
LLNL-TR-781441

Thin-Threads: An Approach for
History-Based Monte Carlo on
GPUs

R. C. Bleile, P. S. Brantley, H. H. Childs

July 15, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Thin-Threads:
An Approach for History-Based Monte Carlo on GPUs

Ryan Bleile∗†, Patrick Brantley∗, David Richards∗, Shawn Dawson∗,
Michael Scott McKinley∗, Matthew O’Brien∗, Hank Childs†

∗ Lawrence Livermore National Laboratory
Livermore, CA 94550
† University of Oregon

Eugene, OR 97403

Abstract—A graphics processing unit (GPU) has become a core
technology for modern supercomputers. Applications that once ran on
supercomputers are being forced to make significant changes to their
designs to utilize these new machines. This paper introduces the concept
of Thin-Threads as a method for history-based Monte Carlo transport
applications on GPUs. The key principles behind Thin-Threads are light
memory usage and communication and managing data race issues via
atomics. We show that we can achieve a 10x speedup when moving
from the traditional method to Thin-Threads on GPUs. Additionally, we
demonstrate the viability of the Thin-Threads model at scale for GPU
and CPU platforms.

Index Terms—GPU, Monte Carlo, particle transport

I. INTRODUCTION

Particle transport problems describe the ways in which particles
move through and interact with materials or structures. In a real
world system, attempting to compute every individual particle in
order to understand aggregate effects is not computationally feasible.
Instead, the Monte Carlo method is used to solve these problems
by aggregating particle behaviors through statistical sampling and
particle weighting. Specifically, Monte Carlo methods use pseudo-
random numbers to sample from probability distributions, which are
used to model the likelihoods of various events that may occur when
particles collide with atoms in a material.

In a Monte Carlo transport problem, each statistical particle
represents some number of physical particles, thus allowing the
computation to be bounded by available computational resources.
Given the inherent statistical nature of this problem, running more
particles increases the fidelity of a simulation and reduces statistical
uncertainties. High-performance computers are often used to boost
the number of computations that can be performed to solve larger
scale problems and/or achieve higher fidelity solutions.

Trends in high-performance computing are affecting best practices
for Monte Carlo particle transport problems. Supercomputers are
increasingly more powerful, enabling greater fidelity when per-
forming a simulation. However, the nodes of these supercomputers
increasingly contain more cores, with each individual core being less
powerful. Example architectures that reflect this trend are the Intel
Xeon Phi and NVIDIA GPUs.

In this paper we introduce Thin-Threads (defined in Section III-B),
a new threading approach for Monte Carlo particle transport prob-
lems. While elements of Thin-Threads have appeared in previous
research, our contribution lies in combining these elements, providing
a thorough description of implementation, and evaluating its efficacy.
Additionally, we look at new methods for overlapping computation
and communication using Thin-Threads. Finally, we show that the
Thin-Threads approach is capable of outperforming the traditional
“Fat-Threads” (defined in Section III-A) approach, up to three times
faster on CPUs and ten times faster on GPUs for certain workloads.

II. RELATED WORK

Monte Carlo transport methods can be used to solve a variety of
problems. Each of these problems introduces different complications
that need to be addressed to efficiently execute on the GPU. This
section will highlight the variety of the work done in this area, by
explaining the primary objectives of the applications used for each
study.

The work related to this paper was conducted in the Quicksilver
proxy application [1]. Quicksilver solves the Monte Carlo particle
transport problem by using distributed particle streaming and a
multigroup energy nuclear data energy representation. Quicksilver
originally implemented threading through a Fat-Threads model, de-
scribed in Section III-A. An initial implementation of the Thin-
Threads model was added to Quicksilver in order to provide a feasible
method for GPU computing. A discussion of the process that led to
Thin-Threads as well as the key features of the OpenMP 4.5 and
CUDA implementations are presented by Richards et. al [16].

Quicksilver is a proxy application of the full production code,
Mercury [2]. Mercury uses distributed memory particle streaming as
well as domain replication to scale across nodes. Additionally, it also
uses both continuous energy and multigroup energy cross sections.
Mercury implemented threads using OpenMP and the Fat-Threads
threading model [9]. Recently, Mercury has implemented the Thin-
Threads threading model discussed in this paper. Quicksilver was
originally developed to model Mercury’s call tree and memory usage
patterns for streaming multigroup problems.

ALPS MC [7] is a one dimensional Monte Carlo transport research
application. ALPS MC solves a 1-D problem in a binary stochastic
medium, using simple physics. It was originally written as a serial
application and is only useful as a model for intra-node performance.
ALPS MC implemented the simplest form of the Thin-Threads
approach to gain a threading model that was capable of running
on GPUs. The research focused on the choice of particle tracking
algorithms, comparing history-based and event-based approaches as
well as optimizing the stages of these algorithms [8].

XSBench [20] is a proxy application for OpenMC [17]. XSBench
specifically implemented the continuous energy nuclear data lookup
portion of a Monte Carlo transport problem. Initial testing discovered
that a significant portion, upwards of 80% of the total runtime,
of OpenMC was spent performing continuous energy lookups. In
response, an application for solving that specific issue was developed
to understand the impact of different design choices on that model.

Profugus [4] is a multigroup proxy application designed to rep-
resent Shift MC [14]. Profugus solves the criticality eigenvalue
problem using a multigroup energy spectrum. In a recent paper [11],
Hamilton et. al. presented data comparing history- and event-based

tracking algorithms on GPUs. This discussion focused on intra-node
performance and techniques to improve the history- and event-based
algorithms. A simple Thin-Threads model is used, modeled after
the approach discussed in ALPS MC. This work did not include a
streaming particles feature, so MPI scaling was accomplished through
domain replication. Using domain replication, particles only need to
be sent to other ranks during load balancing.

