
Linking Performance Data into Scientific
Visualization Tools

Kevin A. Huck ∗ Kristin Potter ∗ Doug W. Jacobsen †

Hank Childs ∗,5 Allen D. Malony ∗
∗ University of Oregon {khuck,kpotter,hank,malony}@cs.uoregon.edu

† Los Alamos National Laboratory, douglasj@lanl.gov
5 Lawrence Berkeley National Laboratory, hchilds@lbl.gov

Abstract—Understanding the performance of program exe-
cution is essential when optimizing simulations run on high-
performance supercomputers. Instrumenting and profiling codes
is itself a difficult task and interpreting the resulting complex data
is often facilitated through visualization of the gathered measures.
However, these measures typically ignore spatial information
specific to a simulation, which may contain useful knowledge
on program behavior. Linking the instrumentation data to the
visualization of performance within a spatial context is not
straightforward as information needed to create the visualizations
is not, by default, included in data collection, and the typical
visualization approaches do not address spatial concerns. In
this work, we present an approach that links the collection of
spatially-aware performance data to a visualization paradigm
through both analysis and visualization abstractions to facilitate
better understanding of performance in the spatial context of
the simulation. Because the potential costs for such a system
are quite high, we leverage existing performance profiling and
visualization systems and demonstrate their combined potential
on climate simulation.

I. INTRODUCTION

Performance data measured from program execution reflects
information about where time elapsed relative to the code,
how the processor and memory were utilized, and what
communications behavior resulted. Significant analysis of this
performance data is commonplace when running simulations
on supercomputers, as the gains from such analysis can lead to
significant improvements in execution time, and thus increases
in the capacity of the supercomputer itself.

However, performance data can be hard to interpret, and
great effort has gone into finding insightful ways to present
it. Visualization is an obvious approach, since the human
visual system is able to absorb information at very high rates.
The visualization field has previously been segmented into
two sub-disciplines — scientific visualization and information
visualization — with visualization of performance data often
utilizing information visualization techniques. The primary
distinction between the two sub-disciplines was that scientific
data normally has an implied spatial layout, while information
visualization data does not. With scientific visualization, tech-
niques can exploit the spatial properties of the information
(meshes, grids, vectors, tensors, etc.) and utilize the three-
dimensional capabilities of todays graphics engines to help
visually present their analysis. The types of data associated

with scientific visualization are often “scientific” in nature,
such as with engineering, climate, and medical data. With in-
formation visualization, the data has no accompanying spatial
information, and so the resulting visualizations have more flex-
ibility in how to arrange data. Considering the topic through a
contemporary lens, this artificial distinction between the two
has dissolved. Both scientific and information visualization
share a common goal of enabling of insight into the data.

With this work, we explore the topic of scientific visualiza-
tion combined with performance data. The intuition behind
the work is that a strictly information visualization-based
approach can sometimes fail to convey important information
about context. By complementing traditional approaches with
scientific visualization techniques that show performance data
in the spatial context of the simulation, additional insights can
be gained that are difficult to infer otherwise.

The contribution of this paper is two-fold:
• to add to the evidence that scientific visualization can be

helpful in understanding performance data, and
• to explore the costs and approaches of linking perfor-

mance data with scientific visualization tools.
Regarding the linking, we are motivated by the costs

involved with building a system. The cost to extract and
categorize performance data is high, as is the cost to im-
plement scientific visualization systems. Therefore, we view
an approach that can leverage existing systems as paramount.
Further, our findings demonstrate that linking these systems
together can be done in a straight-forward way, requiring only
modest effort and yielding significant benefit.

II. A HISTORICAL PERSPECTIVE

There has been interest in the use of graphical and visu-
alization techniques to understand parallel performance data
since scalable parallel systems began to appear [1], [2].
Many of the motivations for performance visualization then –
increasing performance data size, more complex performance
phenomena, systems scalability, power of visual analysis –
are the same ones that drive the research today. The early
work in the field pioneered approaches with respect to both
effective presentation of performance information [3], [4], [5]
as well as how to develop tools incorporating visualization
capabilities [6], [7], [8]. While the challenges facing parallel

Fig. 1. Design architecture for parallel performance visualization systems.

performance analysis now are arguably more daunting than
20+ years ago, there are useful concepts that carry forward to
help inform the research today.

