
Accelerating Advection Via Approximate Block Exterior Flow
Maps
Ryan Bleile1, Linda Sugiyama2, Christoph Garth3, Hank Childs1

1University of Oregon, Eugene,2Massachusetts Institute of Technology, 3University of Kaiserslautern

Abstract
Flow visualization techniques involving extreme advec-

tion workloads are becoming increasingly popular. While these
techniques often produce insightful images, the execution times
to carry out the corresponding computations are lengthy. With
this work, we introduce an alternative to traditional advection,
which improves on performance at the cost of decreased accuracy.
Our approach centers around block exterior flow maps (BEFMs),
which can be used to accelerate flow computations by reducing
redundant calculations. Our algorithm uses Lagrangian interpo-
lation, but falls back to Eulerian advection whenever regions of
high error are encountered. In our study, we demonstrate that the
BEFM-based approach can lead to significant savings in time,
with limited loss in accuracy.

Introduction
A myriad of scientific simulations, including those modeling

fluid flow, astrophysics, fusion, thermal hydraulics, and others,
model phenomena where constituents move through their volume.
This movement is captured by a velocity field stored at every point
on the mesh. Further, other vector fields, such as force fields for
electricity, magnetism, and gravity, also govern movement and in-
teraction. A wide range of flow visualization techniques are used
to understand such vector fields. The large majority of these tech-
niques rely on placing particles in the volume and analyzing the
trajectories they follow. Traditionally, the particles are displaced
through the volume using an advection step, i.e., solving an ordi-
nary differential equation using a Runge-Kutta integrator.

As computational power on modern desktops has increased,
flow visualization algorithms have been empowered to consider
designs that include more and more particles advecting for longer
and longer periods. Techniques such as Line Integral Convolu-
tion and Finite-Time Lyapunov Exponents (FTLE) seed particles
densely in a volume and examine where these particles end up.
For these operations, and many others, only the ending position
of the particle is needed, and not the details of the path the particle
took to get there.

Despite seemingly abundant computational power, some
techniques have excessively long running times. For example,
ocean modelers often study the FTLE within an ocean with both
high seeding density and very long durations for the particles
(years of simulation time) [2, 3]. As another example, fusion
scientists are interested in FTLE computations inside a tokamak
where particles travel for hundreds of rotations [1]. In both cases,
FTLE calculations, even on supercomputers, can take tens of min-
utes.

With this work, we consider an alternative to traditional Eu-
lerian advection. The key observation that motivates the work is

that, in conditions with dense seeding and long durations, par-
ticles will tread the same (or very similar) paths over and over.
Where the current paradigm carries out the same computation
over and over, we consider a new paradigm where a computa-
tion can be carried out a single time, and then reused. That said,
we find that, while particle trajectories do often travel quite close
to each other, they typically follow their own (slightly) unique
paths. Therefore, to effectively reuse computations, we consider a
method where we interpolate new trajectories from existing ones,
effectively trading accuracy for speed.

Our method depends on Block Exterior Flow Maps, or
BEFMs. The idea behind BEFMs is to pre-compute known tra-
jectories that lie on block boundaries. It assumes data in block-
decomposed, but this assumption is common when dealing with
parallel, distributed-memory computations. When a compute-
intensive flow visualization algorithm is then calculated, it con-
sults with the BEFMs and does Lagrangian-style interpolation
from its known trajectories. While this approach introduces error,
it can be considerably faster, since it avoids Eulerian advection
steps inside each block.

The contributions of the paper are as follows:

• Introduction of BEFMs as an operator for accelerating dense
particle advection calculations;

• A novel method for generating an approximate BEFM that
can be used in practice;

• A study that evaluates the approximate BEFM approach, in-
cluding comparisons with traditional advection.

Related Work
McLouglin et al. recently surveyed the state of the art in flow

visualization [4], and the large majority of techniques they de-
scribed incorporate particle advection. Any of these techniques
could possibly benefit from the BEFM approach, although the
tradeoff in accuracy is only worthwhile for those that have ex-
treme computational costs, e.g., Line Integral Convolution [5],
finite-time Lyapunov exponents [6], and Poincare analysis [7].

One solution for dealing with extreme advection workloads
is parallelization. A summary of strategies for parallelizing par-
ticle advection problems on CPU clusters can be found in [8].
The basic approaches are to parallelize-over-data, parallelize-
over-particles, or a hybrid of the two [9]. Recent results using
parallelization-over-data demonstrated streamline computation on
up to 32,768 processors and eight billion cells [11]. These paral-
lelization approaches are complementary with our own. That is,
traditional parallel approaches can be used in the current way, but
the phase where they advect particles through a region could be
replaced by our BEFM approach.



In terms of precomputation, the most notable related work
comes from Nouanesengsy et al. [10]. They precomputed flow
patterns within a region and used the resulting statistics to decide
which regions to load. While their precomputation and ours have
similar elements, we are using the results of the precomputation
in different ways: Nouanesengsy et al. for load balancing and our-
selves to replace multiple integrations with one interpolation.

In terms of accelerating particle advection through approxi-
mation, two works stand out. Brunton et al. [18] also looked at
accelerating FTLE calculation, but they considered the unsteady
state problem, and used previous calculations to accelerate new
ones. While this is a compelling approach, it does not help with
the steady state problem we consider. Hlwatsch et al. [15] employ
an approach where flow is calculated by following hierarchical
lines. This approach is well-suited for their use case, where all
data fits within the memory of a GPU, but it is not clear how
to build and connect hierarchical lines within a distributed mem-
ory parallel setting. In contrast, our method, by focusing on flow
between exteriors of blocks, is well-suited for this type of paral-
lelism.

