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Abstract

Power is becoming an increasingly scarce resource on the next generation of supercomputers, and should be used wisely to
improve overall performance. One strategy for improving power usage is hardware overprovisioning, i.e., systems with more nodes
than can be run at full power simultaneously without exceeding the system-wide power limit. With this study, we compare two
strategies for allocating power throughout an overprovisioned system — adaptation and prediction — in the context of visualization
workloads. While adaptation has been suitable for workloads with more regular execution behaviors, it may not be as suitable on
visualization workloads, since they can have variable execution behaviors. Our study considers a total of 104 experiments, which
vary the rendering workload, power budget, allocation strategy, and node concurrency, including tests processing data sets up to 1
billion cells and using up to 18,432 cores across 512 nodes. Overall, we find that prediction is a superior strategy for this use case,
improving performance up to 27% compared to an adaptive strategy.

Keywords: high performance computing, parallel systems, power management, scientific visualization, power-constrained
computing, runtime systems

1. Introduction

Power has become one of the most important considerations
for leading-edge supercomputers, as high power usage can be
very expensive. The last decade has seen significant research in
how to achieve increases in FLOPS without requiring commen-
surate increases in power. One significant innovation for this
challenge has been utilizing many-core accelerators, in particu-
lar GPUs, since they offer more FLOPS per Watt. While the ef-
ficiency increases from these hardware architectures have been
significant, additional research has introduced complementary
approaches that improve FLOPS per Watt ratios even further.

With this research, we consider the overprovisioning ap-
proach for improving power utilization on HPC systems [1, 2,
3, 4]. With a traditional (non-overprovisioning) approach, all
nodes in the supercomputer are able to consume their theoreti-
cal maximum power draw simultaneously. However, very few
applications are capable of using this amount of power, mean-
ing this traditional approach not only wastes power capacity, but
also increases trapped capacity [5]. An overprovisioned system
addresses this problem by adding more compute nodes, while
enforcing a strict system power budget.

Overprovisioning works by capping the power individual
nodes can use, in order to ensure that the total power usage
never exceeds the limit. A baseline approach for allocating
power is to apply a uniform power cap across all compute nodes.
However, uniform power capping is a sub-optimal strategy since
the runtime behaviors of distributed applications can be highly
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variable across nodes. The nodes assigned the largest amount
of work will become a bottleneck and limit the overall perfor-
mance of the application. On the other hand, nodes that are
assigned the smallest amount of work finish quickly and sit idle
until the other nodes have finished executing. A better strategy
is to actively assign power to where it will result in the most
benefit. This is the direction we pursue with this study. In the
ideal case, the power assignments will enable all nodes to finish
their execution at the same time, despite varying workloads.

Many research efforts in assigning power on supercomput-
ers have focused on the adaptive approach. Adaptive power
management schemes actively monitor the performance of the
application at regular and frequent intervals and redistribute the
power across the nodes based on current progress. In practice,
this approach commonly focuses on the cycles of an HPC work-
load running across the supercomputer. At the end of each cy-
cle, the central manager divides the power based on outcomes
from the cycle that just occurred. This approach works well for
computational workloads that are similar from cycle to cycle,
meaning an assignment of power based on the previous cycle is
often well-suited for the next cycle.

With our previous work on the PaViz [6] system, we in-
troduced an alternate strategy for power assignment: predic-
tion. Our system considered scientific visualization workloads,
where the work from cycle to cycle is more variable. Our pre-
dictive approach used a performance model to assess how much
work would need to be done based on the application configu-
ration and input parameters, and then adapted power based on
the results of the model. Our study focused on different assign-
ment strategies, and showed that many of them were superior to
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uniformly distributing the power. That said, our previous study
on PaViz did not compare with the adaptive approach.

The relative benefits of adaptation and prediction are not
well understood. The predictive approach requires additional
constructs to perform its predictions (i.e., performance models),
where the adaptive approach does not. From this perspective,
the adaptive approach is superior. However, our hypothesis is
that the predictive approach will offer superior performance for
variable workloads (workloads whose execution time vary from
task to task and node to node), specifically the variable work-
loads from scientific visualization. The purpose of our current
study is to evaluate whether this hypothesis is true, and the ex-
tent to which prediction can outperform adaptation. To evaluate
our hypothesis, we leverage two existing power-aware runtime
systems, GEOPM [7, 8] and PaViz [6], which make use of the
adaptive and predictive approaches. Finally, we believe the re-
sults of this evaluation is important for the HPC community
because of the rise of in situ processing — visualization is now
commonly running at scale on supercomputers [9, 10, 11].

2. Related Work

Our study compares adaptive and predictive power manage-
ment in the context of a visualization workload. In this section,
we survey motivation and research on power management in
HPC (Section 2.1) and important aspects of visualization work-
loads for HPC systems (Section 2.2).

2.1. Power

This subsection discusses related research in HPC power
management (Section 2.1.1), as well as power management for
visualization workloads (Section 2.1.2).

2.1.1. Power in HPC
Energy use has been a long-term challenge in HPC. Early

solutions used dynamic frequency and voltage scaling (DVFS)
to make tradeoff decisions between performance and energy
savings at varying granularities [12, 13, 14]. The common goal
of these approaches was to minimize energy usage by incurring
a small performance degradation.

