will have too many cells, while other processors will own
empty tiles. Another factor that reduces the performance of
the image order approach is the cost of exchanging cells.
Figure 10 presents the individual scalability curves for the
sampling and the exchange steps. Similar to the previous
case, the sampling step has a better scaling rate than the

exchange step, and the scaling rate reduces when reaching
a large number of processors.

6.3 Summary of Findings

The evaluation showed that our hybrid algorithm per-
formed well in all cases. In particular, the algorithm adapts
its performance to meet the better of either object order
or image order approaches. Further, in our most extreme
test case (one billion cells with the camera inside the data
set), our algorithm was faster than either of the classic
approaches, since it avoided their individual pitfalls. In all,
we feel that this evaluation demonstrates that the hybrid
algorithm is a better choice for distributed-memory parallel
volume rendering of unstructured data. Specifically, we feel
that it is a better choice for production visualization tools.
This is because production visualization tools must face a
variety of use cases (including those that lead to load imbal-
ance with traditional approaches), and it is very desirable in
this setting to have an algorithm naturally adapts to achieve
optimal performance without guidance from end users.

7 CONCLUSIONS AND FUTURE WORK

The contribution of this paper is three-fold: (1) we intro-
duced improvements over predecessor work that address
memory footprint issues, (2) we evaluated the algorithm in a
significantly more complete way, and (3) we modernized the
algorithm to consider many-core architectures. As discussed
in the summary of findings, our algorithm has superior
performance to traditional approaches on workloads that
are prone to load imbalance, and equivalent performance
on all other workloads.

In terms of future work, we plan to integrate our algo-
rithm into the VisIt visualization software. Our predecessor
work was integrated into VisIt, but would crash with regu-
larity due to excessive memory usage. We also plan to port
our on node computations to VTK-m [26], since that soft-
ware technology is now favored over EAVL [27]. Finally, we
plan to further investigate parallel communication patterns
at high concurrency. While Direct Send performed best up
to 8192 MPI ranks, we believe higher ranks may well justify
more sophisticated approaches. We also plan to study the
impact of lighting models on performance.
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