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DISSERTATION ABSTRACT

James Michael Kress

Doctor of Philosophy

Department of Computer and Information Science

March 2020

Title: In-line vs. In-transit In Situ: Which Technique to Use at Scale?

In situ visualization is increasingly necessary to address I/O limitations

on supercomputers. With the increasing heterogeneity of supercomputer design,

efficient and cost effective use of resources is extremely difficult for in situ

visualization routines. In this work, we present a time and cost analysis of two

different classes of common visualization algorithms in order to determine which in

situ paradigm (in-line or in-transit) to use at scale, and under what circumstances.

We explore a high computation and low communication algorithm, as well as a

low computation and medium communication algorithm. We use 255 individual

experimental runs to compare these algorithms performance at scale (up to 32,768

cores in-line and 16,384 core in-transit) with a running simulation. Finally, we show

that — contrary to community belief — in-transit in situ has the potential to be

both faster and more cost efficient than in-line in situ. We term this discovery

Visualization Cost Efficiency Factor (VCEF), which is a measure of how much

more performant in-transit in situ is on a smaller subset of nodes than in-line in

situ is at the full scale of a simulation. Our results for these algorithms showed in-

transit VCEF values of up to 8X at our highest concurrencies.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

1.1 Motivation

As leading-edge supercomputers get increasingly powerful, scientific

simulations running on these machines are generating ever larger volumes of data.

However, the increasing cost of data movement, in particular moving data to

disk, is increasingly limiting the ability to process, analyze, and fully comprehend

simulation results [12], hampering knowledge extraction. Specifically, while I/O

bandwidths regularly increase with each new supercomputer, these increases are

well below corresponding increases in computational ability and data generated.

Further, this trend is predicted to persist for the foreseeable future.

Traditionally, visualization has been performed as a post-processing task,

where simulation outputs are read from disk into the memory of a parallel tool

which performs analysis and visualization tasks. Visualization is generally I/O

bound [39, 40], and as relative I/O bandwidth continues to decrease, the challenges

of visualizing increasingly larger data will become more problematic. In the case

of traditional visualization, the I/O bottleneck is exacerbated as data is first

written to disk by the simulation, and then read back from disk by the visualization

routine.

Largely due to the increasing I/O bottleneck, in-situ analysis and

visualization techniques are receiving significant attention. These techniques

operate on simulation data as they are produced, as opposed to after they are

produced, which is the traditional use case for post-processing analysis and

visualization of data on disk. In addition to alleviating the I/O bottleneck, these

techniques have the added benefit of access to all of the simulation data, and

1



since simulations typically only output a limited set of time steps to disk, these

techniques have access to every time step.

Broadly speaking, two paradigms have emerged [38]. The first paradigm is

co-processing, or in-line methods. In this dissertation, we define in-line to mean

when the simulation and visualization code run in the same process using the same

resources. The second paradigm is concurrent-processing, or in-transit methods.

In this dissertation, we define in-transit to mean when the simulation transfers

data over the network to a separate set of visualization nodes for processing. For

simplification, we view these two paradigms as on-node and off-node. In-line can

be thought of as running on the same node as the simulation, and not utilizing

asynchronous data transfers from the simulation to the visualization routines, while

in-transit can be viewed as off-node.

In a 2015 position paper [70], I proposed a set of 10 comparison factors that

enable concrete comparisons to be made based on the costs and benefits associated

with each of these in situ scenarios. These factors consider required HPC resources

(both shared and dedicated), impact on the running simulation, fault tolerance,

and usability. These factors are discussed in depth in Chapter IV, and a high level

overview of these factors can be found in Table 1. The outcome of this position

paper was a set of opinions on which in situ paradigm benefited the most from each

of the 10 comparison factors. Some of these factors are hard to empirically test,

and are very situationally dependent. Others however, can be directly tested and

assertions about superiority can be proven (or disproven).

Of the ten comparison factors we proposed, the factor with the most

immediate impact to end users is Scalability. If a visualization algorithm is run

on a very large resource at high concurrency, and it does not scale, that run will

2



Table 1. Overview of the 10 different factors we devised for comparing the benefits
of both the in-line and in-transit in situ paradigms. The paradigm which the
position paper asserted to be the strongest in a given category is indicated with
a check mark, and a dash is used when the paradigms are thought to be equally as
good.

Favored Paradigm

Comparison Factor In-line In-transit

Data Access

Data Movement — —

Data Duplication

Data Translation

D
a
ta

F
a
ct

o
rs

Exploratory Visualization — —

Scalability

Ease of Use

Coordination

Fault Tolerance

Im
p

le
m

e
n
ta

ti
o
n

F
a
ct

o
rs

Resource Requirements — —

incur a heavy penalty. However, if the same visualization algorithm is run at a

lower concurrency, it may not incur that same penalty. This is why understanding

the scalability of visualization algorithms in the context of in situ is important. It

has the potential to save users of visualization algorithms both time and money as

they will not have to spend as much supercomputer time performing visualization if

they can know ahead of time what concurrency will be the most cost effective.

1.2 Research Goals and Approaches

The central question that this dissertation addresses is: “In-line vs. in-

transit in situ: which technique to use at scale?” Of the ten comparison factors we

proposed for in situ, this dissertation focuses exclusively on the Scalability factor,

and beyond scalability to overall cost (total compute time over all resources). We

3



will show through experimentation and modeling which in situ paradigm performs

the best and under what circumstances.

This is an important question for the visualization community because

the impacts of using different visualization algorithms in-transit or in-line at

various different scales and resource allocations is not well understood. There are a

variety of things that affect performance, ranging from the size of the visualization

allocation used, the scale of the simulation, the frequency of visualization, and the

characteristics of the visualization algorithms themselves. This complexity leaves a

number of open questions that can be addressed by a scalability study:

Q: How does communication between ranks affect in-line visualization (is it more

efficient for some algorithms vs. others)?

Q: What size of resource allocation is needed for in-transit visualization so that

resources are not wasted when doing infrequent visualization?

Q: At lower concurrency, are in-line techniques more efficient?

Q: What are the overheads associated with in-transit techniques?

Q: Does in-transit ever cost less to use than in-line?

Q: What percentage of simulation resources are needed for in-transit so that it

does not block the simulation (so that it keeps up)?

To answer these sub questions about scalability and the overall cost of

using each in situ paradigm, we developed an in situ workflow to test two different

common visualization algorithms at differing levels of concurrency under each

of these two paradigms. We tested these algorithms from low (128 cores) to

high (32,768 cores) concurrency to determine how each algorithm performed at

different scales under both in situ paradigms. It was critical to test a broad range

4



of concurrencies for this study due to the changing behavior of different algorithms

at different concurrencies. The two visualization operations that were selected

were picked because they cover the gamut of important visualization operations

to the visualization community. When the VTK-m [103] project was creating

their proposal for funding under the Exascale Computing Project (under which

they are now funded), they developed a list of algorithms that were critical to

be implemented during the first phase of the project, as well as some aspirational

algorithms for future development. That list was:

1. Point Location

2. Cell Location

3. Clipping

4. Point Merging

5. Connected Components

6. Particle Advection

7. Particle Advection Time Varying

(Pathlines)

8. Contouring

9. External Surfaces

10. Ray Tracing

11. Volume Rendering

12. Particle/Glyph Rendering

The two algorithms we selected for evaluation were Volume Rendering, and

Isosurfacing. These two algorithms each fall into a different class of algorithms

where the amount of work and communication between parallel process differs

highly. Isosurfacing is computationally bound, and does little communication,

whereas volume rendering does much more communication, changing it from a

computation-bound to a communication-bound algorithm. The differences in the

core characteristics of these algorithms make them good candidates for evaluating

the question of scalability and cost effectiveness at scale.
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1.3 Dissertation Outline

Putting it all together, choosing the correct configuration for in situ

visualization is challenging, as the most cost effective solution may vary from run

to run, depending on a host of factors. There are currently very few works that

address the challenges of choosing a cost efficient configuration for in situ, and none

that explore multiple visualization algorithms at scale. The goal of this work is to

explore this space in order to help others that want to both utilize the benefits of

in situ visualization, but also wish to use their limited compute resources to their

fullest potential.

The remainder of this dissertation is organized into two parts as follows:

– Part I: Foundations

∗ Chapter II: We survey past works in high performance computing,

visualization, and in situ visualization. This survey provides a

foundation for what the current state of the art is in visualization, and

provides a point of reference for our developments and findings in Part II

of the dissertation.

∗ Chapter III: We survey the members of a large-scale fusion simulation

code in order to gather their requirements for visualization and analysis.

We look at these requirements from the perspective of in situ processing,

and present of a list of their needs for current and future visualization

and analysis.

∗ Chapter IV: We develop a set of 10 factors for comparing in-line and in-

transit in situ techniques, including the factor that this dissertation is

centered around.
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– Part II: Findings

∗ Chapter V: We present the setup, configurations, and preliminary

results from 255 individual in situ visualization test case runs on the

Titan supercomputer. This is our corpus of data that we analyze in the

subsequent two chapters.

∗ Chapter VI: We evaluate our corpus of data from the perspective that

time-is-of-the-essence for an in situ visualization task, and discuss

the primary factors effecting which in situ paradigm is the fastest as

application concurrency increases.