Other groups have looked into Monte Carlo transport on GPUs as
well. In a 2014 thesis, Bergmann discusses the efforts made to WARP
for continuous energy Monte Carlo on GPUs [6]. This work focused
on utilizing GPUs for solving the internal ray-tracing problem on
GPUs by using the NVIDIA ray tracing library OptiX [12]. Some
event-based tacking was added to facilitate the ray-tracing as a unique
element of the simulation. Another group developed separate versions
of their Monte Carlo package (ARCHER [21]) for each hardware
platform, including NVIDIA GPUs, the Intel Xeon Phi, and CPU
systems. ARCHER solves the photon transport problem primarily
but also solves eigenvalue problems for neutron transport. This work
primarily focused on intra-node performance and challenges general
to making Monte Carlo GPU compatible.

Monte Carlo is a broad class of algorithms encompassing many
fields of study. Outside the realm of particle transport algorithms,
other groups have looked into GPUs for many of these methods as
well. In a work by Alawneh et al. [5], Monte Carlo methods are used
to compute the sea ice loads using a design based on offloading many
small kernels to the GPU to perform the compute heavy workloads.
Work by Szalkowski at al. [19] focused on the distributed parallel
generation of random numbers for multidimensional integration,
while Stpiczynski et al. [18] emphasized vectorized approaches for
CPUs, GPUs, and MIC architectures for this same problem. Monte
Carlo algorithms are all similar in that they use random numbers
to accomplish a task. The key difference of these works from our
own is the size of the kernels used/needed to accomplish those tasks.
In Monte Carlo integration, generating adequate random numbers
can be a time consuming process that dominates the compute time.
For particle transport algorithms, the time spent generating random
numbers can often be ignored as it is a minor element in the full
algorithm. Many applications take advantage of the high throughput
and compute capabilities of the GPUs in a way that particle transport
algorithms cannot. Even with these differences, the innovations made
by these groups provide lessons that we can learn from and potentially
adopt for our own work.

This paper expands upon the previous work of each of these
groups. Every group implemented concepts that share similarities
with the Thin-Threads model discussed here. By explicitly defining
this threading model we can facilitate more discussion on this topic.
Additionally, this provides a minimum yet efficient starting point for
others trying to begin working on Monte Carlo transport problems
on GPUs.

III. THREADING MODELS

To solve Monte Carlo particle transport problems, millions to
billions of particles need to be processed. Parallel computing is
necessary to process this number of particles in a reasonable amount
of time. Monte Carlo particle transport problems are embarrassingly
parallel, since the unit of work — a particle — is completely
independent of all others. As supercomputer architectures have shifted
to increased parallelism within a node, adding parallelization through
threading has become increasingly common and necessary.

There are two major approaches to solving Monte Carlo particle
transport problems: history-based and event-based. The work pre-

sented in this paper applies the Thin-Threads threading model to
the history-based Monte Carlo transport problem. With the history-
based tracking algorithm, individual particle histories are tracked
until a predetermined amount of particles has been simulated. These
particles are processed one at a time, until there are no more particles
left to process. For the event-based tracking algorithm, particles are
continually regrouped by the event they will process next. With this
algorithm, each event group is processed in parallel before needing
to regroup particles again.

History-based Monte Carlo particle transport applications gener-
ally divide work into three distinct sections: cycle initialize, cycle
tracking, and cycle finalize. These three sections are described in
pseudocode in Figure 1. Cycle initialize and cycle finalize are both
relatively small and straight forward. Cycle initialize handles setting
up inputs, such as sourcing particles, and doing variance reduction
calculations. Cycle finalize handles reducing output data, such as
tallies collected during tracking. Cycle tracking is the core of the
code, containing the large majority of the functionality and physics.
The work done during cycle tracking is almost entirely contained
within a loop over particles. Inside the loop, each particle computes
which event it will do next, via sampling probability distributions
and using random numbers to make decisions. Then the particle
executes its given event, e.g., moving through the mesh, colliding
with the background material, etc. Particles continue to do this two-
step process — compute distances then apply the nearest event —
until they reach an end condition, such as absorption, or census.

c y c l e i n i t () {
s o u r c e i n p a r t i c l e s
p o p u l a t i o n c o n t r o l

}

c y c l e t r a c k i n g () {
f o r a l l p a r t i c l e s {

do {
compute d i s t a n c e t o c e n s u s
compute d i s t a n c e t o f a c e t
compute d i s t a n c e t o r e a c t i o n
do segment wi th s h o r t e s t d i s t a n c e
i n c r e m e n t t a l l i e s

} u n t i l census , abso rbed , e s c a p e d
}

}

c y c l e f i n a l i z e () {
r e d u c e a l l t a l l i e s

}

Fig. 1: Pseudocode for the three major phases of a history-based
Monte Carlo transport code.

Parallelization usually occurs over the “for all particles” loop in
cycle tracking(). Traditionally, particles are split across threads in
groups, providing each thread with its own unique chunk of work to
complete. We refer to this as the “Fat-Threads” approach, which we
describe in more detail in Section III-A. An alternative approach is
for threads to share a chunk of particles, with each thread operating
on a single particle within the collection of particles. We refer to this
as the Thin-Threads approach, which we describe in Section III-B.