Bhatia et al. [19] studied edge maps, and the properties of
flow across edge maps. While this work clearly has some similar
elements to our, their focus was more on topology and accuracy,
and less on accelerating particle advection workloads.

Scientific visualization algorithms are increasingly using La-
grangian calculations of flow. Jobard et al. [12] presented a
Lagrangian-Eulerian advection scheme which incorporated for-
ward advection with a backward tracing Lagrangian step to more
accurately shift textures during animation. Salzbrunn et al. de-
livered a technique for analyzing circulation and detecting vortex
cores given predicates from pre-computed sets of streamlines [14]
and pathlines [13]. Agranovsky et al. [16] focused on extracting
a basis of Lagrangian flows as an in situ compression operator,
while Chandler at al. [17] focused on how to interpolate new path-
lines from arbitrary existing sets. Of these works, none share our
focus on accelerating advection.

Method
Our method makes use of block exterior flow maps

(BEFM). We begin by defining this mapping, in Section . We
then describe our method, and how it incorporates these maps, in
Section .

Block Exterior Flow Map
Definition

In scientific computing, parallel simulation codes often
partition their spatial volume over their compute nodes. Restated,
each compute node will operate on one spatial region, and that
compute node will be considered the “owner” of that region. Such
a region is frequently referred to as a block. For example, a sim-
ulation over the spatial region X: [0-1], Y: [0-1], and Z: [0-1] and
having N compute nodes could have N blocks, with each block
covering a volume of 1

N .
Consider a point P that lies on the exterior of a block B.

If the velocity field points toward the interior of B at point P,
then Eulerian advection of a particle originating at P will take
the particle through the interior of B until it exits. In this case, the
particle will exit B at some location P′, where P′ is also located on
the exterior of B. The BEFM captures this mapping. The BEFM’s

domain is all spatial locations on the exterior of blocks, and its
range is also spatial locations on the exteriors of blocks. Further,
for any given P in the BEFM’s domain, BEFM(P,B) will produce
a location that is on B’s exterior. Saying it concisely, the BEFM is
the mapping from particles at exteriors of blocks to the locations
where those particles will exit the block under Eulerian advection.
Figure 1 illustrates an example of a BEFM.

𝑃0 

𝐵1 𝐵2 𝐵3 

𝐵4 𝐵5 𝐵6 

𝑃1 𝑃2 

𝑃3 

Figure 1. Notional example of a BEFM on a two-dimensional vector field.

This example shows the path of a particle moving through a region, with an

emphasis on the blocks it travels through. Particle P0 travels through block B6

and exits B6 at location P1. Thus, BEFM(P0,B6) = P1. Similarly, BEFM(P1,B3)

= P2, and BEFM(P2,B2) = P3 etc. In the case of particles placed in an outgoing

region of flow, the BEFM returns the particle itself, e.g., BEFM(P1,B6) = P1.

Using BEFMs for Calculating Particle Trajectories
Now consider a particle P that lies on the interior of block

B0. Further, consider the trajectory of P when traveling for T time
units. Assume P travels through blocks B1, B2, ..., BN−1, before
terminating in the interior of block BN at time T. Consider how
BEFMs can be used to calculate P’s trajectory:

• Since P lies in the interior of B0, traditional advection is
needed to calculate the path of P until it reaches B0’s exte-
rior.

• The BEFM can then be used to calculate the path of P
through B1, B2, ..., BN−1.

• P’s trajectory into the interior of BN is then again calculated
with traditional advection.

Putting it all together, if BEFMs can calculate mappings
more quickly than the calculations for advecting a particle through
a block, then this method should be faster than traditional advec-
tion. Further, the speedup for the BEFM-style calculation is then
limited only by the cost for the steps through the initial and final
blocks (B0 and BN ).

Approximate BEFMs
There are many ways to implement a BEFM. For ex-

ample, a BEFM could respond to each mapping request (i.e., a
BEFM(P,B)) by going back to the original vector field and em-
ploying traditional advection. In this case, the BEFM would have
the same performance characteristics as traditional advection, and
the abstraction of BEFMs on top of traditional advection would be
unnecessarily complicated.



For our research, we are interested in BEFMs where each
mapping request can be satisfied much more quickly than the
work it takes to advect a particle using traditional advection.
For this reason, we consider precomputation, i.e., evaluating the
BEFM before the main work begins of calculating particle trajec-
tories. However, it is not obvious how to precompute a perfect
BEFM. Our approach to this problem is to precompute an Ap-
proximate BEFM or ABEFM. This ABEFM will know the exact
mappings for certain locations on the boundary. We refer to this
list of locations as the KnownParticleList.

When an ABEFM is asked to calculate mappings for parti-
cles that are not in the KnownParticleList, it will interpolate the
exit location from the nearest particles that are in the KnownPar-
ticleList.

There are many ways to establish an ABEFM’s KnownParti-
cleList. We chose to generate locations uniformly along the exte-
rior of a block at some chosen sample density. With this approach,
the accuracy and pre-computation time are in tension. High sam-
ple densities will increase accuracy at the cost of pre-computation
time. Low sample densities will reduce pre-computation time at
the cost of accuracy. We explore this issue more in Section .