A conceptual design architecture for a parallel performance
visualization system is shown in Figure 1 [9]. The main idea
is that performance visualizations are a product of two key
components. The first component is focused on defining the
performance analysis abstractions that are of interest in being
portrayed using performance visual abstractions where the as-
sociation between the two are linked by semantic relationships.
These abstractions are then translated into specifications for
performance views and displays and the mappings between
the two. The second component is the instantiation of the joint
specification into a working visualization tool that leverages
alternative technologies where available. The separation of
concerns between the two components is important for evolv-
ing the performance visualization methods and improving the
development of visualization techniques in real tools.

Good performance visualization is a design process. The
goal is to associate certain properties of the performance analy-
sis (as understood by the user) with graphical representations
that have both good visual form and effective presentation.
General visualization principles and graphics techniqes can
help, but it does not directly solve the performance view
creation problem. Early research experience was a product
of experimenting with different parallel performance analysis
and visualization abstractions and then attempting to extract
constructive guidelines for good performance visualization
development [10]. Although they may seem intuitive, it is
instructive to consider them in the context of current require-
ments:
Multiple views. A visualization should provide different levels
of observation and different perspectives (a set of views).
Multiple dimensions of performance information may require
a variety of visual perspectives.
Semantic context. The intent of visualization is to improve
performance data understanding. Semantic context (e.g., pro-
gram control, data abstractions, programming model, system

mapping, runtime operation, computational behavior) can be
important in visualizations with respect to how the structure,
graphics, interactions, correlation to other displays, and visual
features are interpreted.
User interaction. Involving the user in selection, control of
detail, changing of parameters, and other interaction can be
important to explore performance aspects in a visualization.

In addition to guidelines for good visualization design, there
were recommendations for developing scalable visualization
methods that resulted from former research projects [4], [8],
[10]. These included:
Adaptive graphical representation. Present the performance
to reveal detail, but prevent visual complexity from interfering
with the perception of that detail.
Reduction and filtering. Use a summarized version of the
raw data to show less detailed information as a way to reduce
the complexity of the visualization at the level of graphical
representation.
Spatial organization. Arrange graphical elements spatially so
that as a dataset scales, the display size and/or complexity
increase at a much slower rate, using other graphical tech-
niques (e.g., coloring, annotation) to portray performance data
characteristics.
Generalized scrolling. Present a continuous, localized view
of a much larger mass of information to allow viewing of a
greater context, while maintaining continuity (temporal and
spatial) with nearby performance information.

Prior work also raised issues of building general visual-
ization solutions versus the usability of any particular perfor-
mance visualization outcome. Miller addressed some of these
in his essay “What to Draw? When to Draw? An Essay on
Parallel Program Visualization” where he attempted to define
general requirements that will help guide the visualization
designer to create effective visual displays [5].

III. BACKGROUND

A. VisIt

The VisIt open-source tool [11] was used to generate the vi-
sualizations in this work. VisIt is an open-source visualization,
animation, and analysis toolkit that provides an interactive
user interface and support for over 120 different scientific
data formats. The customizable plugin design allows for user-
developed modifications to accomodate a large variety of
scientific visualization data sets and display methods. Many
traditional visualization techniques are supported including
methods for 2D data (pseudo-color, scatterplots, etc), 3D data
(volume rendering, isocontours, etc), and vector data (stream-
lines, glyphs, etc). VisIt runs on a variety of platforms and
can be configured to post-process in parallel and scale from
desktop machines to large-scale high performance computers.

B. TAU

The performance tool used for this approach is the TAU
Performance System R© [12]. TAU is a portable profiling and
tracing toolkit for performance analysis of parallel programs
written in Fortran, C/C++ , Python and Java, running on a

Unstructured Meshes

The MPAS framework utilizes unstructured meshes. These meshes can
be created in a variety of ways but typically we use Spherical Centroidal
Voronoi Tessellations (SCVTs).

LANL (Los Alamos National Laboratory) UNCLASSIFIED LA-UR: 12-24953 Sept 27th, 2012 6 / 18

(a) Regular SCVT.