A. Traditional Fat-Threads Approach

1) Overview:
A Fat-Threads threading model is one where all potential data

races are handled through replication of data structures. This allows
each thread to work completely independently of one another. Each
thread is assigned its own collection of particles to work on, and all
output tally and buffer type data structures are replicated. Replicating
tally data can be non-trivial, as tally data structures exist in multiple
forms: tallies for a single value over the whole problem, tallies for
each element in the problem, and tallies for each material in the
problem. Each of these tallies requires different amounts of memory
to store their data. This model, in combination with a load balancing
algorithm, was shown to scale well on CPU platforms in production
applications [13].

Quicksilver implements Fat-Threads in a typical fashion. Its funda-
mental unit of work is advancing a particle, its primary data element
is the particle, and its data structure for a particle contains roughly
200 bytes of information. Particles are stored in “particle vaults,”
which is a container class for grouping particles together and defining
functions on sets of particles. At the highest level in the data structure,
there is a “particle vault container” (PVC) that can hold a changing
number of particle vaults, as well as shared data between vaults.
Finally, each rank is given a PVC to organize its workload, and each
thread associated with that rank is then given a particle vault from
the PVC.

In Monte Carlo transport problems, distributed-memory parallelism
is commonly used to split up large geometries into separate do-
mains across ranks. Separate geometric domains adds the need for
particles to be communicated across ranks as they move through
the geometry. In the Fat-Threads model, particles are communicated
asynchronously across ranks when needed by the cycle tracking
function. When a rank runs out of particle vaults to give to threads,
that rank can receive a buffer of particles from another rank, and then
fill up new particle vaults, continuing the current cycle. In addition,
threads can perform the send and receives themselves as they fill
buffers or need more work.

This model for running particles on ranks and threads works
well on CPU platforms, by maintaining data locality in a thread
and removing the need to deal with data races between threads.
The communication cost of sending particles to different ranks is
almost completely masked by the computation of particles on each
rank, since the computation of particles on each rank occurs while
particles are in flight. Additionally, particle vaults become an obvious
organization structure for dealing with load balance, providing a
flexible infrastructure for running threads.

2) Barriers on GPUs:
There are two primary concerns with the Fat-Threads model —

memory footprint and communication from accelerators.
With respect to memory footprint, the issue is that the Fat-Threads

model is likely to use too much memory on GPU devices. When
switching from a CPU to GPU platform, the number of threads per
rank goes from tens of threads (at most) to thousands of threads
or more. If data structures continued to be replicated in the same
manner on a GPU platform, providing each GPU thread with its
own data structures to read from or write to, then available memory
would quickly run out. This is a concern even if a code extends GPU
memory via paging in memory from the host. Even given infinite
access to host memory, GPU architectures would struggle from a
complete lack of coalesced memory access and a need to constantly
page-in data, resulting in an inability to get acceptable performance.

With respect to communication from accelerators, the fundamental
issue is the lack of MPI functionality from a GPU device. The GPU
cannot make the same MPI function calls that a CPU can during
particle tracking. This is particularly problematic for the Fat-Threads
model, since it relies heavily on the use of asynchronous communica-
tion to move particles from rank to rank while computation is being
done. Since the MPI calls cannot be made while processing particles,
new methods for communicating particles across boundaries must be
investigated.

Between these two issues, the Fat-Threads model appears to be
incongruent with GPU architectures.

B. Thin-Threads

1) Overview:
Thin-Threads have multiple beneficial properties for history-based

Monte Carlo on GPUs. First, Thin-Threads are threads that are light
on memory usage and communication. Second, Thin-Threads handle
all potential data races directly, primarily through use of atomics.
This model allows for a larger number of threads to be callable
at once, reducing the memory footprint when threading. Threads
primarily work independently, although there is some interaction via
their shared atomic operations. Third, Thin-Threads do not access
MPI or other forms of inter-node communication directly. Instead,
Thin-Threads employ a batching and asynchronous communication
model.

Overall, Thin-Threads adapt to modern HPC architectures, in that:
• They are lightweight, in order to match decreases in single thread

performance.
• Their communication management is aligned with current re-

strictions (i.e., MPI communication is not possible, or it is
possible but not performant).

• Its design accounts for the currently popular use of accelerators,
specifically in achieving overlap in communication and compu-
tation.

Figure 2 outlines pseudocode for a new cycle tracking function for
the Thin-Threads approach.

c y c l e t r a c k i n g () {
w h i l e (! done){

f o r each b a t c h {
Do K er ne l
Do MPI Send
Do MPI Rece ive
Clean E x t r a V a u l t s

}
t e s t f o r done
i f (! done)

C o l l a p s e V a u l t s
}

}

Fig. 2: Pseudocode for batching control flow in the Thin-Threads
approach. Do Kernel refers to launching the cycle tracking kernel.
Clean Extra Vaults refers to the process of ensuring there is adequate
space for the next kernel launch. Collapse Vaults refers to the process
of reducing the particles in the particle vault container into the
minimum number of vaults required to contain them.

While the basic concept of Thin-Threads is relatively straight-
forward, it requires significant attention to detail in implementation.

The implementation details are described in depth in the following
sections.

2) Basic Implementation Details:
There are two primary tasks required to implement the Thin-

Threads model. The first task is to make the tracking loop thread-
safe. This requires adding atomics for writing to output tally data and
modifying the particle container data structure to allow for threaded
reading and writing. The second task is to remove all MPI from
within the tracking loop. This requires adding a replacement MPI
model after the tracking loop, as well as additional MPI buffers that
get filled during the tracking loop. This MPI model is asynchronous
and provides the groundwork for a batching model.