∗ Chapter VII: We evaluate our corpus of data from the perspective that

total cost to the user is the primary driver for in situ visualization. We

then develop a model for predicting the cost efficiency of in-line and in-

transit visualization configurations.

∗ Chapter VIII: We conclude by summarizing our key findings and

discoveries, and take a significant look at directions for the most

interesting future work.

1.4 Co-Authored Material

Much of the work in this dissertation is from previously published co-

authored material. Below is a listing connecting the chapters with the publications

and authors that contributed. Additional detail on the division of labor for each

publication is provided at the beginning of each chapter. That said, for each

of these publications, I was not only the first-author of the paper, but also the

primary contributor for implementing systems, conducting studies, and writing

manuscripts.
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– Chapter II: This chapter is composed of portions of my Ph.D. Area Exam

document which was unpublished.

– Chapter III: [74] was a collaboration between Scott Klasky (ORNL), David

Pugmire (ORNL), Hank Childs (UO, LBL), and myself.

– Chapter IV: [70] was a collaboration between Scott Klasky (ORNL), Norbert

Podhorszki (ORNL), Jong Choi (ORNL), Hank Childs (UO and LBL), David

Pugmire (ORNL) and myself.

– Chapter V: This chapter summarizes the data that was gathered and

analyzed in the following two chapters, so is composed of components of two

different works, [71, 73], which were collaborations between Matthew Larsen

(LLNL), Jong Choi (ORNL), Mark Kim (ORNL), Matthew Wolf (ORNL),

Norbert Podhorszki (ORNL), Scott Klasky (ORNL), Hank Childs (UO),

David Pugmire (ORNL), and myself.

– Chapter VI: [71] was a collaboration between Matthew Larsen (LLNL),

Jong Choi (ORNL), Mark Kim (ORNL), Matthew Wolf (ORNL), Norbert

Podhorszki (ORNL), Scott Klasky (ORNL), Hank Childs (UO), David

Pugmire (ORNL), and myself.

– Chapter VII: [73] was a collaboration between Matthew Larsen (LLNL),

Jong Choi (ORNL), Mark Kim (ORNL), Matthew Wolf (ORNL), Norbert

Podhorszki (ORNL), Scott Klasky (ORNL), Hank Childs (UO), David

Pugmire (ORNL), and myself.
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Part I

Foundations
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In this part of the dissertation, we provide background on in situ

visualization techniques (Chapter II), survey a large simulation code to gather

visualization requirements to motivate in situ (Chapter III), and conclude with a

set of factors for evaluating in situ techniques (Chapter IV). These chapters provide

the foundations on which the rest of this dissertation is based.
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CHAPTER II

BACKGROUND

As leading-edge supercomputers get increasingly powerful, scientific

simulations running on these machines are generating ever larger volumes of data.

However, the increasing cost of data movement, in particular moving data to

disk, is increasingly limiting the ability to process, analyze, and fully comprehend

simulation results [12], hampering knowledge extraction. Specifically, while I/O

bandwidths regularly increase with each new supercomputer, these increases are

well below corresponding increases in computational ability and data generated.

Further, this trend is predicted to persist for the foreseeable future.

Relative decreases in I/O pose a problem for stakeholders running on these

systems ranging from simulation scientists to visualization researchers. To that end,

the Advanced Scientific Computing Research (ASCR) Scientific Grand Challenges

Workshop Series produced reports spanning eight different scientific domains (High

Energy Physics, Climate, Nuclear Physics, Fusion, Nuclear Energy, Basic Energy

Sciences, Biology, National Security) [28, 138, 144, 128, 119, 54, 126, 27], that

explored the computing challenges, including visualization and analysis challenges,

for codes in each of those eight domains. Each report mentioned data movement,

storage, and analysis as a major obstacle in the move to exascale. Many of these

scientific domains will be required to deal with petabytes, or even exabytes, of data

over the course of a simulation.

This trend poses a problem for the traditional post-processing visualization

methodology. The traditional visualization workflow performs visualization as a

post-processing task, where simulation outputs are read from disk, into the memory

of a parallel tool which performs analysis and visualization. Visualization is
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generally I/O bound [39, 40], and as relative I/O bandwidth continues to decrease,

the challenges of visualizing increasingly larger data will become more problematic.

Post hoc visualization is particularly sensitive to the I/O bottleneck, as data is first

written to disk by the simulation, and then read back from disk by the visualization

routine.

Given this reality, many large-scale simulation codes are attempting

to bypass the I/O bottleneck by using in situ visualization and analysis, i.e.,

processing simulation data when it is generated. Broadly speaking, two paradigms

have emerged [38]. First, co-processing, or in-line, methods, where the simulation

and visualization code run in the same process using the same resources. Second,

concurrent-processing, or in-transit, methods, where the simulation transfers data

over the network to a separate set of visualization nodes for processing.

In situ processing poses many new challenges to both simulation and

visualization scientists that were hidden or less predominant with the post-

processing paradigm. A few of the issues facing in situ include: how the in situ

routines are integrated with the simulation, how data is translated from the

simulation representation to the visualization representation, how resources are

allocated between the simulation and the visualization, how faults are isolated

in the visualization routines, how to massively scale communication heavy

visualization algorithms, and even how to do exploratory visualization in an in

situ world. One avenue of approach that specifically address the resource allocation

and scalability problems is the modeling of visualization algorithms under varying

computational setups and data loads. This modeling work is an exciting area of

future research for in situ.
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In the remainder of this Chapter, we survey and explore in situ visualization

itself, key areas involved in in situ workflows, and identify areas where the

research is incomplete, or requires further study. First, we look at trends in high

performance computing and their implications for the future of visualization

in Section 2.1. Next, we explore the traditional scientific visualization and

compositing pipelines, and discuss prevalent scientific visualization tools including

current research in the area of data models, portable performance, and massive

scale visualization in Section 2.2. And finally, the state of in situ visualization is

discussed in Section 2.3.

2.1 High Performance Computing

High Performance Computing (HPC) is a landscape of constant evolution.

This evolution is seen in the composition of the HPC systems themselves, as well

as the science that they enable. By using these systems, scientists have gained

deeper understandings in fields ranging from medicine to energy to physics to

even national security. Computers have seen nearly a 50 billion-fold increase in

computing power over the last 70 years [108]. Compared to other technologies, this

is virtually an unprecedented leap, enabling more than ever before, but bringing

with it a vast set of challenges.

One of those primary challenges is power. The Department of Energy has

set a nominal power cap for exascale systems at 20 MW per year. This roughly

equates to a yearly energy bill of $20 million dollars. However, reaching this goal

is not easy. It would be possible to construct an exascale system today using

conventional hardware and components, but DARPA estimated in 2008 that this

system’s power requirements would reach into the 100’s of MW, far beyond the
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Table 2. Previous, current, and next generation system statistics for Advanced
Scientific Computing Research Programs computing resources. Two areas of critical
importance to note are the node processors and the system size of the previous
machines compared to the current evolution. Visualization codes are expected to
work efficiently on concurrencies and architectures never seen before, meaning that
the challenges from exascale computing are already emerging now (modified table
from [59]).

System attributes NERSC  
Prior 

OLCF 
Prior 

ALCF  
Prior NERSC Upgrade OLCF Upgrade ALCF Upgrades 

Name 
Planned Installation Edison TITAN MIRA Cori 

2016 
Summit 

2019  
Theta 
2016 

Aurora 
2021  

System peak (PF) 2.6 27  10 > 30 150  >8.5 180  

Peak Power (MW) 2 9 4.8 < 3.7  10   1.7 13 

Total system memory 357 TB 710TB 768TB 

~1 PB DDR4 + 
High Bandwidth 

Memory 
(HBM)+1.5PB 

persistent memory  

> 1.74 PB 
DDR4 + HBM + 

2.8 PB 
persistent 
memory 

>480 TB DDR4 + 
High Bandwidth 
Memory (HBM) 

> 7 PB High 
Bandwidth On -

Package Memory 
Local Memory and 
Persistent Memory  

Node performance 
(TF) 0.460  1.452   0.204  > 3 > 40 > 3 > 17 times Mira 

Node processors Intel Ivy 
Bridge  

AMD 
Opteron    
Nvidia 
Kepler   

64-bit 
PowerPC 

A2 

Intel Knights 
Landing  many 

core CPUs  
Intel Haswell CPU 

in data partition 

Multiple IBM 
Power9 CPUs 

& 
multiple Nvidia 
Voltas GPUS  

Intel Knights 
Landing Xeon Phi 
many core CPUs  

 

Knights  Hill Xeon  
Phi many core 

CPUs   

System size (nodes) 5,600 
nodes 

18,688 
nodes 49,152 

9,300 nodes 
1,900 nodes in 
data partition 

~3,500 nodes >2,500 nodes >50,000 nodes 

System Interconnect  Aries Gemini 5D Torus Aries Dual Rail EDR-
IB   Aries 

2nd Generation Intel 
Omni-Path 

Architecture  

File System 

7.6 PB 
168 

GB/s, 
Lustre® 

32 PB 
1 TB/s, 
Lustre® 

26 PB 
300 GB/s 
GPFS™  

28 PB 
744 GB/s  
Lustre® 

120 PB 
1 TB/s 

GPFS™  

10PB, 210 GB/s 
Lustre initial 

150 PB 
1 TB/s 
Lustre® 

 ASCR  Computing Upgrades At a Glance 

maximum power bound [23]. This estimate has since dropped with new system

designs being introduced, but it is still far beyond the 20 MW cap.