Unstructured Meshes

The MPAS framework utilizes unstructured meshes. These meshes can
be created in a variety of ways but typically we use Spherical Centroidal
Voronoi Tessellations (SCVTs).

LANL (Los Alamos National Laboratory) UNCLASSIFIED LA-UR: 12-24953 Sept 27th, 2012 6 / 18

(b) Variable resolution
SCVT.

Unstructured Meshes

The figure below shows the spatial layout of data:

Primary Mesh (Voronoi, Black Solid Hexagons)

Dual Mesh (Delaunay, Black Dotted Triangles)

Scalar Quantities (Blue Squares)

Vector Quantities (Red Triangles)

Vorticity Quantities (Orange Circles)

While the data is unstructured horizontally, it is structured
vertically. For example:

t empe ra tu r e (nVe r tLeve l s , n C e l l s)
v e l o c i t y (nVe r tLeve l s , nEdges)
v o r t i c i t y (nVe r tLeve l s , nV e r t i c e s)

Within a block, typical dimensions are:

nVertLevels: 40

nCells: 200-500

nVertices: 400-1000

nEdges: 600-1500

3-D Fields: 20-100

LANL (Los Alamos National Laboratory) UNCLASSIFIED LA-UR: 12-24953 Sept 27th, 2012 8 / 18

(c) MPAS data layout.

Fig. 2. Spherical Centroidal Voronoi Tesselations.

variety of shared and distributed memory parallel architectures
including message passing libraries (i.e. MPI) and Partitioned
Global Address Spaces (PGAS, co-arrays). TAU provides
different means for instrumentation (source, library, binary)
and is capable of gathering performance information (time,
hardware counters) about functions, methods, basic blocks
and statements as well as periodic sampling and metadata
collection. TAU is distributed with profile and trace anal-
ysis tools, a performance database, and a multi-experiment
data mining package called PerfExplorer [13]. PerfExplorer
includes a Python interpreter for automating analysis, custom
post-processing of data and other transformations including
exporting data from the profile.

C. MPAS-Ocean

The Model for Prediction Across Scales (MPAS) [14] is a
framework project jointly developed by the National Center
for Atmospheric Research (NCAR) and Los Alamos National
Lab (LANL) in the United States. The framework is designed
to allow the rapid prototyping of single-component climate
system models. Several models have been developed using the
MPAS framework. MPAS-Ocean [15] is designed to simulate
the ocean system for a wide range of time scales and spatial
scales from less than 1 km to global circulations.

The MPAS framework utilizes unstructured meshes that can
be created in a variety of ways but are typically Spherical
Centroidal Voronoi Tessellations (SCVTs). The mesh cells are
made up of arbitrary polygons, and the cells decompose the
data in 2 dimensions, as shown in Figures 2(a) and 2(b).
Figure 2(c) shows the two cell meshes with overlapping spatial
layouts: the Primary Mesh (Voronoi, hexagons), and the Dual
Mesh (Delaunay, triangles). Within each cell region, edge and
vertex lie Scalar Quantities (Blue Squares), Vector Quantities
(Red Triangles) and Vorticity Quantities (Orange Circles).
Each cell has regularly structured data, such as temperature,
salinity, velocity and vorticity. After the mesh is partitioned, a
typical block has 40 vertical levels, 200–500 cells, 400–1000
vertices and 600–1500 edges explicitly assigned to the block.
During simulation initialization, each block is also assigned
a halo region that typically consists of 3 layers of cells from
neighboring blocks. A vast majority of the communication in
MPAS consists of the halo exchanges between neighboring
blocks during each phase of each time-step.

MPAS-Ocean is developed in Fortran using MPI for large
scale parallelism. The application had previously been instru-

mented with internal timing functions. TAU was integrated
by supplementing the timing infrastructure with TAU timers.
The application instrumentation was mostly at a high level,
encapsulating key phases in the simulation model. Linking
with the TAU library also provides measurement of MPI
communication through the PMPI interface and hardware
counter data using PAPI.