Conditions Where an ABEFM Cannot Be Used
It is not always possible to interpolate new trajectories

from the ABEFM’s known trajectories. Through our experiments,
we have identified three ways in which interpolation is not possi-
ble. They are:

1. If a particle trajectory from the exterior of block B never
again reaches the exterior of block B, i.e., if a particle lands
in a sink or is caught in a vortex inside the block.

2. If a particle trajectory differs too significantly from its
neighbors, i.e., neighboring trajectories separated and exit
through different faces of B.

3. If all neighboring trajectories are not uniformly entering the
block or uniformly exiting the block, e.g., some neighbor-
ing particles get displaced to the interior of the block while
others are displaced into neighboring blocks.

Case 1 Case 2 Case 3 

Figure 2. Cases where an ABEFM cannot interpolate a new trajectory.

Note that on the right figure one of the particles enters the block while the

other particle exits the block.

Fortunately, we can detect each of these three cases, and fall
back to traditional advection to determine a particle trajectory.
However, it is important that we understand the rate at which
these conditions occur. The rate is data set-dependent, and we
determine these rates experimentally.

An Approach for Creating and Using an ABEFM
In this section we describe our algorithms for creating an

ABEFM and utilizing an ABEFM for advection.
Examples in this outline will follow the assumption that

ABEFM’s KnownParticleList points are uniformly generated at
the mesh resolution, i.e., one particle trajectory for every node in
the mesh that lies on the exterior of a block. For example, in a
10× 10 two-dimensional mesh with 4 blocks laid in a 2× 2 pat-
tern, each block’s external edge will consist of 5 cells and there-
fore 6 points. Additionally, these mapped points are not dupli-
cated across shared faces. Figure 3 illustrates this example.

Figure 3. Initial locations for particle trajectories to be mapped during the

pre-computation phase of an ABEFM. Depicted is a 10x10 mesh with 2x2

blocks overlaid and the locations of the mappings defined on the block’s ex-

teriors

Building an ABEFM
ABEFM construction consists of generating flows for each

location in the KnownParticleList. This is done by initializing
particles at each location in the KnownParticleList and then ad-
vecting those particles across a block. Advection is done using
traditional Eulerian methods such as Runge-Kutta. Pseudo code
for this method is outline in Algorithm 1.

Algorithm 1 Build Flow Map
1: function GET BLOCK ID(Particle P)
2: Determine the block that P advects through
3: return BlockID
4: end function
5: function ADVECT ON BLOCK(Particle P, Block B)
6: Advect P until it exits B (using Eulerian advection)
7: Stop P on boundary of B
8: Compute which Face of B that P landed on
9: return P, FaceID

10: end function
11: for all P in KnownParticleList do
12: Bid = GET BLOCK ID(P)
13: NewP, Fid = ADVECT ON BLOCK(P, Bid)
14: Def: Flow F as the set < P, NewP, Bid, Fid >
15: end for

Advecting With an ABEFM
Section 3.1.2 describes how to use a BEFM for particles at

arbitrary locations in a volume. For this discussion, we focus on
the case of a particle P that lies on the boundary of block B, and
calculating where P exits B.



The trajectory for a particle P is calculated as follows. First,
the neighboring particles, P1, P2, ... , Pn (Pi) from the Known-
ParticleList are identified. For our study, the KnownParticleList
had particles seeded at regular intervals, so n would be four, and
we would find the four particles that formed a square around P.
Next, we check the Pi for our three conditions where an ABEFM
cannot be used (see 3.1.4). If we cannot use the Pi, then we fall
back to traditional Eulerian advection using Runge-Kutta solves.
If we can use the Pi, then we take the output location to be the
weighted average of the exit locations of the Pi. For our con-
struction of four Pi’s in a square configuration, this can be ac-
complished with bilinear interpolation. We also interpolated the
time to advance through the volume from the times of the Pi’s. If
this time was greater than the amount of time remaining for the
particle to travel, then we rejected the interpolated result (since it
traveled too far), and fell back to Eulerian advection. However, if
the interpolated projection was within the time bounds, then we
used it and avoid Eulerian advection. Pseudo code for this method
is outline in Algorithm 2.

Algorithm 2 Advect with Flow Map
1: function ADVECT BLOCK(Particle P, Block B)
2: Integrate to find P’s exit location
3: Stop P on boundary of B
4: if P.Time ≥ End Time then
5: return 0
6: else
7: return 1
8: end if
9: end function

10: function ADVECT VIA FLOW MAP(Particle P, Block B)
11: Interpolate Output location and time from (P,B)
12: if Output.Time > End Time then
13: return ADVECT BLOCK(P,B)
14: end if
15: Set P = Output
16: return 1
17: end function
18: AdvectionList: List of particles to be advected
19: for all Particles P in AdvectionList do
20: keepGoing = 1
21: while P.time < End Time && keepGoing do
22: Bid = GET BLOCK ID(P)
23: if Particle on Computable Face then
24: keepGoing = ADVECT VIA FLOW MAP(P,Bid)
25: else
26: keepGoing = ADVECT BLOCK(P, Bid)
27: end if
28: end while
29: end for

Study Overview
Data Sets

We considered three data sets. Each had steady state flow
(i.e., one time slice) and was defined on a regular mesh. They are:

• Tokamak: the magnetic field inside a tokamak. Inside
the tokamak, the velocity vector values lead to circulation

around the tokamak. Outside the tokamak, the velocity field
is all zero vectors. This data set had dimensions 3003.