Therefore, to reach the performance goal given the maximum power bound,

system designers are having to divert from the traditional approach for scaling

HPC systems, by transitioning them from multi-core to many-core. This transition

pares down the power of the traditional central processing unit in each node of the

supercomputer, and instead, gets its performance by utilizing many low power cores

on devices such as GPUs and Intel Xeon Phis. Indeed, this trend is already being
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seen as the current generation of Department of Energy computing systems are

being prepared for their 2018 redesigns/upgrades.

Table 2 shows the three DOE supercomputing systems that underwent

upgrades in the 2016 to 2018 time frame. Focusing on just Titan, a drastic change

took place in the topology of this system when it was replaced by Summit (the

current fastest computer in the world [9]). Titan contained 18,688 nodes, consumes

a total of 9 MW of power, and had a peak performance of 27 PF. However, Summit

drastically cut the number of nodes in the system down to just around 3,500

nodes, a total power consumption of 10 MW, and a peak performance of 150 PF.

This change highlights that the challenges of exascale are already here. Moving

from a system that had has million-way concurrency to a system with billion-way

concurrency necessitates a redesign of not only the simulations and codes running

on this system (focusing on parallelizing the underlying algorithms) [117], but also

in how data is saved and analyzed [17].

Taking it one step further, Table 3 shows the expected characteristics of

an actual machine at exascale. This table focuses on the system performance

versus the system I/O, in order to highlight the data challenge. The system peak

performance is expected to rise by a factor of 500, yet the I/O capacity is only

expected to rise by a factor of 20. This means that the current problems faced by

simulation codes in terms of how frequently they can save data are only going to

get worse. Take, for example, the leading-edge fusion simulation code XGC1 which

saves time steps on average every 100 steps [74]. Moving this code to an exascale

system without addressing the data problem is going to mean that time steps will

now only be saved every 1,000 to 10,000 steps. This will drastically increase the

likelihood that interesting physics will be lost between saves.
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Table 3. Current petascale system performance compared against the design target
for the 2023 exascale system. Moving to billion way concurrency and an exaflop
in performance are critical challenges for visualization when compared to current
visualization algorithm scaling and the network bandwidth when trying to move
data to disk (adapted from [99]).

System Parameter 2011 “2023” Factor Change

System Peak 2 PF 1 EF 500

Power 6 MW <= 20 MW 3

System Memory 0.3 PB 32 PB 64 PB 100-200

Total Concurrency 225K 1Bx10 40,000

Node Performance 125 GF 1 TF 10 TF 8-80

Node Concurrency 12 1,000 10,000 83-830

Network BW 1.5 GB/s 100 GB/s 1000 GB/s 66-660

System Size (nodes) 18,700 100,000 1,000,000 50-500

I/O Capacity 15 PB 300 PB 1000 PB 20-67

In situ processing can address this with faster analysis of data streams

without having to first send data to disk. This means that a higher temporal

fidelity of data will be available for analysis, while even potentially enabling the

possibility of interactive steering of the simulation through the visualization [14].

2.2 Scientific Visualization

Visualization is an enabling technology that facilitates insight into data

across many domains. It is an essential tool for confirming and communicating

trends in data to both the domain scientists as well as the general public [37].

Traditionally, scientific visualization has been performed as a post processing task,

where a simulation will save all of the data needed for visualization to disk, and

after the run is complete, visualization can begin. This approach has the benefit
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that the visualization software has access to all of the data from every step all at

once, making algorithms and visualization workflows easier to develop.

Most of the parallelism in current scientific visualization tools relies on

not just distributed memory parallelism, but specifically the message passing

interface (MPI). MPI is heavyweight, and requires a whole copy of the visualization

program per process. As we transition our visualization codes to higher and higher

concurrencies on the march to exascale, this overhead can exceed the system

memory and disk space before any data is even loaded [99]. This revelation is

important to consider when running a visualization tool at scales approaching those

the size of the scientific simulations themselves.

In order to achieve parallel scalability for massive threading, visualization

algorithms will have to be redesigned [100]. The key in this redesign will be to

focus on data model, data interdependencies, and portable performance. In the

following subsections, we will focus on two specific themes in visualization:

1. Section 2.2.1 will look at tools currently being used and developed by the

visualization community in terms of their scalability, data models, and

challenges for exascale.

2. Section 2.2.2 will explore current trends in graphics for visualization, focusing

on image generation in a highly parallel environment.

2.2.1 High Profile Scientific Visualization Tools. There are

several tools for scientific visualization that have gained wide adoption and use

in the community. Central to the performance of each of these tools are their

underlying data models and implementations. In the following sections we will

describe several high profile tools for scientific visualization, including how they
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handle data on a high level, describing how this impacts performance and use on

future systems, and implications for in situ visualization.

2.2.1.1 AVS and OpenDX. The Application Visualization System

(AVS) [134] and OpenDX [131] are two early versions of open source visualization

tools. AVS is a system that provides a modular interactive approach to forming

visualization pipelines. Visualization components are construted visually into flow

graphs to create the final visualization product. OpenDX emerged a few years

after AVS, and was the open source version of IBM’s Data Explorer. OpenDX also

had a visual programming interface for constructing visualization pipelines, and

contrained many built-in visualization options. These tools have lost prominance

with the emergence of newer tools with more refined API’s that allow easier

integration into existing scientific workflows and batch scheduling systems.

2.2.1.2 VTK. VTK, also known as the Visualization Toolkit [121], is

an ongoing software effort enabling extensible visualization and analysis for a wide

variety of data set types and filters. The underlying design goals of this toolkit

are to be portable, standards based, freely available, and simple [122]. Further,

two scalable visualization tools, ParaView [13] and VisIt [36], make use of VTK’s

foundational data models.

The following discussion of VTK will focus on its data model, as data

models are one of the most foundational elements of a visualization tool, and have

wide implications in terms of the expressiveness of the data model and its memory

overhead in a visualization pipeline.

VTK Data Model VTK’s data model exposes a few core mesh types, which

are extensible and can be applied to a wide range of scientific domains. The main

mesh types supported by VTK are rectilinear, structured, and unstructured. These
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three mesh types represent the geometric structure of the data set. Each mesh type

consists of point locations in three-dimensional space, cells that reference the area

between those points, and fields defined on the points or cells. The fields are stored

as values in any number of arrays of data, which can be aligned on the points or

cells, or unaligned. The values can range from simple scalar numeric quantities to

vector or tensor quantities to more complicated types, such as strings.

VTK Data Model Shortcomings for In Situ and Future Architectures

The main shortcoming of VTK’s data model is related to the expressiveness of the

model itself in accurately and efficiently representing the multitude types of data

produced by simulation codes. VTK’s data model supports only a small number

of mesh types, such as unstructured and rectilinear grids, but contemporary

simulations are representing more complex data instantiations. Even if the data

model can accurately represent the simulation data, the data is often forced into

an inefficient data structure because VTK has assumed the data will fall into one

of the few defined mesh types. Often times, the data does not fit into one of these

structures, so it must be forced into a less efficient one.

Another shortcoming of VTK’s data model is related to parallelism on

future architectures. VTK’s data model does not support the recent trends in

hardware parallelism resulting from accelerators, such as GPUs. Its data model

is also limited in that it does not leverage or support data parallelism.

Lastly, the VTK data model poses challenges when operating on very large

data. In the general VTK visualization pipeline, a filter is applied to a data set,

and the result is a completely new data set. This means that in general, each

filter applied to a VTK data set results in a new data set being created, severely

bloating memory. This approach to memory management in a data model does not

19



scale well for in situ approaches, and will be even more problematic on the next

generation of supercomputers.

In summary, VTK’s data model lacks support for necessary features, non-

Cartesian space, dimensionalities greater than three, and mixed-dimensionality

elements in a single data set. As we move to the next generation of architectures

and continue evolving scientific simulation codes, there is an increasing demand for

an improved and more advanced data model that is extensible and can enable us

to represent a wider range of data types. These new representations and memory

efficiency are especially important for use in situ, when memory use and an easy

translation from simulation data representation to visualization data representation

is needed.

2.2.1.3 VisIt and ParaView. VisIt and ParaView are two open

source visualization tools developed, at least in part, through the efforts of U.S.

National Laboratories. The history of these tools span many years, and will not

be presented here. Instead, the primary design philosophy and major features for

end-users will be discussed and then compared to the needs of in situ visualization.

VisIt VisIt is an end-user visualization and analysis tool designed to work on

very large and diverse data [35]. Moreover, VisIt was designed for more than just

data visualization. It lists five primary use cases that it focuses on [36]:

– Visual Exploration: the creation of images from data.

– Debugging: users can locate hard-to-find problems in their data.

– Quantitative Analysis: users can perform quantitative analysis through the

interface to ask very complex questions of their data.
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– Comparative Analysis: allows different simulation runs or multiple time steps

to be compared.

– Communication: users present their findings to a large audience through

movies, images, and plots.

Core to the VisIt design is its extensibility. It allows for new components to be

inserted by end-users easily. This extensibility and ease of use makes it a very

successful tool, one used across a multitude of scientific domains.