D. MPAS-Ocean Load Imbalance

The performance problem that we are addressing with this
approach is that of load balancing and optimization due to
the elimination of redundant computation. For example, a 256
process run was executed on Edison, a Cray XC30 “Cascade”
system at NERSC. Each Edison node has two sockets, each
populated with a 12-core Intel “Ivy Bridge” processor, provid-
ing 24 cores per node. The allocation was for 11 nodes, placing
24 processes per node, with the last node not fully utilized. The
simulation ran for about 5 minutes, executing 1080 timesteps
to simulate 30 days. A TAU profile was collected, and the
result is shown in Figure 3. The center ridge of counters is
the amount of time spent in MPI_Wait(), which dominates
the execution time. MPI_Wait()is used after asynchronous
sends and receives between two processes to ensure the
communication has completed. Later experiments showed that
the number of neighbors each process communicates with is
correlated with the number of calls to MPI_Wait(), but
the cumulative time spent in MPI_Wait()is not correlated
with the number of calls. In addition, as shown in Figure 4,
the time in MPI_Wait()is negatively correlated with main
computation routines. These observations all indicated that
there was a load balance issue in the code. This result was
unexpected, as the domain had been statically decomposed
using the k-way strategy in gpmetis [16], evenly distributing
the cells among blocks.

Additional metadata was collected to compute exactly how
much work each process was assigned to compute, includ-
ing the number of cells explicitly assigned to each block
of the partition (nCellsSolve), the total cells including
halo cells (nCells), the total levels computed per block

Fig. 3. 256 process performance profile of MPAS-ocean using K-way data
partitioning, element decomposition and the RK4 solver on Edison. The height
and color of the bars represents the time spent in each timed code region, the
highest of which is MPI_Wait().

(a) Correlation with large
iteration loop.

(b) Correlation with adv. (c) Correlation with se btr vel.

Fig. 4. Correlation of time spent in MPI_Wait()with computation regions.

Fig. 5. Correlation of MPI_Wait()time with metadata values.

(totalLevelCells, totalLevelEdgeTop), the num-
ber of edges on each cell in the block (nEdges). The metadata
values were correlated with the performance from each pro-
cess, and the results are shown in Figure 5. While it appears
that the totalLevelEdgeTop, totalLevelCells and
even nEdges are highly correlated, they are all dependent
on the truly correlated value, nCells. In fact, it is also
obvious that the number of cells explicitly assigned to each
block (nCellsSolve) is well balanced and uncorrelated
with performance at all. To understand the difference between
nCells and nCellsSolve, a deeper understanding of the
halo or ghost cells associated with each block of the partition
is needed.

As described earlier, each block in the partition requires
halo cells from neighboring blocks in order to compute all
phases of computation within a timestep with meaningful
values, a common problem in all stencil decompositions. This
problem is made worse because the computation performed
with monotonic advection requires three layers of halo cells
from all neighboring blocks. Each process must compute all of
the cells explicitly assigned to the block (nCellsSolve), as
well as the implicitly assigned halo cells, yielding the nCells
value. As a further complication, blocks that are less circularly

shaped can have significantly more halo cells than circular
blocks with the same number of cells. The intuition here is that
the number of halo cells is largely determined by the perimeter
of the block, and a circle has the smallest perimeter-to-area
ratio for 2-dimensional shapes of equal area. For example, a
long, extruded block of cells will have a larger perimeter than
a circular block with the same number of cells.

Different operators available within MPAS require different
numbers of halos. For example, the monotonic advection is the
only one that requires 3, but because that method is the default,
all of the simulation options have a default number of halos
of 3. For example, a del2 operation requires only a single halo
layer, while a del4 operation requires two halo layers. Other
operators might require more or less halos, depending on their
stencil. Almost all of the MPAS loops compute over all cells
within a block, including the 3 layers of halo cells. When
performing the barotropic solves within the split explicit time
stepper a 2D system is solved, and halo updates are performed
for each iteration to ensure the solver is not using “corrupted”
data.