More recent research efforts center on enforcing power caps
via vendor-specific technologies. Some of these technologies
include Intel’s Running Average Power Limit [15], AMD’s Ap-
plication Power Management [16], IBM EnergyScale [17], and
NVIDIA’s NVML [18]. A runtime system incorporating these
technologies, Conductor [19], used initial iterations to deter-
mine an ideal schedule of per-node power caps, thread concur-
rency, and per-core operating frequency. Another runtime sys-
tem incorporating these technologies is GEOPM [7, 8], which
is a scalable production-grade framework for optimizing per-
formance under resource constraints. GEOPM supports man-
ual application markup as well as automated phase detection
to dynamically reallocate power. Its architecture supports mul-
tiple plugins, but currently it does not support any particular
policy targeted at visualization workloads. We use GEOPM
in our experiments to evaluate an adaptive power management

strategy, and discuss the specifics of GEOPM in more depth in
Section 3.1.2. Finally, while we focus on GEOPM in our study,
there have been other significant efforts for the adaptive power
management strategy [12, 13, 19].

There have been several research efforts that develop and
make use of offline models to save energy and power with min-
imal performance degradation [14, 20, 21, 22, 23, 24]. Many of
these offline models were based on behavior exhibited by tradi-
tional HPC benchmarks, which tend to have regular computa-
tion patterns. PaViz [6] used a performance model to do predic-
tive power assignments for visualization workloads, which are
highly irregular. PaViz used prediction to improve performance
of the visualization workloads under a limited power budget.
This runtime system is also used in our experiments to evalu-
ate a predictive power management strategy, and is discussed in
further depth in Section 3.2.2.

There has also been previous work on overprovisioning in
a data center to optimize throughput. Studies have shown that
consolidating workloads on fewer servers in a data center can
be more power-efficient [25, 26, 27, 28]. However, consolida-
tion is not a strategy that is used in the HPC domain. That is
to say, nodes in an HPC system are not time shared between
users (i.e., multiple users do not run on the same nodes simulta-
neously) due to the large resource requirements of typical HPC
workloads, such as scientific simulations. Furthermore, saving
power and energy by turning on and off nodes is another strat-
egy not common in HPC. HPC nodes are typically turned on
and off only at system reboot, and are otherwise kept online to
maximize throughput of the system.

2.1.2. Optimizing Power Usage for Visualization Workloads
Research efforts focusing on power usage with respect to

visualization workloads are minimal. Some research efforts
explored the power profiles for an in situ workflow, particu-
larly with respect to how data is moved through the hierar-
chy [29, 30]. Separate research focused on how visualization
workload configurations impact overall power usage. Labasan
et al. [31] provided an initial exploration of the impacts of dif-
ferent configuration options on power and performance within
a node. Specifically, this work looked at how different param-
eters impact the performance for an isosurfacing workload as
the processor clock frequency was gradually reduced. A related
work by Gamell et al. [32] looked at the power and performance
tradeoffs of various parameters for visualization workloads at
larger node counts.

2.2. Visualization

This subsection is divided into two parts: why visualization
is an important workload for HPC systems (Section 2.2.1) and
why visualization workloads are highly variable across cycles
and processes (Section 2.2.2).

2.2.1. Visualization in HPC
Upward trends in supercomputing are mandating that visu-

alization routines be executed at scale, making it important to
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(a) An isosurface of the velocity field at sim-
ulation timestep tn

(b) Isosurface at tn colored by MPI domain (c) MPI domain decomposition

(d) An isosurface of the velocity field at sim-
ulation timestep tn+1

(e) Isosurface at tn+1 colored by MPI domain

Figure 1: An illustration of the level of imbalance introduced by visualization between simulation cycles and across ranks. The rightmost figure 1(c) shows the
domain decomposition of the mesh across 512 MPI processes. The mesh has been broken down into multiple pieces of equal size and mapped to individual MPI
processes, denoted by the different colors. The left figures 1(a) and 1(d) show the resulting isosurfaces created by applying a contour to the velocity field of the
CloverLeaf hydrodynamics simulation at two different timesteps. The middle figures 1(b) and 1(e) show the domain decomposition of the isosurface at these two
simulation timesteps. At the timestep shown in figure 1(b), the resulting isosurface only contains data on 317 of the 512 MPI processes (that is, 38% of the MPI
processes contain no data, and have no work to do). The isosurface at timestep tn+1 has an even larger percentage of MPI processes with no data.

optimize their power and performance. Traditionally, visualiza-
tion has been done as a post-hoc process. With post-hoc pro-
cessing, the simulation runs to completion, periodically writing
its data to disk. A visualization program, such as VisIt [33] or
ParaView [34], ingests the data from disk and performs various
analyses. However, post-hoc processing is becoming increas-
ingly less viable: as FLOPS increase, simulation codes pro-
duce more and more data, and yet I/O bandwidth is not increas-
ing commensurately [11, 35]. As a result, post-hoc processing
has become too slow in many cases, as performance becomes
dominated by slow I/O. To avoid these costs, the visualization
community has moved towards a new paradigm: in situ pro-
cessing [9, 10]. In situ processing entails running visualization
while the simulation generates data, and often occurs using the
same hardware resources as the simulation code. In all, visual-
ization regularly takes as much as 10% of the total cycles for a
computational simulation.

Visualization occurs as a set of transformations (i.e., pipeline).
Initially, the input to the pipeline is the simulation’s entire dataset,
so the data is evenly distributed across the ranks. During the

analysis, the visualization operator is applied to extract a par-
ticular region of the data that is of interest. All subsequent visu-
alization operations work on the output data, which is a smaller
subset of the simulation’s full dataset. Since the visualization
operators have extracted a smaller subset of the data, there is
likely a bigger imbalance of ranks with data and ranks with no
data. In this study, we focus on rendering, since it is a critical
component of the visualization pipeline, however, other visual-
ization operations would run into the same imbalance.