• Astro: a supernova simulation. The vector field has high
variability in its central spherical region, and steadily points
out or in when approaching the edges. This data set had
dimensions 2563.

• TH: a thermal hydraulics simulation of air mixing in a “fish
tank” box with two inlets — one with hot air and one with
cold air — and an outlet. This data set had dimensions 5003.

Testing Factors
We considered six dimensions of configurations:

• Domain block layout: what are the impacts of having fewer
or more blocks?

• Density of known particles: what are the impacts in calcu-
lating more or less particles during preprocessing? — time
for preprocessing, time for regular execution, and accuracy?

• Integration time: how does performance and accuracy
change as particles go for shorter or longer periods?

• Step size: how does step size affect performance and accu-
racy?

• Data set: how does the underlying vector field affect perfor-
mance and accuracy?

Testing Methodology
Our methodology consisted of seven phases. The first phase

studied our “default” case in detail. Each of the remaining six
phases sweep through one dimension of our testing factors, and
explores the impact of that factor.

Phase 1: Baseline Test
Our Baseline case consists of a workload, and a configura-

tion for ABEFM. The default workload was a mesh resolution
number of particles integrating for 10 time units with a step size of
0.001 on the vector field from the Tokamak data set. The default
ABEFM configuration on the Tokamak was (10x10x10) blocks
and 300 particles precomputed in each dimension for the Known-
ParticleList.

Phase 2: Block Layout
With this phase, we wanted to understand the effects of

changing block size. Large blocks cause particles to travel larger
distances, but the interpolated path may be less accurate. Small
blocks cause particles to travel shorter distances – and so the num-
ber of operations needed to go the same distance is greater – but
the interpolated path may be more accurate. With this phase, we
wanted to understand the magnitude of these effects.

We considered 9 block layouts: (5x5x5), (10x10x10),
(15x15x15), (20x20x20), (25x25x25), (30x30x30), (40x40x40),
(50x50x50), and (100x100x100). Additionally we use the out-
come from this phase to focus a more detailed look at a few more
layouts.

Phase 3: Integration Time
With this phase, we considered integration time. Short inte-

gration times imply that we spend the majority of our time using
traditional advection to get to block boundaries, mitigating the op-
portunity for speedup. Longer integration times, however, create



the potential for applying the ABEFM repeatedly, and possibly
significant speedups.

We considered 5 integration times: 1, 5, 10, 25, and 50 time
units.

Phase 4: Step Size
With this phase, we considered step size. Small steps sizes

move more slowly through a volume, while large step sizes move
more quickly. However, for the ABEFM method, the step sizes
only impact performance for stepping to the boundary, so the prin-
cipal change is in the comparison with traditional advection.

We considered 7 step sizes: 0.1, 0.05, 0.01, 0.005, 0.001,
0.0005, and 0.0001.

Phase 5: Density of Known Particles
With this phase, we wanted to understand the effects of

changing the number of known particles in the precomputation
phase. Increasing this density will increase accuracy and the abil-
ity to use an ABEFM, but also increases precomputation costs.
Decreasing this density could impact accuracy and decrease the
ability to use an ABEFM, but reduces precomputation costs. With
this phase, we again wanted to understand the magnitude of these
effects.

We considered 5 densities along each dimension of the mesh:
100, 200, 300, 400, and 500.

Phase 6: Data Set
The performance of the ABEFM can clearly be affected by

the underlying vector field. With this phase, we considered all
three data sets. We performed the study from Phase 2 on each of
the data sets keeping the total number of Eulerian steps constant.
The Tokamak data set values are already listed in phase 2. The
Astro data set used an integration time of 5000 and a step size of
1. The TH data set used the same configuration as the Tokamak
data set. Each data set used their own native resolution for pre-
computed particles for the KnownParticleList: 256 for Astro and
500 for FH. Each considered workloads of 203 particles.

Phase 7: Accuracy Performance Comparison
It is important to compare the accuracy and performance re-

sults of the ABEFM method with the traditional method. Since
the traditional method already uses accuracy and performance
tradeoffs we need to understand how this trade off compares with
that of the ABEFM For this study we hold the comparison step
size fixed at 0.0001/ We then run a series of Euler and ABEFM
runs at different step sizes to compare the resulting differences in
accuracy and performance. In doing this we will be able to under-
stand the region of performance and accuracy where the ABEFM
method will out perform the traditional approach.

Hardware
All studies were preformed on a machine with dual 8-core

3.2GHz E5-2667 v3 Intel Xeon processors and 132 GB of RAM.
This initial study was done in use a single node, using 16 cores,
with OpenMP parallelism over particles. We wished to enable the
most direct comparisons between the ABEFM approach and tradi-
tional Eulerian integration methods so parallelism of each scheme
was simplified to only OpenMP and looping over particles in each
advection routine.

Time (seconds)
ABEFM Build Time 2.19
ABEFM Run Time 164.05
Eulerian Run Time 1426.35

Speedup
ABEFM Run Time over Eulerian Time 8.69
ABEFM Total Time over Eulerian Time 8.58

Usability
Percent Usable Faces 88.84%

Percent ABEFM Jumps 90.84%
Error

Average Accuracy 99.30%
Average Error 0.70%

Max Error 30.43%
StdDev Error 2.56%

Results from Phase 1.