The number of cells in the halo regions for each block can
vary significantly from one block to the next. This variation
in the number of halo cells is correlated with the amount
of time spent in computation for each block, and negatively
correlated with the time spent in MPI_Wait(). Unfortu-
nately, the number of cells in the halo region is a partitioning
parameter that is not known until after the partitioning is
complete, and to our knowledge there are no partitioners
that are capable of generating a balanced partition weighted
by an unknown value. While the most significant property
regarding load imbalance is the halo region size, the profiles
also suggest that the variability in the depth of cells (and
therefore amount of data to compute per cell) as well as
the number of neighbors for each block also contribute. We
theorized that a majority of the underutilized processes were
assigned either a coastal or poorly connected block with a
considerably smaller halo region that does not fully enclose
the block. However, we could not confirm this since at that
time we did not have a method for visualizing the metadata
nor performance properties associated with each block.

IV. APPROACH

As mentioned in Section III-D, the MPAS application is
instrumented with application timers that are mapped to TAU
timers, and MPI timers are collected by TAU using the stan-
dard PMPI interface. In addition, application properties that
potentially have an effect on performance are also collected
as TAU metadata values using manual instrumentation. Such
properties include those discussed in Section III-D as well as
other partition related variables such as how many neighbors
a process has to communicate with in the mesh.

As with most simulation codes, MPAS already could output
time slices of its state, storing its mesh layout and fields on that
mesh. The file format used for MPAS was NetCDF. Although
VisIt natively supports NetCDF, it was not, by default, able
to interpret MPAS’s Voronoi layout. So, to support MPAS,
a new VisIt reader was written, leveraging heavily from an
existing VTK-based MPAS reader. Further, the VisIt reader
was augmented to accept additional performance data from
TAU. All of the performance data from TAU was defined
on partitions of the MPAS mesh; VisIt presented this data
to the user alongside the fields from the simulation (e.g.,
temperature). To sum, the experience of using VisIt on com-
bined MPAS and performance data was substantially similar
to that of using VisIt on any simulation code, with the only
difference being extra information (performance data) that
could be displayed on the mesh. Further, the linking between
the two was achievable by writing a new file format reader, a
relatively modest task.

The TAU profiles are loaded into the TAUdb database [17],
and post-processed by a PerfExplorer script to extract and
export the performance measurements and metadata values
per process, which maps directly to the block assigned to the
process. The script iterates over all processes, generating a data
file for each selected property to visualize. In our example, we
generated files for the relevant load balance metadata fields
(nCells, nCellsSolve, nodeid, number of neighbors) as well as
the relevant performance measurements (MPI_Wait()time,
aggregated computation time). In order to generate the MPAS
VisIt files, the application data, partition data file and per-
formance data file names are listed in an index file with
“.mpas” as the suffix. The MPAS file lists the NetCDF data
file, the Metis partition output file, and the metrics exported
by PerfExplorer.

V. EXPERIMENTS

As an experiment to test the TAU and VisIt integration,
we evaluated the effectiveness of an experimental iterative,
optimizing partitioning strategy. The strategy is called Hind-
sight, and it has one primary objective, with a secondary
objective that happens to be a convenient side effect. The
primary objective of Hindsight is to reduce the number of
cells in the largest block of the partition, while the secondary
objective is to balance the load among blocks.

Current partitioners are very successful in decomposing
meshes and grids into well balanced blocks. However, they
rely on independent properties of the mesh or grid that are

known prior to partitioning, such as node and edge weights.
Unfortunately, the number of cells in the halo region of a
block is unknown until the block is created by the partitioner.
Because of the significant halo regions used by MPAS, the
partitioner should ideally balance on the total amount of work
assigned to a block, rather than just the number of cells
explicitly assigned to the block. The Hindsight partitioner
attempts to do just that.

The Hindsight partitioner executes the following algorithm.
First, the mesh is partitioned by gpmetis, using the k-way par-
titioner and default settings. Hindsight then parses the original
partitioning generated by gpmetis, computing statistics such as
the total cells explicitly assigned to each partition. Hindsight
then examines each block to find the cells on the border of
the block. Using those cells, Hindsight will find the cells that
belong in the n layers of the halo region for the block, in
this case 3. For each block, Hindsight then sums up the total
number of cells explicitly assigned to the block as well as
the number of cells in the halo region for that block. A new
graph file is then formatted, assigning a weight to each cell.
The weight for a cell is the total number of cells in the block
to which it was assigned, including the halo. Hindsight then
uses gpmetis to repartition the weighted mesh, using the output
from that execution as input for the next iteration. This process
iterates until the partitioning cannot be improved, or until a
maximum number of iterations are executed. “Improvement”
is measured by computing the number of cells assigned to the
largest block, including its halo cells.