While visualization algorithms are varied and diverse, they
all conclude with a “rendering” phase where computer graphics
algorithms are applied to transform data (typically surfaces or
volumes) into images. Thus, rendering is a critical component
of visualization. Further, in situ visualization is increasingly
considering a model with many, many renderings. Since in situ
visualization is typically run with no human-in-the-loop, the
idea is to render from many camera locations, in hopes of get-
ting some that will interest a domain scientist. This paradigm
is the main idea behind the popular Cinema project [36, 37]. In
this scenario, rendering goes from being a critical aspect in per-
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formance to the dominant aspect in performance. For example,
consider the use case of contouring (also known as isosurfac-
ing), where surfaces are extracted from the mesh at all locations
that match some isovalue. While calculating a contour typically
takes about the same amount of time as rendering it, rendering
the contour hundreds of times from hundreds of camera posi-
tions will consume most of the overall visualization time.

There are different techniques for rendering. In this study,
we use ray tracing, which is good for supercomputing use cases,
since it performs well when there is much more data than pixels
and for repeated rendering (i.e., Cinema). With ray tracing, rays
are traced from the camera location through pixels and intersect
with the geometry to render. The process of tracing rays is em-
barrassingly parallel, although scaling the algorithm to render
millions of pixels is challenging. Despite these challenges, pre-
vious works have made good progress on achieving parallel ray
tracing [38, 39].

2.2.2. Visualization Workloads and Their Irregularity
Rendering is different from traditional simulation workloads.

Simulations typically solve differential equations on a spatial
discretization (i.e., a mesh), and number of operations a simu-
lation executes is tied to the number of elements and the com-
plexity of the modeled physics. Rendering performance, on
the other hand, depends on the amount of geometry to render,
the relationship between that geometry and the camera posi-
tion, and the size of the output image. The first two factors
lead to highly variable performance and are described later in
this subsection. That said, the imbalance for rendering work-
loads presents systems such as ours with opportunities to shift
resources (such as power) to MPI ranks with significantly more
work than others, while taking resources away from ranks with
less work.

Figure 1 illustrates the imbalance that can occur across MPI
tasks in terms of data size (e.g., number of triangles to ren-
der) and across time (e.g., simulation cycles). In this example,
the original mesh data is distributed across 512 MPI processes.
After contouring the velocity field at time tn, only 317 (62%)
of the processes contain the isosurface, leaving 195 (38%) of
the processes with no data. As the simulation progresses and
the wavefront propagates, the velocity field changes, which will
cause the amount of geometry in the isosurface to change. More
importantly, the location of this geometry will change as well,
causing the distribution between the MPI processes to change.

Rendering not only inherits the input imbalance (e.g., the
contour example in the previous paragraph), but adds additional
imbalance depending on the placement of the camera. Only ge-
ometry that is in front of the camera is actually rendered. Build-
ing on the previous example, one possible camera placement
leaves only half of the remaining 62% of the data within the
view of the camera. Consequently, rendering can only utilize
31% of the computational resources without reorganizing the
data.

Finally, while data redistribution would be one possible so-
lution, in situ visualization operates under more constraints (i.e.,
time and memory), and so this solution is not pursued in prac-
tice. For this reason, we do not consider redistribution as a

comparator for our approach.

2.3. Our Study in Relation to Previous Related Works

Overall, our study continues the research direction of over-
provisioning and adapting power to where it will do the most
good. The common technique for decision making is the adap-
tive approach. Our previous work on PaViz considered a dif-
ferent decision making technique, which is the predictive ap-
proach. However, this previous work did not evaluation the
adaptive approach, leaving open questions about how the adap-
tive and predictive approaches compare. This study aims to
address this gap. It is, to our knowledge, the first ever to com-
pare the adaptive and predictive approaches in the context of
overprovisioning and power adaptation.

3. Power-Aware Scheduling Strategies

The power limitations of future supercomputers will require
allocating the power wisely in order to optimize performance.
One solution for optimizing the system performance and power
utilization is overprovisioning. In an overprovisioned system,
more compute nodes are added to the system, but their individ-
ual power usage has been capped so as not to exceed the system
power budget. A baseline approach is to apply a uniform power
cap across all nodes. However, this strategy is not ideal for a
load imbalanced workload, like visualization, since the perfor-
mance is determined by the node with the most amount of work.
A better strategy is to schedule power to where it will do the
most good (e.g., the critical path), speeding up the nodes that
are further behind and slowing down the nodes that are further
ahead.

One key requirement for power scheduling to be successful
is to redistribute the power without exceeding the system-wide
power limit. Exceeding the given power limit can cause elec-
trical issues at the system level, which may result in failures
or breakage. The following subsections detail the adaptive and
predictive power scheduling strategies evaluated in this paper.
Additionally, we provide an overview of two runtime systems—
GEOPM and PaViz—that apply these power scheduling strate-
gies in practice.

3.1. Adaptive Power Management

This subsection provides an overview of adaptive power
management (Section 3.1.1), as well as a description of GEOPM
(Section 3.1.2).

3.1.1. Overview of Adaptive Power Management
Adaptive power management strategies monitor the perfor-

mance of the application at frequent intervals and redistribute
the power across the nodes. At each interval, the adaptive strat-
egy gives more power to nodes that are further ahead in com-
pleting their assigned work, while removing power from nodes
that are falling behind. With this approach, power allocations
to each node are non-uniform, and are scaled by the amount of
load imbalance in the application.
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One way of monitoring real-time performance (or progress)
of the application is to measure the loop execution time on each
node. The loop execution times on each node are compared to
identify critical path nodes and determine how to distribute the
power to correct the imbalance. An adaptive strategy will repeat
this process of monitoring and redistributing the power until the
application has finished executing. Because adaptive strategies
are dynamically reacting to the application performance, it may
take several iterations of the application for the global power
decisions to converge.