Measurements
The measurements we took for each experiment were:

• Time: the total run time of the ABEFM approach (meaning
both build time and advection time using the ABEFM). We
also would run a separate experiment with the traditional,
Eulerian approach and measure its time.

• Speedup: the total speed up from using an ABEFM com-
pared to just Eulerian integration.

• Usability Metric: the percentage of time spent interpolating
with the ABEFM versus using Eulerian integration and the
percentage faces that an ABEFM can be used.

• Error: the average percent error and average displacement
distance of an FTLE computed with the ABEFM advected
particles with respect to the Eulerian advected particles. Dif-
ferences in FTLE are used as the error metric since one of
the leading motivations for ABEFMs use is the FTLE.

Results
Phase 1: Baseline Test Analysis

Phase 1 explores a single configuration, to set baseline ex-
pectations for the ABEFM method, and how the ABEFM method
compares with traditional Eulerian advection. Table 1 shows the
key results gathered in our study.

This baseline test demonstrates the viability of the ABEFM
approach. Although the precomputation is non-trivial, it is still
much smaller than the time to perform Eulerian advection. Ad-
ditionally, the errors incurred were minimal — With the average
less than 1% different from the Eulerian value. Figure 4 shows the
FTLE computed using both the ABEFM method and traditional
Eulerian advection showing that ABEFM version maintains all
visible features distinguishable in the original Eulerian version.

Phase 2: Varying Domain Block Layouts
This phase studies the effect on ABEFM calculations when

dividing the mesh into different numbers of blocks. Figure 5
shows tradeoffs in accuracy and speedup as the number of blocks
increases. It shows that with the lowest number of blocks, both
speedup and accuracy is quite good. By increasing the number of
blocks, our accuracy drops off slightly and our run time slowly
increases as the number of ABEFM jumps required to travel the
same distance increases.



Figure 4. The FTLE field computed using the ABEFM (left) and the Eulerian

advection technique (right).

This configuration confirms that fastest run times with the
Tokamak data set come from the block layouts with smaller num-
bers. In Figure 6 we look closer at block layouts based on the data
set symmetry. Due to the cyclic nature of the data in the x and y
dimensions we reduced the number of blocks in the z dimension
and varied only the x and y dimensions. Before these studies, our
initial intuition was that the closer the block jumps are the less
error there will be, but this was not true here. Having less block
jumps can also decreases the error as there are less interpolations
that are approximating the flows locations and/or there is a greater
percent of Eulerian updates. This displays a trade-off between the
number of times an error is introduced versus the size of the errors
introduced.

Phase 3: Integration Time
This phase looked at performance and accuracy as particles

were allowed to travel for longer and longer distances. Figures 7
and 8 show the results of this study. The take away from these
figures is that, as integration time increases, the speedups from
the ABEFM method become increasingly higher. While this is
expected, the study shows the extent of speedup that is possi-
ble. Speedup is ultimately limited by the number of faces along a
block that can be used for interpolation (and thus do not have to
fall back to Eulerian advection). The choice to fall back to Eule-

BlockLayoutBlockLayoutBlockLayoutBlockLayout
Speedup Avg Accuracy

10101010 30303030 50505050 70707070 90909090
0000

3333

6666

9999

12121212

98.75%98.75%98.75%98.75%

99.00%99.00%99.00%99.00%

99.25%99.25%99.25%99.25%

99.50%99.50%99.50%99.50%

99.75%99.75%99.75%99.75%

Blocks Per DimBlocks Per DimBlocks Per DimBlocks Per Dim

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

Figure 5. Results from Phase 2: The accuracy and speedup for the Toka-

mak data set with respect to varying block dimensions.

Specialized Block StudySpecialized Block StudySpecialized Block StudySpecialized Block Study
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

4.4.24.4.24.4.24.4.2 6.6.26.6.26.6.26.6.2 8.8.28.8.28.8.28.8.2 10.10.210.10.210.10.210.10.2
8.58.58.58.5

9.59.59.59.5

10.510.510.510.5

11.511.511.511.5

12.512.512.512.5

99.60%99.60%99.60%99.60%

99.66%99.66%99.66%99.66%

99.72%99.72%99.72%99.72%

99.78%99.78%99.78%99.78%

99.84%99.84%99.84%99.84%

Block Layout [x.y.z]Block Layout [x.y.z]Block Layout [x.y.z]Block Layout [x.y.z]

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

Figure 6. Results from Phase 2: The accuracy and speedup for the Toka-

mak data set with respect to varying block dimensions. This study held the z

component of the block layouts at its minimum value, 2, due to the symmetry

present in the problem. Taking advantage of this we see a much higher ac-

curacy and speedup, showing that we can fine tune the best block layout for

a given problem.

rian advection produces an Amdalh’s Law effect in our speedups
as we get to higher and higher values of integration time.

Integration Time StudyIntegration Time StudyIntegration Time StudyIntegration Time Study
Speedup Avg Accuracy

1111 5555 10101010 25252525 50505050
0000

3333

6666

9999

12121212

95.00%95.00%95.00%95.00%

96.25%96.25%96.25%96.25%

97.50%97.50%97.50%97.50%

98.75%98.75%98.75%98.75%

100.0…100.0…100.0…100.0…

Integration TimeIntegration TimeIntegration TimeIntegration Time

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

Figure 7. Results from Phase 4: Speedup and Accuracy for both the

ABEFM and Eulerian methods as a function of integration time.