The optimization is not monotonic – the imbalance fre-
quently immediately gets better and then worse, as the weights
on the cells change on each iteration, sometimes considerably.
For the “optimized” version of the 256 block version of the
60km dataset, the total number of cells in the largest block
is reduced from 846 to 771 after 18 iterations. Experimental
parametric variants of the algoritm are able to reduce it
down as low as 743, but are not as broadly applicable to
other data sets. The improvement generated by Hindsight is
largely dependent on how good the original partition is – other
MPAS data sets are not improved as much if there are not
many “large” block outliers in the distribution. The Hindsight
partitioner is still experimental, but shows promise in reducing
the computational load for the processes that are assigned the
largest blocks.

VI. PROBLEM VISUALIZATION AND SOLUTION
VALIDATION

To test the integration, we ran an experiment similar to
the one described in Section III-D, using the default data
decomposition for 256 processes and collecting a TAU profile.
We post-processed the TAU profile to generate the VisIt input
data files. A view of the data in VisIt is shown in Figure 6
on the left column. As can be seen in the visualization, the
partition blocks with less total cells spend less time computing
and therefore arrive at the end of the timestep early. They
subsequently spend more time waiting for their neighbors at
the halo exchange phases. Even worse are the two blocks in the

(a) Total number of cells per block.

(b) Total number of neighbors per block.

(c) Time spent in computation.

(d) Time spent in MPI_Wait().

Fig. 6. 2D projections of TAU metadata and timer measurements for the original (left) and hindsight (right) partition strategy.

Atlantic Ocean that are clearly outliers in the other direction
– the remaining 254 processes will wait for them to complete
on each iteration and sub-iteration of the MPAS simulation.
The visualization also confirmed our intuition with respect
to coastal blocks as well as poorly connected blocks, in that
they arrived at the synchronization points first, and the deep
ocean blocks were those that arrived last. The data can also
be rendered as a 3D planetary view for interactive exploration,
but the 2D projections are easier to comprenend in print.

The right column of Figure 6 shows the effect of repartition-
ing with the Hindsight optimizer. The subfigures in Figure 6
have had their color ranges scaled in VisIt to match those
of the original test case. The two blocks that previously
dominated computation in the center of the Atlantic have had
their computational load distributed to the surrounding blocks.
In addition, more of the total computational load is borne
by the previously underutilized coastal blocks. Overall, the
computational load was reduced slightly, but more importantly
the time spent in MPI_Wait()was reduced by 40%, leading
to an overall reduction in execution time of about 10%.
MPI_Wait()no longer dominates the execution time of the
code, but the mean time spent in the key phases of the
application, before and after Hindsight is applied. The slight
increase in time spent in the main iteration loop is more
than offset by the decreases found in other halo exchange
phases. Clearly the optimization is not perfect - the block
representing Hudson Bay north of Canada is still underutilized,
mostly due to the lower computational and communication
demands for that region. In that region, the water is not as deep
(less computation), and the block has only one neighbor (less
communication). Perhaps those features could be integrated
into the weights of cells generated by Hindsight.

VII. ENSEMBLE VISUALIZATION

One other key visualization is the possibility to show
time series data, or multi-experiment data in the form of an
ensemble plot. In the event that performance data evolves over
time, visualizing the data in VisIt would aid in understanding
how the performance evolves within the application domain.
Visualizing parametric study data as an ensemble provides the
opportunity to directly compare the effect that input parameters
have on application performance.

During experimentation with the hindsight partitioner, an
ensemble of data was created, with each member of the
ensemble being a proposed partition. Since visualization tools
like VisIt are able to cope with ensemble data (often via
mechanisms for variation in time), we were able to visualize
and compare this ensemble, as shown in the small multiples
plot in Figure 7. We include this figure and expound on the
point of ensembles because they help support an overarching
point, namely that scientific visualization tools are flexible and
can be used in many different ways, and that this in turn can
add insight into performance data in many ways.