Finally, interval frequency is an important consideration.
The frequency at which these decisions occur is configurable,
impacted by the amount of overhead and the granularity of mon-
itoring to catch changes in behavior. For applications that are
fairly regular in their execution behaviors, monitoring less fre-
quently is well-suited, since it is likely that behaviors will stay
the same throughout. On the other hand, for applications that
are highly irregular, there may be swings in the power manage-
ment decisions, leading to additional performance left on the
table. There are also limits to how short the interval can be.
In some cases, the hardware can take as much as one second
to enforce the desired power limit. In response, the interval fre-
quency must be greater than the frequency at which the underly-
ing hardware knob can enforce the power limit, so the workload
has time to react the new power limit.

3.1.2. Adaptive Runtime System: GEOPM
GEOPM [7, 8] is an open-source framework for power and

energy management on future HPC systems. It is a collabora-
tive project, started and supported by Intel. GEOPM is designed
to support Intel platforms, but can be extended to support other
hardware platforms providing power management capabilities,
such as IBM and NVIDIA. GEOPM is also designed to sup-
port the different power and energy management needs across
many supercomputing facilities through an agent plugin archi-
tecture. For example, included in GEOPM are two different
agents known as the Power Balancer agent (used in this study)
and the Energy Efficient agent. While the Power Balancer agent
shifts power across nodes through power capping, the Energy
Efficient agent optimizes for energy or performance by adjust-
ing CPU frequencies.

The GEOPM runtime system analyzes execution behaviors
within the application, then optimizes performance by coordi-
nating decisions to hardware or software control knobs across
compute nodes. Some examples of control knobs are per-core
clock frequencies and processor-level power limits. By tuning
control knobs during an application’s execution, GEOPM may
improve performance despite workload imbalances and manu-
facturing variations across nodes.

For global coordination of power decisions, GEOPM’s run-
time system uses a hierarchical tree to gather information about
the application’s performance and redistributes power across
nodes. This hierarchical design allows GEOPM to be perfor-
mant at high levels of concurrency. There is a controller run-
ning on a single thread per node to handle different roles and
tasks of the GEOPM runtime. One of the controllers is the root
node, and is tasked with aggregating the performance per-node,

and passing back the worst performance. Each node reduces
its power limit until its performance matches that of the worst
node, passing back its extra unneeded power. This pool of un-
used power is redistributed across the nodes to improve overall
performance.

3.2. Predictive Power Management

This subsection is divided into two parts: an overview of
predictive power management (Section 3.2.1) and a description
of PaViz (Section 3.2.2).

3.2.1. Overview of Predictive Power Management
Predictive power management strategies use performance

models to estimate the execution time of each node based on the
application configuration. Depending on the application, creat-
ing an accurate performance model can be a large challenge,
and in some cases, may not be possible.

Using a mathematical formula, the performance estimates
for each node are translated into a power assignment to ac-
count for the imbalance at each visualization cycle. Nodes with
lower performance estimates (when compared to the estimates
of other nodes) will have lower power assignments, since they
will likely finish quickly and sit idle. This enables nodes with
higher performance estimates to be assigned more power, since
they have more work to finish and are on the critical path.

PaViz evaluated multiple formulas for translating the per-
formance estimates into a power assignment [6]. The best per-
forming formula used the difference from the fastest predicted
execution time to determine the power allocation. Using the
per-node predicted execution times, the power assignment is
computed as follows:

pownode min +
|renmin − reni|∑n−1

i=0 |renmin − reni|
∗ powavail, (1)

where pownode min is the hardware-specified minimum node power
needed for reliability, renmin is the global minimum predicted
execution time among all n MPI tasks, reni is the predicted
execution time for rank i, and powavail is the available power
to allocate to the job. Nodes that are furthest away from the
minimum (i.e., highest execution time, most work to be done)
are allocated a large amount of power, resulting in the highest
speedups in a balanced and imbalanced workload configuration,
since the overall performance is only as fast as the slowest pro-
cessor.

3.2.2. Predictive Runtime System: PaViz
PaViz [6] uses prediction to dynamically allocate power across

nodes in a job. The predictions are based on a rendering perfor-
mance model (described later in this section) that is integrated
into the PaViz runtime system. If the performance model pre-
dicts a long rendering time due to a high volume of work, then
PaViz allocates more power to that node. Alternatively, if the
performance model predicts a short rendering time due to less
work being assigned, then PaViz allocates less power to that
node.
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(a) Rendering Workload A (b) Rendering Workload B (c) Rendering Workload C (d) Rendering Workload D

Figure 2: Ray traced images of the CloverLeaf hydrodynamics mini-application at the 200th simulation cycle for each rendering workload. Each figure shows a
contour of the pressure at various values after it has expanded from the position where the energy was initially deposited.
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(a) Rendering Workload A
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(b) Rendering Workload B
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(c) Rendering Workload C
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(d) Rendering Workload D

Figure 3: A small example highlighting the variation present in the rendering workload. For each rank, we aggregate the time spent rendering across all visualization
cycles. If the workload was perfectly balanced, each rank would have the same execution time. However, rendering is a highly imbalanced workload, so there are
significant differences in execution time across ranks. We aim to address the imbalance by shifting power away from the ranks with low execution times, and shifting
power to the ranks with high execution times.