3) Implementation Details - Batching Model:
We built the batch model around three key concepts. First, memory

is allocated from the host side, since memory allocations on the
GPU are typically slow and limited to device-only memory. Second,
the number of particle vaults in the PVC must be capable of being
changed dynamically, i.e., we can add particle vaults to a PVC if
needed. The number of particles a single rank may see cannot be
known in advance and so we must have a flexible system to allow
for new particles to be added. Third, we cannot access the MPI region
of the code from within the main body of the tracking loop. All MPI
must be handled outside the main body of tracking, although we still
need a way to handle particles that need to be communicated. Each
of these three key concepts are discussed further in the remainder of
this section.

In order to satisfy the first key concept, avoiding new data
allocation on GPUs, we determined that the number of particles
within a given particle vault needs to be fixed. This allows a particle
vault to define the group of particles that will execute together in a
kernel. A side effect of the fixed vault size is the need for an extra
buffer for managing particles created during tracking, since we cannot
know the actual number of particles any given cycle will produce.
In order to guarantee there is enough space in the extra buffer, we
pre-allocate enough particle vaults to handle the case where every
particle undergoes the maximum production in a reaction. This can
be determined through a heuristic calculation as long as any particle
that produces new particles for computation is also added to the new
particle list (i.e., its computation is postponed) to guarantee the size
of the extra particle list is bounded. The extra vaults and postponing
computation of a particle ensures that we will not need to allocate
new data during the tracking kernel.

The second key concept, dynamically changing the number of
particle vaults in a PVC, must work within the context of the first key
concept, data allocations only from the host (i.e., not from the GPUs).
To accomplish this, we designed a host-side data structure (the PVC,
which is on the host only) that (1) can dynamically change sizes, and
(2) always contains enough memory for each kernel on the device
(through the particle vaults it contains). More details on specific data
structure choices are explained in Section III-B4.

In order to satisfy the third key concept, no MPI communication
during particle tracking, all MPI was removed from the tracking loop
itself. Instead, when a particle leaves a given rank’s domain during
the tracking loop, it is placed in a buffer. After the tracking loop
finishes, the host inspects this buffer and performs the appropriate
communication. The size of this buffer has a clear upper bound,
since it cannot exceed the fixed batch size in a single particle vault,
i.e., the number of particles needing to be sent via MPI will not
exceed the number of particles we are tracking in each batch. In
terms of implementation, we create an index list of particles in the
kernel which identifies the particles that need to be communicated

PVC

Vault<PV*>
PV [P]

PV [P]

Extra<PV*> PV [P]

sendQueue <Tuple> (PI,NI)

Key:
PVC:
PV:
P:
PI:
NI:

Particle Vault Container
Particle Vault
Particle
Particle Index
Neighbor Index

Fig. 3: A visual representation of the Particle Vault Container (PVC)
data structure.

via MPI, as well as to which neighbor they need to be sent. This
simple tuple of data can be generated quickly in the kernel, allowing
for faster compute times, at the cost of needing to loop over the
index of particles later, on the host, and copying them into MPI
buffers. This method has so far not shown itself to be performance
critical, spending orders of magnitude less time than the actual kernel
compute times.

4) Implementation Details - Data Structures:
The previous subsection (III-B3 defined three key concepts for

the Thin-Threads batch model. One of these key concepts enabled
growth in the number of particles stored on a given rank. There
are two reasons that particle growth on a rank can occur: through
reactions in cycle tracking or through receiving particles via MPI
communication.

When a new particle is created, it needs to be added into a
particle vault. Of course, in our scheme, the GPU cannot allocate
new memory. Our solution is to allocate extra particle vaults prior
to executing the tracking kernel, and then have the kernel add new
particles to these extra particle vaults as it executes. These new
particles can then be considered for future processing. Therefore,
the particle vault container must not only be dynamic in size, but
also must allow direct access for passing in batches to kernels. We
use a vector (from the C++ Standard Template Library) of particle
vault pointers to handle these requirements. By making a vector of
pointers, our particle vault container can change sizes through a two
step process: allocating the pointer (built into the vector class) and
then allocating the particle vaults to which the pointers point (custom
allocation function). In addition, it allows us to re-organize the vaults
in the container as necessary, such as swapping an empty vault for a
filled one (which becomes as easy as swapping two pointers instead
of needing to perform a deep copy). Figure 3 details the new structure
for the particle vault container to enable this new work flow.

After each iteration of kernel launch followed by MPI communi-
cation, our algorithm cleans up the extra vaults and combines newly
received and newly created particles. This process creates new batches
for use in future iterations.

5) Implementation Details - Control Flow:
Figure 2, which appeared earlier in the Thin-Threads overview

section, describes how the Thin-Threads model incorporates batching
into the control flow. Its control flow allows for overlapping compu-
tation with communication, and lets us recover lost performance on
CPUs, compared to Fat-Threads model. The Thin-Threads control
flow works as follows. First, a vault is taken out of the particle vault
container and sent into the Kernel (Do Kernel). Second, any particles
that need to be sent are pulled into MPI buffers based on the values

in the send queue tuples, particles index in vault, and neighbor rank
index (Do MPI Send). Third, the host checks to see Whether or not
any particles need to be received (Do MPI Receive). Fourth, newly
created particles and received particles are condensed into particle
vaults that are then added to the PVC. The extra particle vaults are
populated again with all empty vaults (Clean Extra Vaults). Once this
process has been completed, the data structures are ready to handle
another pass through this process, i.e. a filled vault is ready for kernel
launches, and extra vaults are ready to receive new particles.