VIII. RELATED WORK

Virtually all performance measurement and analysis tools
provide some form of visualization. Most of the tools show
performance information with respect to paralel entities (e.g.,
processes, threads), program structure (e.g., routines, call
paths), and certain actions that take place. There has been
a lot of work on the presentation of message communication
performance and especially static and dynamic patterns that
can be discerned especially from trace-based measurement.

The research work related to the results we present here
looks at how performance data is mapped to a physical or
logical domain. Topological-based mapping uses a topology
specification to establish a coordinate system upon which per-
formance data is shown. Scalasca is a powerful performance
system that has extended support in it Cube 3D analysis [18]
to show how performance data is distributed across a parallel
execution using a computational topology base on a cube
topology. They also employ a hardware layout topology for
the Blue Gene/Qs 5D hardware topology to map performance
information. Spear et al. [19] investigated extensions to TAU’s
ParaProf 3D visualizer to allow layout and mapping to be
specified more generally. In particular, they showed how to
create different topological-based performance displays based
on both logical and physical characteristics. The BoxFish [20],
[21] visualization tool has a similar capability, in that per-
formance data is mapped to the hardware domain and either
rendered in 3D or projected to various 2D domains. It provides
a flexible framework for programming how the views are
created.

However, there have been fewer instances of using the
application domain itself as a target for rendering the per-
formance information. The research most closely related to
our work is reported in Böhme’s thesis [22] which consid-
ers the problem of characterizing load and communication
imbalance in parallel applications. In studying scaling issues
due to load imbalance of selected modules of the Community
Earth System Model (CESM), they developed a performance
visualization within Cube 3D which mapped MPI waiting
times onto physical earth coordinates to show severe load
imbalances between regions of sea ice and open ocean. This is
similar to what we are doing with MPAS. The main difference
is that we are utilizing a sophisticated scientific visualization
system to produce the end result, thereby gaining flexibility
and visualization power via an integrated performance anal-
ysis workflow. Schulz et al. [23] also demonstrated similar
work to that we present here — namely that in addition to
mapping performance hardware counters to the hardware and
communication domains, they mapped some performance data
to the application domain.

IX. CONCLUSION

In efforts to optimize the MPAS-Ocean application, the
performance measurement and analysis process revealed in-
teresting properties related to how the unstructured mesh
application data was decomposed prior to execution. The
domain decomposition, previously considered to be balanced,

Fig. 7. This figure shows five outputs from the hindsight partitioner. The figure is arranged in a 2x5 layout, with the top row colored by partition, and the
bottom row colored by the number of cells. Each of the five columns corresponds to a member of the ensemble of outputs from the partitioner.

was used in the MPAS-O simulation in ways that led to
a workload imbalance due to the significant number of
halo (ghost) cells shared between partitions. By integrating
the TAU performance system with a scientific visualization
toolkit, such as VisIt, we were able to visualizate the per-
formance data and metadata within the application domain
itself, leading to a better understanding of the partitioning
challenges, and why attempted optimizations were or were
not successful. The integration process was straightforward
and opened up opportunities for domain-specific mapping. In
particular, spatial representation allowed partitioning strategies
to be compared both in respect to their blocking properties
(which are unknown until after partitioning is complete) and
the resulting effect performance behavior across the physical
model space. These visualizations could also be helpful in
placing the application processes on the allocated hardware
to improve communication locality. In future work, we will
use the visualizations to improve the Hindsight partitioner.
The partitioner is currently only using the block cell count to
assign weights to cells, but that weight could also include other
parameters that effect computation load and communication
overhead, such as the number of vertical levels in the cell as
well as the number of neighbors for a block. Both properties
have been visualized with this framework, and could contribute
to a better load balance.

X. ACKNOWLEDGEMENTS

This work is supported by the Department of Energy
SciDAC SUPER and SDAV Institutes. Doug Jacobsen was
supported by the US DOE Office of Science, Biological and
Environmental Research program.

REFERENCES

[1] A. Malony and D. Reed, “Visualizing parallel computer system per-
formance,” in Instrumentation for Future Parallel Computer Systems,
M. Simmons et al., Eds. ACM Press, 1989, pp. 59–90.

[2] A. Couch, “Problems of scale in displaying performance data for
loosely coupled multiprocessors,” in Fourth Conference on Hypercubes,
Concurrent Computers, and Applications, March 1989.