With respect to the rendering performance model, PaViz in-
corporates some existing models by Larsen et al. [40]. These
models apply to different scientific visualization rendering work-
loads and are semi-empirical in nature, meaning that they are
based both on algorithmic characteristics and observed execu-
tion behaviors on specific hardware architectures. For our study,
we followed their guidance on producing a model appropriate
for our hardware. Finally, the models take as inputs the camera
position and the data set size to make predictions, and an exten-
sive validation study showed the models to be highly accurate
even when considering these two factors alone.

4. Experimental Overview

The following subsections detail the experimental setup and
methodology.

4.1. Study Parameters

This study was designed to evaluate two power scheduling
techniques (adaptive and predictive) under a variety of render-
ing workloads. We varied the following parameters in order to
explore a representative set of configurations:

• Job Power Budgets (9 options)

• Rendering Workloads (4 options)

• MPI Tasks (5 options)

• Power Scheduling Strategies (2 options)

We ran the cross product of the aforementioned parameters
totaling 360 tests configurations. For brevity, we report the re-
sults for 104 tests in this paper to highlight the key findings.
The results are reported as an average over many trials to ac-
count for performance variability. Each of the parameters are
discussed in the following subsections.

4.1.1. Job Power Budgets
Both GEOPM and PaViz assume the same specified job

power budget. To simplify this study, both runtime systems
ignore the power usage of the DRAM and other components
within the node (e.g., accelerators, network interface controllers),
and are only concerned with the package power (this includes
core and uncore). A more advanced approach is to use the node-
level power budget to steer power across the components within
the node (not just the package). However, this approach is
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Power Cap
(Per-Package) % TDP

120W 100%
100W 83.3%
90W 75%
80W 66.7%
70W 58.3%
68W 56.7%
60W 50%
50W 41.7%
40W 33.3%

Table 1: Enumerating the package-level power budgets that can be requested
by each runtime system. The range of available power budgets is specified
by the hardware vendor. In this case, the package (core and uncore) has a
maximum power draw of 120W (thermal design point or TDP) and a minimum
power draw of 40W (for reliability purposes). Scaling the power budgets by the
number of nodes will determine the total job power budget. The right column
shows the percentage of each power cap out of TDP. The highest power cap of
120W is 100% of TDP. Lower percentages indicate a more severe power cap.

highly complex for two reasons. First, the DRAM power mea-
surements are not well validated and are unstable [41], making
it difficult to accurately determine total node power budgets.
Second, other components within the node may have power
measurements, but at different time scales and with different
error bars, making it even more difficult to reach a precise node
power usage. A more holistic node-level power budget is ac-
tively being defined in the community.

In order for an overprovisioned system to be successful,
the system power budget must never be exceeded, otherwise
leading to catastrophic failures considering these systems may
use several MegaWatts of power. Within a supercomputer, job
schedulers are being augmented to shift individual job power
budgets throughout the system, while runtime systems can ad-
just power of its compute nodes within a job. The power cap im-
pacts the speed (i.e., operating frequency) of the processor. En-
forcing a lower power cap will slow down the process running
on that processor, while a higher power cap will speed up the
process’ execution. The goal of applying different power caps
to different processes is such that all processes finish simulta-
neously, reducing idle time spent wasting power. For those pro-
cessors with a wide range of available power caps (such as the
one used in this study), this increases the granularity at which
performance improvements can be made. A narrower range
of power caps will minimize the potential benefits of this ap-
proach.

Table 1 shows the range of available power caps as specified
by the processor vendor. When we identify the power caps in
Section 5, we are referring to the package-level power caps. At
the highest power cap of 120W, there is essentially unlimited
power available for the application, since the application likely
does not consume 120W. That is to say, the application’s per-
formance is not impacted by the 120W power cap, and should
have the fastest runtime. We evaluate the performance at this
power cap, so we can evaluate the performance of our runtime
systems to the optimum performance of the application.

Wkld A B C D
Data Set 2403 1903 1283 3203

Isoval 0.4 0.6 0.9 1, 3.4, 5.2
Res 28802 10802 19202 20482

Phi 17 18 17 17
Theta 10 9 10 10
IFact 1.32 1.26 1.18 1.56

Table 2: Selected rendering workloads for this study. The data set size is per
rank. The total data set size is derived by multiplying this value by the cube
root of the number of ranks. The number of images rendered per cycle is deter-
mined by Phi×Theta. The simulation ran for a total of 300 cycles. Visualization
occurred every 50 cycles for a total of 6 visualization cycles. IFact is a quan-
titative representation of the work imbalance, derived by taking the maximum
predicted render time over the median of all predicted times.

4.1.2. Rendering Workload
We selected four rendering workloads that varied in the size

of the data set, the isovalues used for the contour, the number of
images generated per visualization cycle, and the image resolu-
tion. The rendering workloads and their parameters are listed
in Table 2 and an image of the resulting contour is shown in
Figure 2. These configurations span commonly used values for
each parameter, and each workload exhibits a different amount
of work imbalance. Figure 3 shows the imbalance in the total
rendering times across all visualization cycles per rank.

The amount of time spent doing rendering can vary greatly
depending on different user-specified parameters, such as the
camera position and the image resolution. Typically, rendering
is a very quick operation and is a small fraction of the total
time doing visualization operations. However, with increas-
ing I/O limitations of upcoming supercomputers, we are see-
ing new methods that reduce the amount of data saved to disk.
One strategy for mitigating the I/O gap is rendering hundreds
to thousands of images per timestep of the resulting analysis
(e.g., Cinema [36]) and save them to disk, which is significantly
smaller than the original data set.