One significant element of this application is the need to run on
the CPUs and GPUs through a single source code base. To achieve
this, a simple execution policy model was established which allowed
for ranks to determine what form the kernel would take. The amount
of replicated code for each policy available was reduced to a single
function call inside each kernel or for loop. This means that each
policy only needs to define the parameters necessary to launch the
kernel, or run the for loop. The available policies are Serial, OpenMP
2.0, OpenMP 4.5, and CUDA. The use of macros around language
specific functions, such as atomics, allows each of these methods to
run through the same code on CPUs as well as GPUs. Additionally,
this execution policy model will be the basis of future work, where
we can explore the use of CPUs and GPUs at the same time.

IV. THIN-THREADS PERFORMANCE STUDIES

This section describes the results from studies performed on
Lawrence Livermore’s IBM/Nvidia GPU test platform, Ray. This
machine uses two IBM Power8 CPUs and four Nvidia Pascal P100
GPUs per node. The IBM Power8 CPU has 10 cores and can run up
to 8 threads per core. That said, our best performance comes from
running threaded CPU runs with four threads per core, and so we
only use four of the eight threads in our experiments.

A Monte Carlo particle transport workload is defined by two
major factors — the types of reactions and likelihood of mesh facet
crossings. For the types of reactions, the key elements are the cross
section and material information. For the likelihood of mesh-facet
crossings, the key elements are the mesh layout and decomposition.
While the elements defining the types of reaction are defined by the
underlying physics, the elements defining the likelihood of mesh-
facet crossings can be varied. Therefore, our performance study
varies the elements behind mesh-facet crossings (mesh layout and
decomposition).

For the material and cross section information, we considered the
Godiva in water [10] problem. Specifically, we replicated the ratios
of particle streaming to collisions, as well as the ratios of the types
of reactions that occur in the collisions.

For the mesh-facet crossings, we defined the size of the mesh
elements so that the likelihood of events is roughly equal (i.e., so the
occurrences of mesh facet crossing and collision events are balanced).
The problem defines a Cartesian mesh of 10x10x10 mesh elements
per rank (one decomposition element) in a rectangular, doubling,
scaling pattern. For example, one rank would use [10x10x10] mesh
elements, where as two ranks would use [20x10x10] mesh elements,
and four ranks would use [20x20x10] elements. Given the simplicity
of running problems in a rank per GPU mode we opted to use four
ranks for the base problem and define one node worth of performance
as the result of running on four P100 Pascal GPUs. In order to
maintain a fair comparison when running on CPUs, we opted to also
use four ranks per node and use OpenMP threading to fully utilize a
node. At four threads per core and five cores per rank, the CPU data
was generated using four ranks with twenty threads per rank.

In terms of runtime per cycle, our goal was to pick workloads that
reflected real world problems. On the one hand, runtimes that are very
short would not reflect real world problems (and also skew analysis).
On the other, long runtimes, while more common in practice, limit the
number of tests we could perform. Overall, we decided to consider
runtimes of approximately two seconds per cycle. To accomplish this,
we opted to run one million particles per rank, which completes in
roughly two seconds per cycle on a GPU. Given four ranks per node
as our baseline, we ran four million particles per node and scale
accordingly during scaling studies.

A. Effect of Batch Size on Performance

In this section, we analyze the effect batch size has on the overall
performance for Thin-Threads. Batch size has multiple, potential
impacts on performance. First, it determines the number of threads
that can be running simultaneously on a rank, which has a profound
impact on the performance of threading. Second, it allows for
different amounts of computation to overlap with communication,
providing a tunable knob for optimizing MPI. Finally, batch size
choices also determine the number and size of memory allocations
that need to occur, which should be minimized in this setting. The
results for this section are plotted in Figures 4(a) and 4(b). In these
figures, batch size is plotted on the x-axis and runtime in seconds
on the y-axis; with respect to performance, lower is better. The
experiments performed were somewhat asymmetric: our minimum
batch size was 100 for the CPU and 1000 for the GPU. We had to
increase the minimum batch size for the GPU, since batch sizes of
100 did not complete within a reasonable amount of time, due to not
utilizing the GPU adequately.

The effect of batch size on the availability of threads has profound
performance implications. This is especially true on GPU architec-
tures, as the batch size determines the kernel size of the particle
vaults. Large kernels are needed to efficiently utilize all of the cores
on GPU hardware. Figure 4(a) clearly shows the trend of increased
performance (decreased runtime) as the batch size increases. The
trend in runtime decreases linearly as we increase batch size, up until
the GPU hardware is adequately saturated. Once GPU has enough
work (at around a batch size of 50,000), the performance benefit
plateaus. Batch sizes above 50,000 provide similar performance,
reducing the need to find a specific value for optimum performance.
At higher batch sizes (approaching one million), the curve trends up
slightly, most likely due to there being less MPI overlap occurring
in that regime.

Figure 4(b) shows the performance trends on CPU architectures
at different scales. The trends for CPUs have a similar shape to
GPUs. The primary difference between the two architectures is that
the maximum performance (lowest runtime) point for CPUs occurs
much earlier than it does for GPUs. Both sets of results show a
decrease in performance (increase in runtime) as when batch sizes
become much smaller than the total number of particles. For CPUs,
our results consider batch sizes as small as 100. Increasing the batch
size to 1000 results in almost an order of magnitude increase in
performance.

Another interesting point is that this trend shows nearly identical
performance at different scales, meaning that even at poor batch sizes
for GPU performance the MPI weak scaling is still managing well.
This is true on CPUs as well when running 4 ranks per node. In
our previous experience, not shown here, we witnessed negative side
effects to running with batch sizes that were too large when run at
large scale (thousands of ranks).