VisIt is designed to work as a distributed system. It has a server that

utilizes parallel compute capabilities coupled with the client running as the user

interface. In addition, VisIt has capabilities of running in situ with LibSim [75],

enabling users to utilize the full feature list of VisIt during in situ instrumentation

(the in situ capabilities will be explored further in Section 2.3). VisIt has been

shown to scale effectively to tens of thousands of cores, and is widely used by

scientists running on some of the largest systems all over the world.

In summary, VisIt is a very powerful visualization tool, that is applicable

in a wide variety of use cases. However, two limitations do exist when looking at

the use of VisIt in situ: VisIt utilizes VTK under the hood, so the data model

issues from VTK come into play. In addition, the visualization library is fairly

heavy weight, and can cause problems when performing different types of in situ

integrations, potentially making it a sub-optimal approach.

ParaView ParaView is another end-user tool for the visualization of large

data. ParaView was designed with the philosophy of being open-source and multi-

platform, extensible for different architectures, allowing support for distributed

computation, and providing an intuitive user interface.
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ParaView was designed as a layered architecture, with three distinct

layers [13]. The first is VTK, which provides the data model and underlying

algorithms. Second is the parallel extension to VTK to allow for streaming and

distributed-memory parallel execution. Third is ParaView itself, predominantly

composed of the GUI.

ParaView has been shown to scale well in distributed-memory parallel

execution mode, on very large data. In addition, ParaView enables in situ

integrations through ParaView Catalyst [50] (the in situ capabilities will be

explored further in Section 2.3).

In summary, ParaView is a very powerful visualization tool, that is

applicable in a wide variety of use cases. However, two limitations do exist when

looking at the use of ParaView in situ: ParaView utilizes VTK under the hood,

so the data model issues from VTK come into play, in addition (as with VisIt),

the visualization library is fairly heavy weight, and can cause problems when

performing different types of in situ integrations, potentially making its a sub-

optimal approach.

2.2.1.4 EAVL, Dax, PISTON. EAVL [93, 94], Dax [97], and

PISTON [83] are three frameworks developed with a mission to explore methods

of transitioning visualization algorithms to the available parallelism of emerging

many-core hardware architectures targeted for exascale [123].

? EAVL (Extreme-scale Analysis and Visualization Library) was developed to

address three primary objectives: update the traditional data model to handle

modern simulation codes; investigate the efficiency of I/O, computation and

memory on an updated data and execution model; and explore visualization

algorithms on next-generation architectures.
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The heart of the EAVL approach is the data model. EAVL defines more

flexible meshes, and data structures which more efficiently supports the

traditional types of data supported by de-facto standards like VTK, but also

allows for efficient representations of non-traditional data. Examples of non-

traditional data includes graphs, mixed data types (e.g., molecular data, high

order field data, unique mesh topologies (e.g., unstructured adaptive mesh

refinement and quad-trees)).

EAVL uses a functor concept in the execution model to allow users to

write operations that are applied to data. The functor concept in EAVL has

been abstracted to allow for execution on either the CPU or GPU, and the

execution model manages the movement of data to the particular execution

hardware.

? The primary strength of the Dax Toolkit is its exploration of achieving high

node-level concurrency, at the levels needed for efficient exascale visualization.

This is accomplished through the use of worklets, which are functions that

implement a given algorithm’s behavior on an element of a mesh, or a small

local neighborhood. The worklets are constrained to be serial and stateless,

which enable concurrent scheduling on an unlimited number of threads.

? PISTON was developed with the goal of facilitating the development of

visualization and analysis operators that had highly portable performance.

The idea being that there are many different architectures that a visualization

algorithm may be run on, and developing and tuning algorithms specific to

each architecture is an inefficient and undesirable approach for visualization.

To that end, PISTON is built on top of Thrust [21], which provides
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implementations of data-parallel primitives in CUDA, OpenMP, and TBB.

This approach allows algorithms to be implemented once, and ported to the

correct architecture at compile time.

In summary, each of these frameworks provided valuable insight into

methods for transitioning visualization pipelines to many-core architectures, and

to natively supporting in situ visualization. The best elements from each of these

frameworks were used to form the foundation for VTK-m.

2.2.1.5 VTK-m. VTK-m is an effort that has merged the best

aspects of three previously described projects, EAVL, Dax and PISTON [103]. The

motivator behind VTK-m is to create a high-performance portable visualization

library. The portable nature of VTK-m is achieved through its use of data-parallel

primitives (DPPs), first described by Blelloch [29]. Data-parallel primitives are

designed in a way such that a variety of algorithms can be expressed using a

relatively small selection of DPPs, such as map, scan, reduce, and so on. These

primitives allow VTK-m to be moved between many different architectures without

having to redesign each individual visualization routine. Central to the portable

nature of VTK-m is the underlying data model, which is similar to that of EAVL,

but with even greater freedom.

The data model in VTK-m was designed to be flexible enough to

accommodate the myriad of different data layouts of scientific domains that may

use VTK-m, while still providing a clear set of semantics. Furthermore, the data

representation must be space efficient and be accessible on the different processor

types in use (that is, work on both CPU and GPU). As shown in Figure 1, a VTK-

m data set consists of three components: cell sets, coordinate systems, and fields.

By allowing arbitrary combinations of coordinate systems, cell sets, and fields,

24



CoordSystems[]
Fields[]
CellSets[]

Data Set

Structured
Dimension

CellSet
Name

Dimensionality
LogicalStructure

Data

CoordSystem Field
Name
Order

Association
Data

Explicit
Connectivity

Figure 1. Overview of the VTK-m data model.

VTK-m is able to overcome the inefficiencies and difficulties in data representation

imposed by traditional data models. Traditional data models often choose a set of

rigid characteristics for a data set. These rigid characteristics then are labeled as

a specific type of mesh. For example, a uniform data set has regular axis-aligned

coordinates and a logical [i, j, k] cell arrangement. An unstructured data set has

fully explicit coordinates (a [x, y, z] value separately defined for each point) with

fully explicit cell connectivity defined by arrays of indices. This fundamentally rigid

way of looking at and representing data makes the traditional data model the less

expressive and less efficient choice for high performance computing applications.

VTK-m allows for the much needed more exact representation, and with the

burden of the traditional data model removed, VTK-m programmers can create

more expressive data layouts. In fact, it is much easier to represent data types

such as non-physical or high dimensional data in a VTK-m data model versus that

in the traditional paradigm. Another important example of this efficiency is that

VTK-m is designed to function with zero copy. This is an important motivator for
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in situ programming as VTK-m can utilize the data arrays from the simulation in

place, saving both time and space.

In summary, the design directions taken by VTK-m are pushing the current

boundaries of visualization from the multi-core realm into the many-core realm,

prepping the visualization community for this inevitable transition. VTK-m is

being developed as a header only library, which should ease integration issues when

using VTK-m in situ, giving it great flexibility.

2.2.2 Graphics in Support of Scientific Visualization. The

creation of a graphics system that performs tasks in real-time is a challenging

area of study for both graphic system designers as well as scientists employing

new graphics algorithms in that space [106]. However, the challenges are justified,

as visualization can be one of the most informative methods for communicating

the essence of an experiment or data to scientists or the public [49, 114]. With

ever increasing geometry and pixel counts, the task of employing an algorithm

with a sufficient level of parallelism has become paramount. To that end, there

are three basic classes of parallel rendering algorithms recognized in this space,

sort-first, sort-middle, and sort-last rending. These algorithms each have been

designed for applications in different domains. Sort-last rendering performs best

when the geometry is massive compared to the pixel count, commonly seen in HPC

visualization. Sort-first on the other hand, is the reverse of sort-last, performing

best on low geometry counts with high pixel densities, commonly seen in virtual

environment generation. Sort-middle is a hybrid approach that attempts to take

the best elements form both sort-first and sort-last.

In this section, we will first describe a basic parallel graphics pipeline and

the three techniques for geometry sorting, followed by a discussion of optimized
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algorithms for sort-last rendering, and a framework designed to composite images

at massive scale. This analysis is important for when we move to discuss in situ

visualization, as rendering can be a major bottleneck for in situ visualization tasks.

2.2.2.1 A Parallel Graphics Pipeline. The heart of a parallel

graphics pipeline can be viewed as a sorting problem, where the contribution of

each object in a given view by each pixel must be determined. The location of this

sort determines the entire structure of the resulting parallel algorithm. The sort

can, in general, take place anywhere in the rendering pipeline: during geometry

processing (sort-first), between geometry processing and rasterization (sort-middle),

or during rasterization (sort-last). Sort-first means redistributing raw primitives

(before their screen-space parameters are known). Sort-middle means redistributing

screen-space primitives. Sort-last means redistributing pixels, samples, or pixel

fragments [96]. Using any one of these choices leads to a completely different class

of parallel rendering algorithms.

The pipeline in a parallel graphics system can be thought of as having

two primary parts, geometry processing and rasterization (see Figure 2). Image

geometry is generally parallelized by assigning each processor to a subset of the

objects in the scene. Rasterization is often parallelized by assigning each processor

a portion of the pixel calculations [96]. Each of these steps, depending on the

algorithm, may incur redistribution costs as well. Image geometry may incur

redistribution costs as volume data moves between nodes to facilitate interpolation

of the assigned points, while rasterization may occur costs as local images are

moved to facilitate their combination into a complete image [109].