Our rendering infrastructure used Cinema-based in situ [37,
36], where an interactive database is generated by taking many
pictures from various camera positions around the data set. In
this paradigm, the cost of rendering can become a significantly
large percentage of the overall visualization and analysis pipeline.
Selecting the number of images to be generated during each
visualization cycle is another user-specified parameter that can
greatly impact overall execution time. Thus, understanding how
to improve the performance of this operation is critical.

4.1.3. MPI Tasks
To study the scaling behaviors of adaptive and predictive

strategies at higher concurrencies, we varied the number of MPI
tasks. Experimenting with our framework at scale impacts the
level of work imbalance in the simulation. The adaptive and
predictive strategies improve performance by exploiting this im-
balance. The intuition is that at higher concurrency, there is a
bigger work imbalance per node because there are more ranks
across which the input data can be decomposed, and likely more
and more ranks will be assigned no data. For those ranks with
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no work to do, we can shift power away from those ranks to
those ranks on the critical path.

We used a single MPI rank per node (OpenMP threaded) to
maximize the node memory allocation. The number of ranks
used lends itself to a constant data set size per rank. The num-
ber of ranks used were 8, 125, 216, 343, and 512, correspond-
ing to 288, 4,500, 7,776, 12,348, and 18,432 cores, respectively.
These numbers are all powers of 3, which allowed the Clover-
leaf simulation code to evenly decompose the computational
mesh across MPI ranks. While Cloverleaf can run with pow-
ers of 2, its decomposition of the computational mesh varies
based on concurrency, which has the potential to introduce per-
formance quirks across concurrency. Powers of 3 decompose
uniformly across concurrency, avoiding these quirks.

Finally, many of our experiments used only 8 MPI tasks,
which is smaller than a typical in situ use case. One benefit of
using 8 MPI tasks was a cost savings (compute cycles incurred),
but our main motivation was to illustrate underlying phenom-
ena in a simpler environment before moving up to higher con-
currencies. Further, we feel these 8 node runs could still be
valuable, in particular in the context of ensembles.

4.1.4. Power Scheduling Strategies
To evaluate the adaptive power management strategy, we

used the Power Balancer agent included in GEOPM for our
tests. For this study, we used GEOPM v1.0.0. A more detailed
description of GEOPM is in Section 3.1.2.

To evaluate the predictive strategy, we used PaViz, which
includes multiple algorithms for assigning power based on per-
formance predictions [6]. Specifically, we used the Min algo-
rithm, since it resulted in the best performance of all the algo-
rithms explored. See Section 3.2.2 for a more detailed descrip-
tion of PaViz.

4.2. Software Infrastructure

We used VTK-m v1.2.0 and Ascent v0.4.0 to provide visu-
alization and analysis capabilities. VTK-m [42] is a library of
scientific visualization algorithms optimized for shared-memory
parallelism. The algorithms use data parallel primitives to pro-
vide portable performance across many different hardware ar-
chitectures. VTK-m is an extension of the Visualization
ToolKit [43], a library of visualization algorithms that serves as
the basis for VisIt [33] and ParaView [34].

Ascent is a flyweight in situ visualization and analysis run-
time system for scientific simulations. It aims for portable per-
formance on future many-core CPU and GPU architectures [44].
It is designed to support other in situ visualization tools, such
as VisIt’s LibSim [45] and ParaView’s Catalyst [46]. Ascent
depends on VTK-m for inter-node parallelism and OpenMP
for intra-node parallelism. Ascent’s framework includes three
proxy simulations — Kripke [47], Lulesh [48], and Clover-
Leaf [49, 50]. For the scientific simulation in this study, we
used CloverLeaf, a hydrodynamics proxy application on a three-
dimensional structured grid.

4.3. Hardware Architecture
We conduct our experiments on the Quartz Intel E5-2695

(Broadwell) supercomputer at Lawrence Livermore National
Laboratory, running the current major version of TOSS [51],
TOSS 3. Each node contains two hyperthreaded processors and
18 physical cores per processor. The base clock frequency is
2.10 GHz and the processor is rated at 120W TDP.

The msr-safe [52] kernel module enables power monitoring
and control from user space. We enforce a package-level power
limit using Intel’s Running Average Power Limit (RAPL) inter-
faces [15], which impacts both the core and the uncore. Under a
more severe power limit, the package (i.e., processor) operates
at a lower CPU frequency to guarantee that the average power
usage does not exceed the specified limit. For this particular
architecture, we can enforce a package-level power cap ranging
from 120W down to 40W.

GEOPM Package Power Decisions

N
C

0 1 2 3 4 5

0 60W 60W 60W 55W 45W 43W
1 60W 60W 60W 54W 45W 49W
2 60W 60W 60W 47W 52W 46W
3 60W 60W 60W 69W 76W 81W
4 60W 60W 60W 61W 63W 65W
5 60W 60W 60W 55W 47W 51W
6 60W 60W 60W 54W 53W 53W
7 60W 60W 60W 61W 55W 57W

PaViz Package Power Decisions

N
C

0 1 2 3 4 5

0 70W 70W 69W 63W 60W 58W
1 58W 58W 59W 58W 59W 61W
2 52W 50W 48W 40W 40W 40W
3 76W 77W 75W 70W 66W 65W
4 58W 58W 62W 66W 67W 65W
5 61W 62W 62W 58W 60W 65W
6 40W 40W 40W 58W 61W 60W
7 65W 65W 66W 68W 67W 66W

Table 3: Comparing package power limits determined by GEOPM and PaViz
for Rendering Workload A on 8 nodes. For each visualization cycle (denoted
by C), the runtime uses the power scheduler to make decisions on what the
power limits should be for each node (denoted by N). The job power limit
assumes a package-level power cap of 60W. We see that as the visualization cy-
cle increases, the adaptive scheduler takes a couple cycles to start adjusting the
power limits relative to how the application work is distributed. The predictive
scheduler is able to make its adjustments at each visualization cycle, and react
appropriately.