[3] M. Heath and J. Etheridge, “Visualizing the performance of parallel
programs,” IEEE Software, pp. 29–39, September 1991.

[4] A. Couch, “Categories and context in scalable execution visualization,”
Journal of Parallel and Distributed Computing, special issue on Visu-
alization, vol. 18, pp. 195–204, June-July 1993.

[5] B. Miller, “What to draw? when to draw? an essay on parallel program
visualization,” Journal of Parallel and Distributed Computing, vol. 18,
no. 1, pp. 265–269, June 1993.

[6] A. Malony et al., “Traceview: A trace visualization tool,” IEEE Software,
pp. 29–38, September 1991.

[7] A. Couch, “Massively parallel performance analysis,” in Proceedings
of the IEEE, special issue on Performance Evaluation, vol. 81, no. 8,
August 1993, pp. 1116–1125.

[8] S. Hackstadt et al., “Scalable performance visualization for data-parallel
programs,” Scalable High Performance Computing Conference (SH-
PCC), May 1994.

[9] M. Heath et al., “Parallel performance visualization: From practice to
theory,” IEEE Parallel and Distributed Technology, vol. 3, no. 4, pp.
44–60, Winter 1995.

[10] M. Heath et al., “The visual display of parallel performance data,” IEEE
Computer, vol. 28, no. 11, pp. 21–28, November 1995.

[11] H. Childs et al., “VisIt: An End-User Tool For Visualizing and Ana-
lyzing Very Large Data,” in High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, Oct 2012, pp. 357–372.

[12] S. Shende and A. D. Malony, “The TAU Parallel Performance System,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, Summer 2006.

[13] K. A. Huck et al., “Knowledge support and automation for performance
analysis with PerfExplorer 2.0,” Scientific Programming, special issue
on Large-Scale Programming Tools and Environments, vol. 16, no. 2-3,
pp. 123–134, 2008, http://dx.doi.org/10.3233/SPR-2008-0254.

[14] LANL and NCAR, “MPAS,” http://mpas-dev.github.io, 2014.
[15] T. Ringler et al., “A multi-resolution approach to global ocean

modeling,” Ocean Modelling, vol. 69, no. 0, pp. 211 – 232,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1463500313000760

[16] G. Karypis and V. Kumar, “Metis - unstructured graph partitioning and
sparse matrix ordering system, version 2.0,” University of Minnesota,
Tech. Rep., 1995, http://glaros.dtc.umn.edu/gkhome/views/metis.

[17] K. Huck et al., “Design and implementation of a parallel performance
data management framework,” in Proceedings of the International
Conference on Parallel Processing (ICPP2005), Oslo, Norway, 2005,
pp. 473–482, (Chuan-lin Wu Best Paper Award), http://dx.doi.org/10.
1109/ICPP.2005.29.

[18] D. Lorenz et al., “Extending scalasca’s analysis features,” in Tools
for High Performance Computing 2012, A. Cheptsov et al., Eds.
Springer Berlin Heidelberg, 2013, pp. 115–126. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37349-7 8

[19] W. Spear et al., “An approach to creating performance visualizations in
a parallel profile analysis tool,” in Euro-Par 2011: Parallel Processing
Workshops, ser. Lecture Notes in Computer Science, M. Alexander
et al., Eds. Springer Berlin Heidelberg, 2012, vol. 7156, pp. 156–165.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-29740-3 19

[20] K. Isaacs et al., “Abstract: Exploring performance data with boxfish,” in
High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, Nov 2012, pp. 1380–1381.

[21] M. Schulz et al., “Creating a tool set for optimizing topology-aware
node mappings,” in Tools for High Performance Computing 2011,
H. Brunst et al., Eds. Springer Berlin Heidelberg, 2012, pp. 1–12.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-31476-6 1

[22] D. Böhme, “Characterizing load and communication imbalance in par-
allel applications,” Ph.D. dissertation, RWTH Aachen University, 2014.

[23] M. Schulz et al., “Interpreting performance data across intuitive do-
mains,” in Parallel Processing (ICPP), 2011 International Conference
on, Sept 2011, pp. 206–215.