Phase 4: Step Size
This phase varied the step size used for computing the Eule-

rian advection steps. This is used in building the BEFM and for
all advections using the traditional Eulerian method. Figures 9
and 10 show the results of this phase.

Step size affects both the Eulerian method and the Eulerian
portions of the ABEFM preprocessing phase. As step size de-
creases, the speedup increases, although it appears to be bound.

Phase 5: Varying the KnownParticleList
Phase 5 varied the density of the KnownParticleList. Figure

11 shows the affect on accuracy and performance when this factor
is varied. For this test, the average accuracy decreases more sig-
nificantly as we vary the density below the mesh resolution and



10101010 20202020 30303030 40404040 50505050
0000

1500150015001500

3000300030003000

4500450045004500

6000600060006000
BEFMBEFMBEFMBEFMBEFMBEFMBEFMBEFM EulerEulerEulerEulerEulerEulerEulerEuler

Integration TimeIntegration TimeIntegration TimeIntegration Time

T
im

e 
[s

ec
on

ds
]

T
im

e 
[s

ec
on

ds
]

T
im

e 
[s

ec
on

ds
]

T
im

e 
[s

ec
on

ds
]

Figure 8. Results from Phase 4: Runtime for both the ABEFM and Eulerian

methods as a function of integration time. Values of ABEFM runtime range

from 50.5 seconds to 462 seconds while Eulerian runtimes range from 180

seconds to 5,150 seconds

Step Size StudyStep Size StudyStep Size StudyStep Size Study
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

0.10.10.10.1 0.010.010.010.01 0.0010.0010.0010.001 0.00010.00010.00010.0001
0000

3333

6666

9999

12121212

92.00%92.00%92.00%92.00%

94.00%94.00%94.00%94.00%

96.00%96.00%96.00%96.00%

98.00%98.00%98.00%98.00%

100.0…100.0…100.0…100.0…

Step SizeStep SizeStep SizeStep Size

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

Figure 9. Results from Phase 5: Speedupand Accuracy for the ABEFM

method and Eulerian Method as a function of step size. Accuracy is cal-

cualted with respect to the Eulerian method running with the same step size.

increases only gradually as we vary above the density of the mesh
resolution. Additionally, the time to build the ABEFM increases
with the increase in density of this list though not significantly as
this range spanned a time of 0.33 seconds at 100 points per di-
mension and 4.33 seconds at 400 points per dimension, growing
steadily in between. Our increase in performance and therefore
our increasing speedups are accounted for by the larger number
of acceptable BEFM jumps that can be preformed at the higher
densities with less increase in performance as we reach the point
where we stop improving our mapping significantly.

Phase 6: Varying the Data Set
This study incorporated the remaining two data sets (TH and

Astro) to see how well they performed compared to the Tokamak
data set. The data sets were studied with a variety of blocks (i.e.,
the same study that was performed in Phase 2, but for these new
data sets). For reference, the Tokamak data set’s results for this
analysis were listed in Figure 5.

BEFMBEFMBEFMBEFM EulerEulerEulerEuler BuildTimeBuildTimeBuildTimeBuildTime

0.10.10.10.1 0.010.010.010.01 0.0010.0010.0010.001 0.00010.00010.00010.0001 0.000010.000010.000010.00001
10101010

1000100010001000

100000100000100000100000

0000

100100100100

200200200200

300300300300

400400400400

Step SizeStep SizeStep SizeStep Size

T
im

e 
[s

ec
on

ds
]

T
im

e 
[s

ec
on

ds
]

T
im

e 
[s

ec
on

ds
]

T
im

e 
[s

ec
on

ds
]

B
ui

ld
 T

im
e

B
ui

ld
 T

im
e

B
ui

ld
 T

im
e

B
ui

ld
 T

im
e

[s
ec

on
ds

]
[s

ec
on

ds
]

[s
ec

on
ds

]
[s

ec
on

ds
]

Figure 10. Results from Phase 5: runtimes and build time for the ABEFM

method and Eulerian Method as a function of step size.

KnownParticleListKnownParticleListKnownParticleListKnownParticleList
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

100100100100 150150150150 200200200200 250250250250 300300300300 350350350350 400400400400
0000

2.52.52.52.5

5555

7.57.57.57.5

10101010

99.75%99.75%99.75%99.75%

99.80%99.80%99.80%99.80%

99.85%99.85%99.85%99.85%

99.90%99.90%99.90%99.90%

99.95%99.95%99.95%99.95%

Num. Points Per Dim.Num. Points Per Dim.Num. Points Per Dim.Num. Points Per Dim.

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

Figure 11. Results from Phase 4: accuracy and speedup for varying the

density of the KnownParticleList.

In the Astro data set, there is significant mixing in the center
and headed straight out or straight in on the edges. The result
of varying block dimension can be seen in Figure 12. It shows
an optimal layout for run time at around 203 resolution of blocks.
The accuracy at this level is not significantly different then at other
block sizes. This data set shows significantly less performance
benefits as there are fewer blocks that have acceptable mappings
for the ABEFM approach.