5. Results

We organize the results into several phases. The first phase
studies a base case. Successive phases varied study parameters.
In each phase, we vary the package power cap and analyze its
impacts.
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Figure 4: The left figure shows the scaled performance of the adaptive strategy in GEOPM’s Power Balancer and the predictive strategy in PaViz to the baseline
for Rendering Workload A running on 8 nodes. We normalize the performance to that of the baseline at 120W package power cap (circled in black). The baseline
applies a uniform power cap across all packages within the node. The second y-axis shows the raw rendering times at each power cap, since the scaled performance
value does not provide this context. The middle figure shows the distribution of rendering execution times (i.e., work) for all ranks at each visualization cycle, while
the right figure shows the rendering times per rank and per cycle. The input data at each cycle impacts the amount of time spent rendering by each rank, as well as
the execution time at each cycle.

To evaluate the power scheduling strategies, we normalize
the performance of our adaptive and predictive strategies to the
performance at a uniform power distribution of 120W per pack-
age, which is the maximum power draw for this processor ar-
chitecture. The uniform power distribution strategy is currently
used in practice. Since each node on the target supercomputer is
dual-socket, the node power allocation is derived by taking the
sum of the power caps assigned to both packages. Each node
may be assigned a different power cap by the GEOPM or PaViz
runtime system, but the aggregate sum total of the node power
caps is less than or equal to the job power budget.

We focus on the scaled performance at the power caps in
the region of interest. Power caps towards the low-end of the
range are limited power scenarios and power caps towards the
high-end are the unconstrained power consumption of the ap-
plication.

5.1. Base Case

In this phase, we studied Rendering Workload A, running
on 8 nodes. We sweep over all package power caps, ranging
from 120W down to 40W, and compare the performance of
the adaptive and predictive strategies. The left figure in Fig-
ure 4 shows the scaled performance for three strategies, base-
line, adaptive, and predictive. The baseline strategy applies a
uniform power budget across all packages, the adaptive strat-
egy uses GEOPM’s Power Balancer, and the predictive strategy
uses PaViz. The performance of all three scheduling strategies
is compared to the baseline at 120W package power cap. Some
of the performance values may be slightly higher than 1 due to
system noise. The middle figure shows the distribution of ren-
dering execution times per visualization cycle across all ranks.
As the simulation iterates across time steps, the rendering time
increases and the work per rank becomes more variable. The
specifics of how the rendering time can change across simula-
tion cycles within a rank can be seen in the rightmost figure.

With higher power caps, the baseline, adaptive strategy, and
predictive strategy have the same performance because there is
unlimited power, and not much room for improvement by shift-
ing power. Similarly, at a severe power cap of 40W, all three
configurations have the same performance because there is a
minimum power cap and CPU frequency for safe and reliable
operation of the processor.

For power caps that range between 80W and 50W, we start
to see the differences in using adaptation versus prediction on
the highly irregular visualization workload. This is the range
where the application is consuming all the available power and
benefits from shifting power intelligently.

At a package power cap of 60W, we compare the power de-
cisions made by the adaptive and predictive strategy across all
visualization cycles in Table 3. For the first few cycles, GEOPM
keeps all ranks at this power cap, since it uses the first few iter-
ations to identify the most and least effective nodes. Since the
visualization workload is highly variable from cycle to cycle,
GEOPM’s power decisions are unable to react to the variable
rendering time for a given rank, leaving performance on the ta-
ble. In the first cycle, the predictive strategy identifies rank 6
with having no work to do, and reduces the power cap to the
minimum for reliable operation. At later visualization cycles,
the adaptive strategy has identified the least efficient ranks, and
shifts power such that these nodes receive more power.

The distribution of render times in Figure 3 shows rank 3
being assigned the most work for this workload configuration,
so it is expected that both strategies will assign it the highest
power cap. In doing so, the adaptive and predictive strategies
reduce overall execution time and perform better than the base-
line.

5.2. Vary Rendering Workloads

In this set of tests, we vary across the remaining three ren-
dering workload configurations outlined in Table 2, using 8
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Figure 5: The top row of figures shows the scaled performance of the adaptive strategy in GEOPM’s Power Balancer and the predictive strategy in PaViz to the
baseline for Rendering Workloads B, C, and D on 8 nodes. We normalize the performance to that of the baseline, which applies a uniform power cap of 120W,
which is 3X higher than the lowest power cap of 40W. We denote this normalized value with an open black circle. The second y-axis shows the raw rendering times
at each power cap, since the scaled performance value does not provide this context. The middle row of figures shows the distribution of rendering execution times
(i.e., work) for all ranks at each visualization cycle, while the bottom row of figures shows the rendering times per rank and per cycle. The input data at each cycle
impacts the amount of time spent rendering by each rank, as well as the execution time at each cycle. The bottom row of figures highlights how the rendering time
can vary for each rank across simulation cycles.
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nodes, the same node concurrency as in Section 5.1. The goal
of this study is to demonstrate how rendering parameters may
impact the potential for performance improvements. If the vi-
sualization operation results in a high variance in the number of
active pixels to be rendered by each rank, there is more room
to exploit the imbalance by shifting power. On the other hand,
if there is an evenly distributed number of active pixels to be
rendered by each rank, this may inhibit the benefits of shifting
power to improve performance.