Sort-first In sort-first rendering, the primitives are distributed as early in the

rendering pipeline as possible (during geometry processing) to the processors that
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Figure 2. Graphics pipeline in a fully parallel rendering system. Processors G
perform geometry processing, while processors R perform rasterization (image from
[96]).

will be performing the remainder of the calculations. This method is most often

used when there is a very large pixel count (as compared to geometry), as screen

regions are divided among the available processors (in essence parallelizing over the

screen space).

These algorithms begin with each processor being assigned a region of

the screen and taking an arbitrary portion of the data, and then beginning

a transformation on that data. The transformation is applied until it can be

determined to which portion of the scene that primitive falls (usually calculating

the bounding box [96]). Once the scene space for all of the primitives are found,

those that are located on processors to which they do not belong (according to the
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screen space that has been assigned to that processor), are redistributed over the

network to the appropriate processors.

In summary, sort-first rendering is advantageous due to its low

communication requirements when data primitives are sparse, and due to a single

processor carrying out the entire pipeline for a portion of the screen. This method’s

drawbacks include its susceptibility to load imbalance when primitives clump into

regions on the screen, giving certain processors much more work.

Sort-middle In Sort-middle rendering, the data is redistributed in the middle

of the rendering pipeline. At this stage, all primitives have been transformed

into screen coordinates and are ready for rasterization [96]. Each frame is

first transformed by the geometry processor, and then transmitted to the

appropriate rasterizer (may or may not be the same processor depending on the

implementation).

The general advantage of the sort-middle technique is its straightforward

implementation, and the redistribution occurs at a natural place. The

disadvantages are that it can have high communication costs and is susceptible

to load imbalance when primitives are not evenly distributed across the screen.

Sort-last The sort-last technique defers sorting until the end of the rendering

pipeline. Each processor in this paradigm are assigned arbitrary subsets of the

primitives [96]. Each of the processors computes pixel values for its subsets,

irregardless of where they fall on the screen. This means that this algorithm

scales well and gets a performance boost through the utilization of more and more

processors [142]. At the end of the pipeline, pixels are transmitted over the network

to be composited and their visibility resolved. It is at this point, however, that a
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bottleneck can develop. Interactive or real-time applications which rely heavily on

the network to transmit all of the pixel data will suffer in performance due to the

distributed pixels. Depending on the algorithm’s implementation, this can be a

major drawback in sort-last techniques.

In general, sort-last parallel rendering is the only proven way of parallel

rendering at scale. This is mainly because the full rendering pipeline is carried out

by individual processors until pixel merging is required. In addition, this approach

is less prone to load imbalance. One disadvantage, however, is that the performance

of sort-last parallel rendering drops sharply as the resolution of the display

increases [104]. Furthermore, the final compositing step is generally regarded as

the bottleneck for sort-last algorithms, so methods reducing the prevalence of this

bottleneck will be of great value to scientific visualization at scale [101].

Optimized Algorithms for Sort-Last Rendering With sort-last

rendering being the widely accepted choice for performing image compositing at

scale, a lot of work has been done in creating algorithms in this space that are

highly efficient. In this section, we will list a few of the most well known and used

algorithms, as well as look at a piece of open source software that integrates some

of the most recent advances in compositing algorithms.

Direct Send In sort-last parallel rendering, the hardest task is the final image

composting. Generally, n rendering channels will generate n full-size partial images,

containing color and potentially depth [47]. These images must then be merged to

form the final rendering. Direct send compositing divides the final image gathering

task into n screen-space tiles to avoid exchanging full size images between the n

processes. Each of the tiles is associated to a single channel for compositing, and at
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the end of the compositing process all of the partial tiles are assembled to form the

final image.

Another strength of this algorithm are the number of synchronization

points required. In this algorithm, only two synchronization points are needed,

meaning less communication overhead on the system. Communication in this

method does become a problem with larger geometries. The amount of data that

must be transferred across the network is proportional to the rendering resolution

as the pixels from each of the sub images must be sent across the network and

finally composited. This process is particularly slow when using the TCP/IP stack.

Eilemann suggests that this bottleneck can be reduced by using faster network

technologies such as tunneling or asynchronous transfers [47], but the overall data

transfer in this scenario still remains high, and as resolutions and data set sizes

increase at a much higher rate than network speed, this bottleneck becomes a

major obstacle.

Binary-Swap The binary-swap method is an efficient and simple compositing

algorithm that repeatedly splits the sub-images and distributes them to the

appropriate processor for compositing [127]. At every compositing stage, all

processors participate by being paired with another processor, splitting their image

plane in half, and each one taking responsibility for one half of the plane. This

means that this method will take exactly log(n) compositing stages to complete.

The idea behind binary-swap, is that only non-blank pixels affect the

composited results, meaning that binary-swap exploits the sparsity of the sub-

images by creating a bounding rectangle that exactly encompasses the non blank

region in an image. The determination of this bounding rectangle takes O(A)

time, where A is the number of pixels. Most importantly however, once all of the
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bounding rectangles are determined, it only takes O(1) time to merge two bounding

rectangles, making updates to the bounding box of the composited image very

efficient [127].

The primary problem of this method is the occurrence of load imbalance.

Load imbalance may occur when the split of an image takes place in such a way

that paired processors are given grossly different amounts of work. This means that

one of the processors will have a much larger run time compared to its mate.

2-3 Swap At its core, the 2-3 swap image compositing algorithm is a

generalization of a binary-swap to an arbitrary number of processors [146]. This

algorithm is derived from the observation that any integer greater than one can be

decomposed into a summation of a list of twos and threes, meaning that the initial

partition of processors in this algorithm can be done using combinations of twos

and threes. In fact, it follows that if the number of processors is a power of two,

then 2-3 swap essentially becomes a binary-swap in execution stage.

This algorithm is initially started by creation a tree of the number of given

processors. Each non-leaf node in this tree has either two or three children, which

determines the groups of processors during each stage of the image compositing

algorithm. The initial work is evenly distributed among M participating processors

in a group.

The primary pros of the 2-3 swap algorithm are that it is highly flexible

and can utilize any number of processors for compositing, and each processor

participates in all stages of compositing, giving maximum resource utilization.

Radix-K Radix-K is a configurable algorithm for parallel image compositing

[114, 65]. A unique aspect of Radix-K is its ability to overlap communication and
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computation, making this algorithm very customizable to the underlying hardware

of a system.

In general, the Radix-k algorithm for image compositing builds on the

previous contributions of binary-swap and direct send. By parameterizing the

number of message partners in a round, it unifies these two algorithms by factoring

the number of processes into a number of rounds with a separate radix for each

round [114].

Improving Compositing Performance with IceT Of the previous four

algorithms, Radix-K is the leader in terms of work division. This algorithm

performs highly parallel computation in conjunction with communication. The

worst algorithm in terms of work division is direct send. Direct send is highly

susceptible to work imbalance and suffers when it comes to having to communicate

much larger segments to the final image. 2-3 swap and binary-swap are also

susceptible to work imbalance, with 2-3 swap being more resilient. However, as

stated previously, as Radix-K is able to communicate while running computation

asynchronously, it mitigates imbalance and uses it to its advantage.

IceT, a leading production-quality image compositing framework, takes the

problem of image compositing a step further, creating a testbed for enhancing

these and other leading edge image compositing algorithms [101]. In this work,

Moreland et al. found that not only were they able to create a testing ground for

many different compositing algorithms simultaneously, but further, they were able

to drastically improve compositing algorithms (Radix-K especially) while efficiently

scaling to 64K cores. Their work demonstrates that image compositing still has

room for improvement, and that through works like theirs, image compositing may
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soon scale efficiently for exascale sized runs. For more discussion of the challenges

of scaling visualization tasks to exascale, see Section 4.2.8.

2.3 In Situ Visualization

The total amount of data that a supercomputer can generate with a

simulation far surpasses its ability to write all of that data to persistent storage.

For example, Figure 3 shows the current relative bandwidth of the total compute

capability of the Titan supercomputer at Oak Ridge National Laboratory versus

its storage bandwidth. The five orders of magnitude difference between the

two demonstrate the intractability of writing all scientific data to disk prior to

performing visualization. This reality demonstrates the need for in situ on current

and future machines, as the problem is only worsening.

Figure 3. A plot of the relative bandwidth of system components in the Titan
supercomputer at the Oak Ridge Leadership Class Facility. The widths of the blue
boxes are proportional to the bandwidth of the associated component. Multiple
scales are shown to demonstrate the 5 orders of magnitude difference between the
computational bandwidth and the storage bandwidth (adapted from [20]).
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In situ as a technology is not new, with the earliest production-quality in

situ graphics being seen as early as the 1960’s [18]. Therefore, it is not surprising

that several past surveys of in situ and in situ techniques have been published. In

1998 Heiland et al. [62] presented a survey of co-processing systems, which covered

some of the basic use and availability of predominant co-processing frameworks. A

year later in 1999, Mulder et al. [107] surveyed predominant computational steering

environments, whose roots lie in in situ visualization and analysis. Recently

in 2016, Ayachit et al. [18] and Bauer et al. [20] present two different takes on

the state of in situ technology and challenges, as well as discussions of in situ

frameworks. This section builds on the ideas presented in those surveys, and

presents current in situ terminology, challenges, frameworks, and in situ research

covering different motivations and use cases for in situ.