Astro Block StudyAstro Block StudyAstro Block StudyAstro Block Study
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

20202020 40404040 60606060 80808080 100100100100
0.80.80.80.8

1111

1.21.21.21.2

1.41.41.41.4

1.61.61.61.6

95.20%95.20%95.20%95.20%

95.90%95.90%95.90%95.90%

96.60%96.60%96.60%96.60%

97.30%97.30%97.30%97.30%

98.00%98.00%98.00%98.00%

Blocks Per DimBlocks Per DimBlocks Per DimBlocks Per Dim

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

Figure 12. Results from Phase 5: accuracy and runtime for the astro data

set as a function of varying block dimensions.

The second data set, TH, captures the mixing of hot and cold
air currents. The vector field for this data set has significant mix-
ing throughout its volume. The results of varying block dimen-
sion can be seen in Figure 13. The optimal layout for runtime
is at around a block resolution of 203. For this problem we do
not see a significant affect on accuracy with a change in the block
layouts.

Thermal Hydrolic Block StudyThermal Hydrolic Block StudyThermal Hydrolic Block StudyThermal Hydrolic Block Study
SpeedupSpeedupSpeedupSpeedup Avg AccuracyAvg AccuracyAvg AccuracyAvg Accuracy

20202020 40404040 60606060 80808080 100100100100
0000

0.750.750.750.75

1.51.51.51.5

2.252.252.252.25

3333

96.00%96.00%96.00%96.00%

96.40%96.40%96.40%96.40%

96.80%96.80%96.80%96.80%

97.20%97.20%97.20%97.20%

97.60%97.60%97.60%97.60%

Blocks Per DimBlocks Per DimBlocks Per DimBlocks Per Dim

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

Figure 13. Results from Phase 5: accuracy and runtime for the TH data set

as a function of varying block dimensions.

Phase 7: BEFM vs. Euler
The ABEFM method has makes a tradeoff between accuracy

and performance. Such a tradeoff is possible already within the
traditional Eulerian approach, by increasing step size. In our final



phase, we compare our approach with increased step sizes using
the traditional approach.

Figure 14 shows significant drop off in accuracy with the tra-
ditional method faces as step size increases, compared to the rela-
tively small decrease in accuracy seen in the ABEFM method for
the same changes. Figure 5 additionally shows that the ABEFM
method reaches and maintains a higher speedup for all reasonable
choices of the step size. The performance gains of the ABEFM
method begin immediately as step size increases, while maintain-
ing a relatively accurate calculation. The Eulerian method how-
ever suffers from a immediate drop in accuracy while not see-
ing any performance benefits until much further from the baseline
step size. In the long run the Eulerian method is more affected
by the change in step size and so gains a significant speed im-
provement but by this point has given up a significant amount of
accuracy to do so.

ABEFM vs. Euler AccuracyABEFM vs. Euler AccuracyABEFM vs. Euler AccuracyABEFM vs. Euler Accuracy
ABEFM_AABEFM_AABEFM_AABEFM_A Euler_AEuler_AEuler_AEuler_A

0.0010.0010.0010.001 0.010.010.010.01 0.10.10.10.1
75.00%75.00%75.00%75.00%

82.50%82.50%82.50%82.50%

90.00%90.00%90.00%90.00%

97.50%97.50%97.50%97.50%

Step SizeStep SizeStep SizeStep Size

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

A
vg

 A
cc

ur
ac

y
A

vg
 A

cc
ur

ac
y

Figure 14. ABEFM and Euler accuracy at varying step sizes.

ABEFM vs. Euler SpeedupABEFM vs. Euler SpeedupABEFM vs. Euler SpeedupABEFM vs. Euler Speedup
ABEFM_SABEFM_SABEFM_SABEFM_S Euler_SEuler_SEuler_SEuler_S

0.0010.0010.0010.001 0.010.010.010.01 0.10.10.10.1
1111

10101010

100100100100

1000100010001000

10000100001000010000

Step SizeStep SizeStep SizeStep Size

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

S
pe

ed
up

Figure 15. ABEFM and Euler Speedups at varying step sizes. Speedups

are compared to the running time of the Eulerian problem with a step size of

0.0001.

Conclusion and Future Work
We introduced Block Exterior Flow Maps (BEFMs) and de-

signed an algorithm for accelerating flow calculations using Ap-
proximate BEFMs (ABEFMs). The approach has two significant
controlling parameters — block layout and density of known par-
ticles calculated in the preprocessing phase — and we studied the
impacts of these parameters for multiple particle advection work-
loads. We found that ABEFMs provided significant winnings for
extreme particle advection workloads, with one workload com-
pleting in 159 seconds where the traditional approach took 3,320
seconds, a speedup of more than 20X and with an average error
of less than 2%. Further, as particles are advected for longer and
longer distances, our technique has the possibility to show even
greater gains.

This technique was developed in response to needs within
the fusion community to advect for long periods around a toka-

mak. They are interested in the steady-state problem, so that is
all we considered in this initial work. While our technique is cur-
rently useful for stand-alone post hoc analysis, our future work
will be to insert the method into their simulation codes for in situ
processing. While our preprocessing times are currently large,
we believe they can be accelerated on the many-core architectures
now prevalent on top supercomputers. Further, our block-centric
approach lends itself well to distributed memory parallelism. In
another branch of future work, we would like to consider con-
structing the ABEFM adaptively, in an effort to minimize un-
needed calculations, and to increase resolution in complex flow
regions.

Acknowledgments
We thank Linda Sugiyama of MIT for providing the problem,

use case, and data for this research effort. We also thank Christoph
Garth for his insight into the problem and many ideas that aided
in developing a solution for this research.