Figure 5 compares the results of the adaptive strategy and
predictive strategy to the baseline as well as the distribution of
predicted execution times over all visualization cycles. These
subfigures can be compared with Figure 4, which did the same
analysis for Rendering Workload A. Compared to the previous
Rendering Workload A, the distribution of execution times is
more evenly balanced.

For these workload configurations, using prediction sees
more benefit than using adaptation in a similar range of power
caps as before. The prediction model identifies which ranks will
have no work to do before the visualization occurs. Reducing
the power of those ranks to the minimum enables more power
to be given to the ranks with lots of work to. This allows them
to run faster, complete their work in less time, and reduce over-
all performance. An adaptive strategy will also identify which
ranks have less work to do, but spends the first set of iterations
performing the necessary analysis.

5.3. Vary Concurrency
In this phase, we vary the node concurrency to compare the

impacts of using adaptation and prediction at scale. The intu-
ition is that at higher concurrency, there is a bigger work imbal-
ance per node as well as a bigger job power budget that can be
reallocated across nodes. For this phase, we report the results
for Rendering Workload C, which showed the best improve-
ment in the previous phase. The geometry generated by the iso-
value in this workload are sparsely distributed across nodes. As
the simulation advances and becomes more complex, the iso-
value geometry leads to a larger imbalance. This characteristic
provided the best opportunity for performance improvements.
We sweep over package power caps ranging between 50W and
70W, since previous phases identified this range as the region of
interest. We weak scale the data size to maintain the same work
per node. Figure 6 shows the scaled performance for the adap-
tive strategy in GEOPM and the predictive strategy in PaViz at
different levels of concurrency.

For this rendering workload, using a predictive strategy re-
sults in 27% improvement over an adaptive strategy. As the
concurrency increases, an increasing percentage of the nodes
have very little, or even no geometry to render. Figure 7 shows
the difference in scaled performance between PaViz and GEOPM.
The smallest differences in speedups occur at the highest pack-
age power cap of 120W, since power is unlimited (i.e., the appli-
cation is not consuming this amount of power). The difference
is inversely related to the package power cap. That is to say,
the difference in scaled performance grows as the power cap is
reduced. This is a result of efficiently reallocating the limited
power to the nodes that need it most.

The highest concurrency of 512 nodes shows the largest dif-
ference of 27% at the lowest package power cap of 50W. The
predictive strategy uses its performance model to quickly iden-
tify the nodes with no work to do. For those nodes with nothing
to do, it sets the lowest power cap, enabling some nodes with
lots of work to do to run with the highest power cap per pack-
age, and complete their work as fast as possible. Due to the
high variability in this workload, the adaptive strategy is slower
to adjust the power usage based on the level of imbalance across
the nodes. As a result, the performance of the adaptive strategy
is worse than the predictive strategy.

6. Conclusion and Future Work

The hypothesis of our study was that prediction would out-
perform adaptation for visualization workloads due to their ir-
regular nature. Our experiments confirmed this hypothesis, show-
ing improvements up to 27%. We found that the level of con-
currency and the level of imbalance in the rendering workload
had a large impact on the potential speedup of using a predictive
or adaptive strategy. The larger the concurrency, the more im-
balanced the workload may become (more ranks have no work
to do), freeing up more power that can be shifted to bottleneck
ranks in order to improve the overall performance. Prediction
performed well on workloads with a high variation in execution
time across visualization cycles, since we had an accurate per-
formance model. While for other workloads where the variation
across cycles was small, we saw a narrower margin between
the two approaches, since the adaptive approach benefited from
similar execution behaviors in the previous time step. In all, we
feel the main takeaway from this study is that the predictive ap-
proach should be considered for power-aware run-time systems
when faced with irregular workloads.

In terms of future work, we plan to pursue multiple direc-
tions. A major hurdle for the predictive approach is the avail-
ability of models. In our case, we were able to use an exist-
ing performance model which was very accurate. For other
irregular workloads, such performance models would need to
be generated, constituting an important area of future work.
Further, having such performance models would enable evalua-
tion of the efficacy of the predictive approach in more contexts
(i.e., beyond visualization). There are many such contexts, in-
cluding physics simulations, their individual components (e.g.,
sparse linear algebra), and even general HPC workloads beyond
physics simulations. Another area of future work is to create
frameworks that can do both predictive and adaptive strategies,
so that adopters are not forced to choose between one or the
other (e.g., use GEOPM or PaViz) and are not forced to do ex-
tra work (e.g., use both). We hope to release PaViz as open
source software in the near future, to assist in this goal, and
also to assist in reproducibility for future research. Finally, this
work focused on power allocation and also considered in situ
visualization as a motivating use case. Outside this setting, tra-
ditional approaches such as dynamic data redistribution would
make for interesting comparisons.
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Figure 6: The scaled performance of the adaptive strategy in GEOPM’s Power Balancer and the predictive strategy in PaViz to the baseline for Rendering Workload
C at higher levels of concurrency. We normalize the performance to that of the baseline, which applies a uniform power cap of 120W. We denote the normalized
value with an open black circle. The second y-axis shows the raw rendering times at each power cap, since the scaled performance value does not provide this
context. Instead of sweeping over all power caps, we focus on caps between 50W and 70W, which were regions of interest in previous phases.
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