2.3.1 In Situ Terminology. In situ visualization is an umbrella term

used to describe many different visualization configurations where the visualization

and analysis routines are run while the simulation is still in progress, reducing the

amount of data that must be transferred over the network and saved to disk [87].

The visualization community has played fast and loose with the term in situ, and it

has come to mean many different things. Current efforts are underway to bring the

visualization community all onto the same page about terminology, with an effort

termed the “In Situ Terminology Project.” The terminology being developed in

this report will go a long ways towards clarifying the meaning of in situ terms for

the community and our stakeholders, but will not be presented here as the report

is still under development. Instead, I will stick with the more loose and general

terms currently in use by the community, and will make the switch to the new

terminology set as it is introduced to the larger visualization community.
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The terms I will stick to in this section are as follows:

– In situ: Umbrella term used to describe all different types of in situ setups.

– In-line: In this dissertation, we define in-line to mean when the simulation

and visualization code run in the same process using the same resources as

the simulation.

– In-transit: In this dissertation, we define in-transit to mean when the

simulation transfers data over the network to a separate set of visualization

nodes for processing.

– Hybrid Coupling: In this dissertation, we define hybrid coupling to mean

when there are visualization components being run on the same process as

the simulation and data is still being transferred over the network to separate

visualization processes on a separate set of visualization resources.

For simplification as shown in Figure 4, we view the in-line and in-transit

paradigms as on-node and off-node respectively. In-line coupled can be thought of

as running on the same node as the simulation, and not utilizing asynchronous data

transfers from the simulation to the visualization routines, while in-transit can be

viewed as on-node. Now that the definitions of in situ have been presented, we will

present an overview of the challenges of using in situ techniques, and its barriers to

adoption by the simulation community.

2.3.2 In Situ Challenges and Opportunities. It has only been

recently that some scientists have begun to see the need to adopt the in situ

approach for visualization and analysis of large-scale simulations [87]. This

hesitancy is due to essentially three primary factors. First, the traditional paradigm

of post-hoc visualization has meant that scientists rarely had to use supercomputer
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(a) In-line configuration. (b) In-transit configuration.

(c) Hybrid coupling configuration.

Figure 4. Simulation and visualization resource configurations for three different
types of in situ.

time to perform their visualizations. The in situ paradigm would break this

tradition, and scientists see visualization as a new cost and overhead to their

science. Second, integrating in situ into a simulation has the potential to be a

monumental task. In addition to the integration costs, the overhead of having

visualization routines packaged into the simulation code in the in-line case can

cause dependency issues between the simulation and visualization routines, while

also bloating the size of the simulation binary. An additional side effect of this

integration is the sharing of memory between the simulation and visualization

routines, which can cause contention on compute nodes. Third, and the most

challenging problem with in situ, is the need to know what to visualize a priori.

That is, with in situ, it is required to know what to visualize including regions,

values, as well as the type of visualization before the simulation starts.
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These problems may seem daunting at first glance, but the issues associated

with each can be mitigated through different in situ implementations. Not all

in situ work has to be about visualization. In fact, a great strength of in situ

methods is the ability to access all of a simulation’s data during the course of a

simulation, and only save what is interesting. This means in situ is a great tool for

visualization, but also for data manipulations such as data reductions, explorable

feature extractions, simulation monitoring, and the generation of statistics [88].

Some example work in this area includes reducing data output to an alternate

explorable form, computing collections of images, and storing images enhanced with

fields and meta data for post hoc exploration.

An example of creating a reduced alternate data form is by Agranovsky et

al. [11]. They describe a novel process for improved post hoc data exploration using

particle advection. Instead of saving out vector fields every nth iteration, a basis

trajectory is saved. A basis trajectory is a snapshot of a particle movement between

the saved snapshots. This means that a representative set of particles are traced

in situ while the simulation runs, and their trajectories are output. This technique

allows for new particle trajectories to be interpolated between known trajectories,

increasing both speed and accuracy.

Examples of computing collections of images for post hoc exploration comes

from Yen et al. [143], Chen et al. [34], and Ahrens et al. [15, 16]. Yen et al. enable

post hoc interaction with images through lighting and color transfer function

changes, performing slices, and changing view. Chen et al. take the approach of

visualizing a large sampling of possible visualization configurations in situ (various

isocontour levels, different views, etc.), and then providing an interface to explore

the collection interactively. Ahrens et al. take the approach of saving many images
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from many angles from a simulation instead of writing simulation data to disk.

The system is called ParaView Cinema. The idea is that if hundreds or thousands

of images are created for a given time step, that it will be possible to create an

interactive database for a time step that will allow interactive exploration much

like that of VisIt or ParaView. In addition, this system has the capability of

recreating a facsimile of the surface of the data based on the many saved images,

letting different color maps and scalar fields be applied to the images during the

post hoc exploration. The ParaView Cinema approach was demonstrated using a

large-scale model for prediction across scales ocean simulation, and it was shown

that the interactive database could be generated at twice the cost of generating an

equal number of traditional in-line in situ images. This cost may seem high, but the

interactive database has a lot more functionality than a traditional image, allowing

for the greater flexibility of post hoc exploration.

Finally, examples of generating images with enhanced meta data for post

hoc exploration comes from Tikhonova et al. [132, 133] and Fernandes et al. [51].

Tikhonova et al. describe a method of storing layers of isosurface images that could

later be composited together for post hoc exploration. Fernandes et. al. used a

similar technique for volumetric renderings (saving areas of interest along with

depth information) that could be explored post hoc.

The following three sections will present more in depth information about

the three in situ techniques. They will discuss the strengths and weaknesses of

each technique, provide a look at in situ frameworks in those categories, and give

examples of past works performed using each paradigm to motivate the technique.

2.3.3 In-line In Situ. With in-line in situ, in situ routines will

directly share the same resources as a simulation. This has many different
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advantages and disadvantages. By sharing the same compute nodes, the simulation

and visualization codes compete for memory, making the careful design of in situ

routines critical with in-line in situ. An inefficient or buggy implementation could

slow the simulation, or worse, cause it to crash.

Further, by sharing the same resources, the in situ routine will be required

to operate on the same level of concurrency as the simulation, which could cause

slow performance with some in situ routines. Moreover, with this approach,

the simulation code must wait for the in situ processing to complete after each

simulation time step before it can carry on with computation [118]. This lock-step

approach to computation is not attractive to many simulation scientists, which is

part of their angst against using in situ techniques.

Even with these potential issues with in-line in situ it is a widely used

technique, with many different works taking advantage of data locality and

computing power available to a full scale simulation.

2.3.3.1 In-line In Situ Frameworks. This section presents a look

at in-line in situ frameworks, and explores their features and restrictions. While

many in situ frameworks have the potential to operate in several different modes,

the frameworks presented here either operate fully or primarily in the in-line model.

For each framework we give a short description of functionality and categorize them

according to the in situ methodologies they employ.

Cactus Cactus [56, 1] is a development environment in which an application

can be developed and run. In addition, Cactus has the capability of instrumenting

legacy codes, to prevent the need for redesign within the Cactus framework. The

remote visualization and data analysis capabilities of Cactus are achieved with

in-line in situ. Visualization operations are performed on the computational
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nodes, and the resultant geometry can then be sent to a remote viewer or saved

to disk. An additional capability of Cactus, is that computational steering can

be accomplished through the remote viewer, on predefined variables in the

instrumented code.

CUMULVS The Collaborative User Migration User Library for Visualization

and Steering (CUMULVS) [67] is an infrastructure to allow multiple users the

ability to monitor and steer of a simulation remotely. Users can connect and

disconnect at will during the course of the running simulation. CUMULVS is

capable of text and 2D output and visualization from an instrumented simulation.

The original 2D visualization was supported through the use of AVS. A downside

of the CUMULVS system is that it does not support the output of images, graphics

are used purely for simulation monitoring.

ParaView Catalyst ParaView Catalyst [50, 19] is the ParaView library which

allows for in situ visualization of simulation output using the full visualization

feature-set of ParaView, or subsets of features, by using reduced size binaries when

minimal memory overhead to the simulation is required. Catalyst operates in a

in-line fashion, pausing the simulation while data operations take place.

Catalyst also allows for simulation steering and monitoring by connecting

the Catalyst routines instrumented into the simulation to the ParaView

application. This is a powerful feature that allows researchers to step through their

code and dynamically modify visualizations based on the progress of the simulation.

In order to use Catalyst it must be instrumented into the simulation code,

and an adapter needs to be written to define the interface between the simulation

and Catalyst. This adapter defines how the simulation can call Catalyst as well as
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maps the simulation data to the VTK data model used by Catalyst. Catalyst has

proven to be highly scalable, with the current largest run being on 256 thousand

cores.

Ascent Ascent [63, 77, 78, 79] is a system designed to explore in situ

visualization and analysis needs for science codes on exascale architectures. An

additional use for the infrastructure is as light weight prototyping environment for

in situ analysis and visualization routines. This prototyping environment allows

for fast implementations of in situ ideas. It uses Conduit [3] for a data model,

VTK-m for the visualization and analysis pipeline, and IceT [98] for parallel image

compositing.

Ascent supports execution on many core environments, multiple

programming languages, and works within a batch environment. Additionally,

it supports zero-copy of the data when possible. Ascent has been extended in

recent years to support experimental in-transit work, as well as extensions to other

infrastructures such as Cinema, Jupyter notebooks, and VisIt.