 100

 1000

 10000

 100 1000 10000 100000 1x106

C
y
cl

e
 T

ra
ck

in
g
 T

im
e
 [

s]

Batch Size

Batching Study [log-log scale]

1 Node
2 Nodes
4 Nodes
8 Nodes

16 Nodes
32 Nodes

(a) GPU

 100

 1000

 10000

 100 1000 10000 100000 1x106

C
y
cl

e
 T

ra
ck

in
g
 T

im
e
 [

s]

Batch Size

Batching Study [log-log scale]

1 Node
2 Nodes
4 Nodes
8 Nodes

16 Nodes
32 Nodes

(b) CPU

Fig. 4: These plots show weak scaling studies of cycle tracking time versus batch size, for 1 to 32 Nodes. This data shows batch size has
considerable impact on performance. For GPU runs (sub-figure (a)), the optimum batch size is 300,000 particles per batch. For CPU runs
(sub-figure (b)), 100,000 particles per batch was the optimum size, although the performance differences for batch sizes over 1000 were
much smaller. The most important takeaway from these plots are the trends across all nodes, rather than the line corresponding to a single
configuration of nodes.

B. Weak Scaling Efficiency Comparisons

In this next phase of results, we consider two topics: weak scaling
and comparison to Fat-Threads. Our experiments here incorporated
the optimum batch sizes from the previous phase of results (Sec-
tion IV-A).

Table I lists the results from a weak scaling study (1 node to 32),
comparing the same configuration for Thin-Threads with GPUs, Thin-
Threads with CPUs, and Fat-Threads on CPUs. The entries in each
table are the actual runtimes. This table highlights the added benefits
of the Thin-Threads model, especially at this scale, as even the CPU
results show improvement over the original Fat-Threads model.

The data is most representative of real-world workloads at higher
node counts. With low node counts, each node’s domain has fewer
neighbors, which means less time is spent doing communication.
For example, with four nodes, each node’s domain has only two
neighbors. As the nodes counts get higher and higher, then most of

the nodes will have six neighbors (+/-X, +/-Y, +/-Z). In particular,
slowdowns in performance can be seen at 8 and 16 nodes, as nodes
at these levels of concurrency have more neighbors than smaller
concurrencies. Specifically, at 16 nodes and 64 ranks has ranks that
needs to send and receive messages with up to six neighbors. We
can see this effect on the weak scaling data, especially for the Thin-
Threaded CPU code, as the complexity of the MPI increases the
runtime increases to match but settles again at a new steady value.

Table I shows that, for 32 nodes and 128 ranks, the GPUs running
Thin-Threads are 3.4× faster than the CPUs running Thin-Threads
and 10.4× faster than this same configuration of CPUs running
Fat-Threads. We consider this performance to be very successful
in the context of Monte Carlo particle transport. Since the Monte
Carlo particle transport algorithm is not bound by the resources that
the GPU makes readily available (compute and streaming memory
throughput), it is inherently difficult to achieve significant GPU

TABLE I: Weak scaling results for Thin-Threads on CPUs and GPUs,
compared to the weak scaling results for Fat-Threads for the same
configuration. Time is listed in seconds. A batch size of 300,000 was
used for the Thin-Thread+GPU runs and 100,000 was used for the
Thin-Thread+CPU runs. There was no batching in the Fat-Thread
code. All models were run with four ranks, and the CPU runs used
20 threads per rank.

Nodes / Ranks Thin (GPU) [s] Thin (CPU) [s] Fat (CPU) [s]
1 / 4 1.866e+02 5.247e+02 6.788e+02
2 / 8 2.013e+02 5.470e+02 8.531e+02
4 / 16 2.130e+02 5.777e+02 1.998e+03
8 / 32 2.250e+02 8.482e+02 2.380e+03

16 / 64 2.537e+02 8.166e+02 2.327e+03
32 / 128 2.610e+02 8.902e+02 2.725e+03

TABLE II: Efficiency data from the weak scaling study. Basic parallel
efficiency is given by comparing to single node performance. Relative
efficiency is given by comparing to previous size performance (i.e.,
2 nodes efficiency is tracking time as [1 Node / 2 Nodes], whereas
4 node efficiency is tracking time as [2 Nodes / 4 Nodes]).

Nodes Thin (GPU) Thin (CPU)
Ranks Eff. 1 Node Rel. Eff. Eff. 1 Node Rel. Eff.
1 / 4 100% — 100% —
2 / 8 92.69% 92.69% 95.92% 95.92%
4 / 16 87.61% 94.51% 90.83% 94.69%
8 / 32 82.93% 94.67% 61.86% 68.11%

16 / 64 73.55% 88.69% 64.25% 103.9%
32 / 128 71.49% 97.20% 58.94% 91.73%

Fat (CPU)
Eff. 1 Node Rel. Eff.

100% —
79.56% 79.56%
33.97% 42.70%
28.52% 83.95%
29.17% 102.3%
24.92% 85.39%

performance. Instead, it is bound by memory latency and filled with
branching divergent paths, both of which are identifiable as significant
limiting factors with this algorithm on GPUs.

Table II shows the scaling efficiency up to 32 nodes. This can
be calculated directly from Table I. The efficiency is calculated
using a single node as a baseline. This table shows that the GPU
maintains a weak scaling value of just over 70% efficiency at 32
nodes compared to using just one node. On a CPU platform, this is
just under 60% for Thin-Threads and only 25% for Fat-Threads. This
drop in performance on CPU platforms is in part due to the greater
sensitivity that the CPU performance is showing to the added MPI
complexity of higher scales, as well as the fact that 4 ranks, with 20
threads per rank, is not the optimum CPU layout for this machine.