References
[1] Sugiyama, Linda and Krishnan, Harinarayan, Finite Time Lyapunov

Exponents for magnetically confined plasmas, Bulletin of the Amer-
ican Physical Society, 57 (2012).

[2] Tamay M. Özgökmen and Andrew C. Poje and Paul F. Fischer and
Hank Childs and Harinarayan Krishnan and Christoph Garth and
Angelique C. Haza and Edward Ryan, On Multi-Scale Dispersion
Under the Influence of Surface Mixed Layer Instabilities, Ocean
Modeling, 56, 16-30 (oct 2012).

[3] Larry Pratt and Irina Rypina and Tamay Özgökmen and Peng Wang
and Hank Childs and Yana Bebieva, Chaotic Advection in a Steady,
Three-Dimensional, Ekman-Driven Eddy, Journal of Fluid Mechan-
ics, 738, 143-183 (jan 2014).

[4] Tony McLoughlin and Robert S. Laramee and Ronald Peikert and
Frits H. Post and Min Chen, Over Two Decades of Integration-
Based, Geometric Flow Visualization, EuroGraphics 2009 - State
of the Art Reports, April 2009, pg. 73

[5] Cabral, Brian and Leedom, Leith Casey, Imaging Vector Fields Us-
ing Line Integral Convolution, Proceedings of the 20th Annual Con-
ference on Computer Graphics and Interactive Techniques, New
York, NY, 2014.

[6] G. Haller, Distinguished material surfaces and coherent structures
in three-dimensional fluid flows, Physica D: Nonlinear Phenomena,
149, 248 - 277, (2001).

[7] Sanderson, Allen R and Chen, Guoning and Tricoche, Xavier and
Pugmire, David and Kruger, Scott and Breslau, Joshua, Analysis
of recurrent patterns in toroidal magnetic fields, Visualization and
Computer Graphics, IEEE Transactions on, 16, 1431-1440 (2010).

[8] David Pugmire and Tom Peterka and Christoph Garth, Parallel Inte-
gral Curves, High Performance Visualization—Enabling Extreme-
Scale Scientific Insight, 91-113 (oct 2012).

[9] David Pugmire and Hank Childs and Christoph Garth and Sean
Ahern and Gunther H. Weber, Scalable Computation of Stream-
lines on Very Large Datasets, Proceedings of the ACM/IEEE
Conference on High Performance Computing (SC09) (nov 2009).

[10] Boonthanome Nouanesengsy and Teng-Yok Lee and Han-Wei Shen,
Load-Balanced Parallel Streamline Generation on Large Scale Vec-
tor Fields, IEEE Transactions on Visualization and Computer
Graphics, 17, 1785-1794 (2011).

[11] Tom Peterka and Robert Ross and Boonthanome Nouanesengsey



and Teng-Yok Lee and Han-Wei Shen and Wesley Kendall and Jian
Huang, A Study of Parallel Particle Tracing for Steady-State and
Time-Varying Flow Fields, Proceedings of IPDPS 11, Anchorage
AK (2011).

[12] Jobard, B. and Erlebacher, G. and Hussaini, M.Y., Lagrangian-
Eulerian advection of noise and dye textures for unsteady flow visu-
alization, IEEE Transactions on Visualization and Computer Graph-
ics, 8, 211-222 (2002).

[13] Salzbrunn, Tobias and Garth, Christoph and Scheuermann, Gerik
and Meyer, Joerg, Pathline predicates and unsteady flow structures,
The Visual Computer, 24, 1039-1051 (2008).

[14] Salzbrunn, T. and Scheuermann, G., Streamline Predicates, IEEE
Transactions on Visualization and Computer Graphics, 12, 1601-
1612 (2006).

[15] Hlawatsch, M. and Sadlo, F. and Weiskopf, D., Hierarchical Line In-
tegration, Visualization and Computer Graphics, IEEE Transactions
on, 17, 1148-1163 (2011).

[16] Alexy Agranovsky and David Camp and Christoph Garth and E.
Wes Bethel and Kenneth I. Joy and Hank Childs, Improved Post
Hoc Flow Analysis Via Lagrangian Representations, Proceedings
of the IEEE Symposium on Large Data Visualization and Analysis
(LDAV), 67-75 (nov 2014).

[17] Chandler, Jennifer and Obermaier, Henriette and Joy, Kenneth and
others, Interpolation-based pathline tracing in particle-based flow
visualization, IEEE Transactions on Visualization and Computer
Graphics, 21, 68-80 (2015).

[18] Brunton, Steven and Rowley, Clarence, A method for fast compu-
tation of FTLE fields, APS Division of Fluid Dynamics Meeting
Abstracts, 1, (2008).

[19] Bhatia, Harsh and Jadhav, Shreeraj and Bremer, P and Chen, Guon-
ing and Levine, Joshua A and Nonato, Luis Gustavo and Pascucci,
Valerio, Flow visualization with quantified spatial and temporal er-
rors using edge maps, IEEE Transactions on Visualization and Com-
puter Graphics, 18, 1383–1396 (2012).

Author Biography
Ryan Bleile received his BS in Computer Science and Physics from

the University of the Pacific (2013) and is a PhD student in Computer Sci-
ence at the University of Oregon, Eugene. Ryan is currently a Lawrence
Graduate Scholar at Lawrence Livermore National Laboratory working
on research in the field of Monte Carlo Particle Transport for next gener-
ation architectures.