VisIO VisIO [95] is an I/O library for use on distributed file systems within

visualization applications. It includes a new scheduling algorithm to help preserve

data locality within a simulation by assigning visualization intelligently to co-

locate computation and data. The core of this framework revolves around the use

of the Hadoop distributed file system in conjunction with a VisIO enabled reader

in ParaView. One drawback of this approach is that it requires the use of the

Hadoop file system, which could prove very time consuming to use in an existing

application.
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VisIt Libsim VisIt Libsim [139] is the VisIt library which allows for in situ

visualization of simulation output using the full visualization feature-set of VisIt.

Libsim operates in a in-line fashion, pausing the simulation while data operations

take place. In fact, when the Libsim library is inserted into a simulation program,

it makes each process of the simulation act much like a VisIt compute engine,

operating in the same data space as the simulation.

One interesting feature that stems from the engine-viewer approach used

in VisIt, is that the Libsim routines within the simulation listen for a request to

connect by a VisIt process, meaning that users can connect and disconnect from

the in situ routines as needed to perform periodic simulation steering or to check

validity.

One drawback of the Libsim approach is that it requires instrumentation of

the simulation code. Several calls need to be inserted into the simulation, as well as

the Libsim binary itself. In some cases, if a simulation does not have a well-defined

loop to simulate a single time step, Libsim suggests restructuring of the simulation

code.

Nevertheless, Libsim remains a powerful in situ visualization tool, largely

due to the large array of visualization capabilities within the VisIt tool itself. It

has also been shown to scale well, nearly as well as VisIt itself, up to 62 thousand

cores [140].

2.3.3.2 Related Work: In-line In Situ. Implementations using in-

line in situ are often concerned most with the full utilization of a resource. That

is, the desire is to run the simulation at the largest capacity possible, not reserving

nodes for visualization or I/O. This implementation does have the advantage that

the visualization routines have direct access to the full simulation output, and the
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full parallel capacity of the simulation machine. The following are several works

that utilize in-line in situ for visualization.

Yu et al. [145] demonstrate an in-line system for volume rendering of jet

fuel combustion data, in addition to a remote viewer application used to view

the volume rendered images during the simulation run, as well as send requests

for different viewing angles or transfer functions to the simulation code. The

visualization code in their case was directly integrated into the simulation code,

and worked off of pointers to the simulation results in order to reduce data

duplication. As this system required the simulation to pause while visualization

was taking place, it had a large effect on simulation runtime, with combined

visualization and I/O times (from compositing) taking up to 4x more time than

the simulation when done at every time step. This was reduced to two orders of

magnitude less than the simulation time though, when the temporal fidelity was

dropped to every ten time steps.

Woodring et al. [141] describe an in situ workflow for saving a simulation-

time random sampling of large-scale particle datga from a cosmological simulation.

Their workflow uses an extension of the kd-tree stratified random samping

algorithm to generate level-of-detail output files for post hoc visualization. The

level of detail approach is used in order to reduce storage bottlenecks and give them

an integrated approximation error for their views. Using the kd-tree approach they

are able to tune the output size to their specific needs by changing how many levels

of the tree are written to disk, and show that at the lowest level of detail that they

can write only 1/64th of the total simulation data to disk. This approach is useful

in that it still allows for exploration of the data post-hoc, which is advantageous to

static images.
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Lorendeau et al. [84] describe a workflow using the Catalyst in situ

visualization library for visualizing a computational fluid dynamics code. Catalyst

is a ParaView library that defines in situ workflows using parallel VTK. In the

described workflow the authors developed an adapter to their simulation worfklow

for Catalyst and use it to perform their visualization operations. By introducing

Catalyst they were able to perform their visualization operations in situ and save

on the amount of data written to disk. They saw a 20 to 30% overhead associated

with their initial implementation, but predict it can be reduced with better memory

management in their adapter.

2.3.4 In-transit In Situ. In-transit in situ offers many new

configurations for visualization not seen with in-line in situ. The most common

configuration is to have a set of dedicated visualization nodes on the same machine

as the simulation, which reduces the effects of network latency that is seen when

moving data to another machine. This separate allocation allows the visualization

routines to run concurrently with the simulation, not impacting its runtime as with

in-line methods.

This benefit of a separate set of visualization nodes is also a primary

downside of in-transit visualization, as simulation scientists rarely want to give

up portions of compute power for visualization tasks. Recently however, it has been

shown that by streaming simulation data to an allocation of staging nodes, that

the effects of disk latency can be hidden by staging the disk writes to the separate

allocation, and letting them run while the simulation continues [10, 110, 102].

Given this, the approach of dedicating a set of the simulations nodes to staging

becomes more palatable to simulation scientists, and further allows the introduction
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of in situ visualization techniques on that separate allocation, which can further

benefit the simulation.

2.3.4.1 In-transit In Situ Frameworks. This section presents a

look at in-transit in situ frameworks, and explores their features and restrictions.

While many in situ frameworks have the potential to operate in several different

modes, the frameworks presented here either operate fully or primarily in the

in-transit in situ model. For each framework we give a short description of

functionality and categorize them according to the in situ methodologies they

employ.

EPIC The Extract Plug-in Components Toolkit (EPIC) [46] is designed to

create in situ data surface extracts from a running simulation. These extracts can

be viewed in situ using a prototype version of FieldView, or extracts can be saved

to disk. One downside of EPIC is that it requires the simulation to use the EPIC

defined MPI communicator. This requirement could cause substantial integration

issues for codes wishing to employ EPIC.

Freeprocessing Freeprocessing [52, 7] is an in situ interposition library

designed to reduced the barrier to entry for simulations to introduce in situ

visualization. The premise is that many visualization codes avoid in situ technology

as it has a large upfront cost for integration, and worse, if it requires direct

manipulation of the simulation source code, it could have negative repercussions

for performance and code stability. Freeprocessing has the ability to do in-

transit visualization using staging nodes, in either a synchronous or asynchronous

mode. Further, Freeprocessing can connect to existing visualization tools such
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as VisIt Libsim or ParaView Catalyst to take advantage of existing work in high

performance visualization routines.

ICARUS Initialize Compute Analyze Render Update Steer (ICARUS) [118] is

a ParaView plug-in for in situ visualization and computational steering. It operates

in the in-transit in situ environment using a shared memory mapped HDF5 file for

data access. It has minimal modification requirements for a simulation code, but

only operates on the HDF5 file format. Simulation steering is accomplished through

the use of the shared file interface, where each side can read and write from the files

to pass steering messages.

pV3 Parallel Visual3 (pV3) [61, 60] is a parallel visualization system

primarily targeted at computational fluid dynamics codes. It utilizes a client-

server architecture, and has built in visualization capabilities. The client-server

architectures allows the system to connect to an instrumented simulation at

will. The pV3 system allows for computational steering, in-line, and post-hoc

visualization. pV3 is no longer under development.

2.3.4.2 Related Work: In-transit In Situ. Past works that utilize

in-transit in situ are most often concerned with the impact that visualization has

on a running simulation. Works in this category often try to reduce the effect that

visualization has on the simulation time as much as possible, and often do so by

running on a separate allocation. The following are several different approaches to

in-transit visualization.

Ellsworth et al. [48] describe a time-critical pipeline for weather forecasting

using the GEOS4 simulation code. This code is run under very tight time

constraints four times a day, which requires the visualization to be performed
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with minimal overhead. The visualization is achieved in this workflow by copying

the simulation data to a separate shared memory segment where a discrete

visualization system then accesses and operates on the data. This setup does

require that the simulation be instrumented, and several new calls had to be

added directly to the simulation code to redirect the output to the desired shared-

memory segment. The resultant time-varying visualizations are then saved to disk

or displayed on a tiled wall display.

Ma et al. [88] describe a visualization system for an earthquake simulation

that uses a remote viewer over the wide are network to interactively change the

visualization operations, view angles, color, etc. of rendering operations being done

on the simulation machine itself. The integration of their visualization system

requires that a simulation provide an API to access the internal data structures

of the simulation, so the integration is visible from the perspective of the simulation

scientist. However, this approach does limit the amount of integration needed

compared to other more intrusive methods. The authors then demonstrated the

viability of their system by interactively visualizing the results of a 2048 process

simulation.

Pugmire et al. [116] introduce a visualization workflow that utilizes ADIOS

to intercept the I/O calls of a simulation and stage the simulation data on a

separate allocation of nodes. Their workflow then used EAVL to perform parallel

visualization operations on the staged data, Mesa [8] to perform rendering, and

IceT to perform parallel image compositing. Their experiments show that by

incorporating Mesa and IceT into the parallel visualization environment EAVL,

that they were able to further reduce the time to completion by between 5% and

14% versus an MPI compositor.
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2.3.5 Hybrid In Situ and Computational Steering. Hybrid

methods [38] are composed of both in-line and in-transit components being

utilized simultaneously. These methods support the flexibility of processing and

reducing data on the simulation resources before they are either written to disk, or

transferred to the visualization resource for additional processing. In other words, it

offers the ability to achieve the best of both the in-line and in-transit paradigms.

Computational steering systems are methods related to hybrid in situ, as

they allow a user to control all aspects of the computational science pipeline [64].