Table II also shows the relative efficiency of scaling, for each
increase in node count. This table highlights a number of interesting
points about the scaling pattern. That said, some of the effects are
due to the relationship between node count and problem size. As
we increase the problem by a factor of 2, we are doing so only
in one dimension at a time. At 16 nodes we have a perfect cube
for problem dimensions [4x4x4], where as at 8 or 32 nodes we
have a rectangular problem domain instead ([4x4x2] and [8x4x4],
respectively). This informs some of the findings of the table. First,
not all of the scales are slower. Specifically, on the CPU runs, the 16
nodes experiments shows better performance than the 8 or 32 node

TABLE III: Figure of Merit and efficiency data from weak scaling
runs on Vulcan, with 4 ranks per node and 16 threads per rank [15].
Efficiency against the 1 node runs and the relative efficiency for each
step are shown. Relative efficiency is calculated in the same way as
described in Table II.

Nodes FOM [seg/sec] Eff. 1 Node Rel. Eff.
1 2.068e+06 100% –
2 4.018e+06 97.15% 97.15%
4 7.622e+06 92.14% 94.85%
8 1.443e+07 87.22% 94.66%

16 2.773e+07 83.81% 96.08%
32 5.447e+07 82.31% 98.21%
64 1.072e+08 81.00% 98.40%
128 2.124e+08 80.24% 99.07%
256 4.216e+08 79.64% 99.25%
512 8.359e+08 78.95% 99.13%

1024 1.665e+09 78.63% 99.59%
2048 3.314e+09 78.25% 99.52%
4096 6.600e+09 77.92% 99.58%
8192 1.301e+10 76.80% 98.56%
16384 2.612e+10 77.09% 100.38%
24576 3.909e+10 76.91% 99.77%

runs. This is most likely a side effect of load balancing in the scaling
study itself. Second, there are a few definite points where efficiency
drops dramatically compared to the previous scale. This highlights a
step in complexity, as the subsequent scales do not continue to drop
dramatically.

An important take away from this efficiency data is that the Thin-
Threaded model exhibits promising scaling behavior. This data shows
the viability of this approach and that under these circumstances
Thin-Threads performs best. That said, Monte Carlo particle transport
problems can have irregular performance behaviors, and a more
comprehensive study at higher node counts and more workloads could
be useful.

C. Weak Scaling on BGQ

This section describes results on a Lawrence Livemore’s Vulcan
machine, which uses the BGQ architecture. Table III shows the
scaling data we gathered. The performance data comes from a similar
workload as was run in Section IV-B, with the only significant
difference being less particles per node. This change was necessary
since a node of BGQ is less performant than a GPU node on Ray.

Our data in this section is presented with respect to a figure of merit
(FOM), specifically how many segments per second each problem ran
on average. One advantage to considering results with respect to the
FOM is that a doubling in resources should produce a doubling in the
FOM. This is represented as percent efficiency — 100% efficiency
means double the nodes led to a doubling of the FOM.

This data shows that the Thin-Threads solution scales well up to the
entirety of the Vulcan portion of the Sequoia supercomputer. While
we see higher efficiency on Vulcan than on Ray, this is most likely
due to the nature of each machine. The BGQ system is designed from
the ground up to minimize per-node variation in performance and has
advanced networking features allowing codes to scale efficiently. Ray
does not have these advantages — it has variation in performance
per node (since it has power-based CPU clock throttling) and it has
a simpler network architecture. Since Ray is a test bed machine, it is
likely that some of our efficiency loss comes from the unoptimized
network setup, or clock speed throttling resulting from using more
and more of the system. Despite these differences, we see similar
performance patterns between the two systems.

Comparing the CPU Thin-Threaded results on Ray with the CPU
results on Vulcan, we can see that the same pattern of decreased
efficiency at low scales with a leveling out of performance as we
increase the scale. Given the similarity in these data sets we believe
that a larger system could expect similar scaling performance even
at much higher scales.

V. CONCLUSION

In this paper we demonstrated the effectiveness of the Thin-Threads
approach for history-based Monte Carlo particle transport problems
on GPUs. Additionally, Thin-Threads have also shown a degree
of portability as both CPU and GPU forms of this approach have
proved to be performant. On GPU platforms we achieved about 3×
greater performance over the Thin-Threads CPU model and about
10× greater performance over the Fat-Threads CPU model.

One reason the Thin-Threads approach was effective was the inclu-
sion of an asynchronous MPI batching model. The batching scheme
presented in this paper has the added benefit of being a tunable
parameter. This means that for problems where MPI is a dominating
factor for performance, finding a good batch size could provide a
starting point for optimizing performance. In some cases, we also
noticed that the batch size was not a significant factor in performance.
In these cases, as long as the batch size provided adequate parallelism,
other factors dominated performance aside from time spent in MPI,
therefore, overlapping computation with communication had little
effect. Even in these cases, however, providing enough parallelism
is an important factor and so it is important to determine a good
batch size for the hardware. Through our experiences on Ray and
Vulcan we saw that batch sizes of 100,000 or more worked well for
GPU platforms and batch sizes greater than one thousand worked
well for CPU platforms.

An important aspect of our study on Thin-Thread performance
was the parallel efficiency when scaling up to large numbers of
nodes. Specifically, we wanted to evaluate the performance of our
new Batching+Asynchronous MPI approach. On Vulcan we showed
that we could maintain nearly perfect relative efficiency (most being
at or greater than 99%) and an overall parallel efficiency of greater
than 75% on 24 thousand nodes (98304 ranks) when compared to a
single node. On Ray we found we could maintain relative efficiencies
in the 90% range after the initial dip around 8 nodes, and maintained
a greater than 70% efficiency at 32 nodes on GPUs.

The performance and scalable efficiency of the Thin-Threads
approach provides the basis to move forward in developing a GPU
version of the full production application, using a single code base
and threading model for both the CPU and GPU. The Thin-Threads
model was developed inside of the Quicksilver mini-app available on
Github [3]. Future work for this model will be its implementation
in Mercury, the full production application Quicksilver is based
on. Additional plans include large scale GPU runs on Sierra as
well researching methods for running in a hydrid CPU+GPU batch
processing mode.

NOTICE: This manuscript has been authored by Lawrence Livermore
National Security, LLC under Contract No. DE-AC52-07NA2 734-I with
the US. Department of Energy. The United States Government retains,
and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United States
Government purposes. LLNL-CONF-765547

REFERENCES

[1] Co-design at lawrence livermore national lab: Quicksilver. Lawrence
Livermore National Laboratory (LLNL), Livermore, CA (United States),

https://codesign.llnl.gov/quicksilver.php, accessed:
2017-07-07

[2] Mercury web site, https://wci.llnl.gov/simulation
/computer-codes/mercury, accessed: 2017-06-22

[3] Quicksilver. a proxy app for the monte carlo transport code, mercury.
llnl-code-684037, https://github.com/LLNL/Quicksilver,
version: 83ade89

[4] A set of radiation transport mini-applications used
for performance optimization on hpc systems.,
http://ornl-cees.github.io/Profugus, accessed: 2018-
04-05

[5] Ayubian, S., Alawneh, S., Richard, M., et al.: Implementation and
performance of a gpu-based monte-carlo framework for determining
design ice load. In: 2017 International Conference on High Performance
Computing & Simulation (HPCS). pp. 109–116. IEEE (2017)

[6] Bergmann, R.: The Development of WARP-A Framework for Continu-
ous Energy Monte Carlo Neutron Transport in General 3D Geometries
on GPUs. Ph.D. thesis, University of California, Berkeley (2014)

[7] Bleile, R., Brantley, P., Dawson, S., O’Brien, M., Childs, H.: Investiga-
tion of portable event-based monte carlo transport using the nvidia thrust
library. Trans. Am. Nucl. Soc. (114), 941–944 (2016)

[8] Bleile, R., Brantley, P., O’Brien, M., Childs, H.: Algorithmic improve-
ments for portable event-based monte carlo transport using the nvidia
thrust library. Trans. Am. Nucl. Soc. (115), 535–538 (2016)

[9] Brantley, P., Dawson, S., McKinley, M., O’Brien, M., Stevens, D., Beck,
B., Jurgenson, E., Ebbers, C., Hall, J.: Recent advances in the mercury
monte carlo particle transport code. In: International Conference on
Mathematics and Computational Methods Applied to Nuclear Science
& Engineering (2013)

[10] Cullen, D.E., Clouse, C.J., Procassini, R., Little, R.C.: Static and
dynamic criticality: are they different? Tech. rep., Lawrence Livermore
National Lab., Livermore, CA (US) (2003), report: UCRL-TR-201506

[11] Hamilton, S.P., Slattery, S.R., Evans, T.M.: Multigroup monte carlo
on gpus: Comparison of history-and event-based algorithms. Annals of
Nuclear Energy 113, 506–518 (2018)

[12] Ludvigsen, H., Elster, A.C.: Real-time ray tracing using nvidia optix. In:
Eurographics (Short Papers). pp. 65–68 (2010)

[13] O’Brien, M.J., Brantley, P.S., Joy, K.I.: Scalable load balancing for mas-
sively parallel distributed monte carlo particle transport. In: Proceedings
of International Conference on Mathematics and Computational Methods
Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley,
Idaho. vol. 45, pp. 647–658 (2013)

[14] Pandya, T.M., Johnson, S.R., Davidson, G.G., Evans, T.M., Hamilton,
S.P.: Shift: a massively parallel monte carlo radiation transport package.
In: Proc. ANS MC2015?Joint International Conference on Mathematics
and Computation (M&C), Supercomputing in Nuclear Applications
(SNA) and the Monte Carlo (MC) Method. pp. 19–23 (2015)

[15] Richards, D., Bleile, R.: Quicksilver, summary version 1.03. Tech.
rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States) (2018)

[16] Richards, D.F., Bleile, R.C., Brantley, P.S., Dawson, S.A., McKinley,
M.S., O’Brien, M.J.: Quicksilver: A proxy app for the monte carlo
transport code mercury. In: Cluster Computing (CLUSTER), 2017 IEEE
International Conference on. pp. 866–873. IEEE (2017)

[17] Romano, P.K., Forget, B.: The openmc monte carlo particle transport
code. Annals of Nuclear Energy 51, 274–281 (2013)

[18] Stpiczyński, P.: Vectorized algorithm for multidimensional monte carlo
integration on modern gpu, cpu and mic architectures. The Journal of
Supercomputing 74(2), 936–952 (2018)

[19] Szałkowski, D., Stpiczyński, P.: Using distributed memory parallel
computers and gpu clusters for multidimensional monte carlo integration.
Concurrency and Computation: Practice and Experience 27(4), 923–936
(2015)

[20] Tramm, J.R., Siegel, A.R.: Memory bottlenecks and memory contention
in multi-core monte carlo transport codes. Annals of Nuclear Energy 82,
195–202 (2015)

[21] Xu, X.G., Liu, T., Su, L., Du, X., Riblett, M., Ji, W., Brown, F.B.: An
update of archer, a monte carlo radiation transport software testbed for
emerging hardware such as gpus. Transactions of the American Nuclear

Society 108, 433–434 (2013)