This control can range from simple monitoring controls to check that a simulation

is in a valid state, to advanced controls that allow a user to step through a

simulation and change key simulation variables while a simulation is in progress.

One advantage of computational steering is that it can enable a user to steer a

simulation back to a valid state, or stop an invalid simulation before computing

time is wasted on invalid computations.

2.3.5.1 Hybrid In Situ and Computational Steering

Frameworks. This section presents a look at hybrid in situ frameworks,

and explores their features and restrictions. For each framework we give a

short description of functionality and categorize them according to the in situ

methodologies they employ.

ADIOS The Adaptable I/O System (ADIOS) [82, 66], is a componentization

of the I/O layer used by high-end simulations and/or for high-end scientific

data management, providing an easy-to-use programming interface, which

can be as simple as file I/O statements. ADIOS abstracts the API away from

implementation, allowing users to compose their applications without detailed

knowledge of the underlying software and hardware stack. The ADIOS framework
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has been designed with a dual purpose: to increase the I/O throughput of

simulations using well-known optimization techniques, and also to serve as the

platform for introducing novel data management solutions for production-use

without extensive modifications to the target applications.

ADIOS is used by a variety of mission critical applications running at DOE

and NSF facilities, including combustion, materials science, fusion, seismology, and

others. At the same time, ADIOS offers the community a framework for developing

next generation I/O and data analytics techniques. Recent advances in this area

include FlexIO [149], an infrastructure for the flexible placement of in situ analytics

at different levels of the memory hierarchy, and PreDatA [148], a strategy for

characterizing data while it is being generated in order to support faster data

manipulations on staging resources.

To address the growing imbalance between computational capability and

I/O performance, ADIOS introduced the concept of data staging, where rather

than writing data directly to shared backend storage devices, a staging pipeline

moves data to a transient location, on separate physical nodes and/or on memory

resources on the same node where data is generated. Once on the staging nodes,

data can be aggregated, processed, indexed, filtered, and eventually written out

to persistent storage [30]. A key outcome of staging has been dramatic reductions

in the total volume of data to be stored through the use of in-line and in-transit

data analytics. ADIOS contains a variety of transport methods for the movement

of data, including DataSpaces [43], which allows memory coupling between

processes running on different sets of nodes, FlexPath [42], which supports a

publish/subscribe interface for direct memory access, and ICEE [41] which supports

RDMA transfers over wide area networks.
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Damaris/Viz Damaris/Viz [45, 5] is an in situ framework based off of the I/O

middleware framework Damaris [4]. Damaris/Viz was developed with the goals

of having low impact on simulation runtime, low impact for in situ integration,

and high adaptability. It achieves these goals by having low instrumentation costs.

Visualization capabilities consist of user-defined modules, or connections to the

VisIt Libsim or Paraview Catalyst interfaces. Damaris/Viz can operate in either an

in-line approach, utilizing a subset of cores on each simulation node, or in-transit,

by using a dedicated set of visualization nodes.

EPSN EPSN [6] is a library designed to provide a software environment

for computational steering. There are two methods of interacting with EPSN, a

lightweight network user interface, or through a distributed parallel visualization

tool. The visualization and steering tools utilize VTK and IceT. EPSN has a

client server relationship allowing multiple clients to connect and disconnect to

the simulation on-the-fly.

GLEAN GLEAN [136] is a non-intrusive framework for real time data analysis

and I/O acceleration. It achieves this by being semantically aware of the data it

is transporting, and by mitigating the variability of filesystem I/O performance

through asynchronous data staging nodes using the network. GLEAN follows a

similar model to ADIOS, and allows for custom data analyses to be performed on

both the compute and staging resources. This model can mitigate the overall data

saved to disk, improving application performance.

GLEAN supports both the in-line and in-transit in situ paradigms. In-line

workflows are supported when GLEAN is embedded as part of the simulation,

sharing the same address spaces and resources, and the simulation is semantically
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aware when it calls GLEAN. In-transit workflows are supported when GLEAN

asynchronously moves simulation data to a separate allocation of staging nodes

though standard I/O libraries like HDF5.

Numerous performance studies exist using GLEAN, and it has been shown

to be scalable and has drastically improved I/O performance on test codes that

traditionally used HDF5 or pnetcdf. Overall, GLEAN is a powerful framework that

requires minimal or no modifications to existing applications to implement, and can

improve application performance on applications experiencing network bottlenecks.

That is, simulation scientists can focus on simulation development, and let GLEAN

focus on data transport enhancements, while also giving the simulation new

opportunities to insert data analysis methods on both the simulation and data

staging nodes.

Magellan Magellan [135] is a framework for computational steering of a

simulation. To instrument a code with Magellan it must be annotated to reveal

specific steering parameters to the Magellan interface. This interface consists

of two components, steering servers and steering clients. The steering client

is a mechanism to interface with the steering servers and interactively change

parameters. Magellan allows for multiple applications to be steered simultaneously,

but is very limited in its graphical capabilities. It must be linked with outside

visualization systems for the creation of visualizations. Magellan is no longer under

development.

SCIRun SCIRun [112] is a programming environment that allows for

the construction, debugging, and steering of scientific computations. The

computational steering aspect of SCIRun is one of its more highly developed
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aspects, allowing users to vary different aspects of a simulation while it is running.

This interactivity is performed lock-step, so it follows the in-line approach of

stalling the simulation while it performs its steering and analysis. SCIRun is

modular, so further extensions can be added through the modular interface.

SENSEI SENSEI [18, 57, 85] is an effort to both streamline the in situ

instrumentation of a scientific code and allow for flexibility in the choice of analysis

infrastructure. This flexibility is achieved through the use of the underlying

technologies that SENSEI employs. It allows for the use of VisIt Libsim, ParaView

Catalyst, and Ascent as visualization platforms, and GLEAN, HDF5, or ADIOS for

data staging. The analysis routines in SENSEI use the standard VTK data model

for cross-platform compatibility.

SENSEI has even addressed some of the drawbacks of the VTK data model

discussed earlier in section 2.2.1, by adapting the VTK data model to support

structures-of-arrays, array-of-structures, and zero-copy.

To instrument a code with SENSEI, there are two adapters that need to

be created. First, a data adapter API is created. This adapter is used to provide

the analysis code with access to simulation mesh and array attributes. Second,

an analysis adapter API is created. This adapter provides a concrete instance of

an analysis adapter, which is a mechanism for interfacing with different in situ

infrastructures. Figure 5 gives an overview of possible SENSEI instrumentation

layouts. It is possible to perform both in-transit and in-line analysis with this

interface, with multiple options for staging and visualization technologies.

2.3.5.2 Related Work: Hybrid In Situ. Past work in the area

of hybrid in situ and computational steering often focus on making in situ more

accessible to simulation teams, providing greater temporal locality of simulation
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Figure 5. A depiction of the SENSEI generic data interface for in-line, in-transit,
and hybrid implementations. It enables the dynamic choice of instrumentation
technology depending on user circumstances though the use of its generic interface
(adapted from [18]).

visualizations, and providing a channel for the simulation team to interact with the

running simulation directly. Some of the works presented below take advantage of

the different frameworks presented above, while others roll their own approaches to

specific simulation needs.

Past work in the area of simulation monitoring and steering has focused

a lot of effort into designing methods for quickly and efficiently visualizing data

across a network. Some notable examples include Visapult [24], Visualization

Dot Com [25], VisPortal [26], and a Real-Time Monitoring framework for large

scientific simulations [113]. VisPortal and Visualization Dot Com build on the

foundations of Visapult, and provide a remote distributed visualization framework

for efficient visualization of remote simulation data. This framework uses both the

local visualization client and the remote data client to perform parallel renderings,
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decreasing the time to produce the final visualizations. By leveraging Visapult,

VisPortal and Visualization Dot Com are able to provide convenient access to

simulation data to scientists through an easy to use and accessable online interface.

A different approach to simulation monitoring is the online dashboard.

One successful instance of an online dashboard is eSimon [129], used for the

XGC1 simulation. This dashboard was launched with each simulation run and

was responsible for several different common visualization and analysis tasks in

XGC1. First, the dashboard was responsible for creating and updating plots of

approximately 150 different variables every 30 seconds and plotting 65 different

planes for the live simulation. At the conclusion of a run, the dashboard would

automatically output movies of each of these plots of interest for quick review.

In addition, this dashboard cataloged simulation output allowing users to search

for and retrieve data of interest, without having to locate and search through

simulation output files. Finally, this dashboard was available to scientists anywhere

in the world through their internet browsers. This approach to simulation

monitoring is powerful, as it is easy-to-use from the point-of-view of the simulation

scientist and is easy to access.

Moving on now to works on visualization, we look at a few works utilizing

ADIOS. ADIOS is an enabling technology, and a number of past visualization

works have taken advantage of the easy integration and data transfer and

translation capabilities of the platform. Some recent examples include work by

Bennett et al. [22], Pugmire et al. [115], and Kress et al. [69].

The work by Bennett et al. makes the insight that many analysis algorithms

can be formulated to perform various amounts of filtering and aggregation,

resulting in intermediate data that can be orders of magnitude smaller than
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simulation output. They put this insight into practice by creating a two stage

pipeline using a combustion simulation, in which data is first filtered and reduced

on the simulation nodes before being transffered to a staging area using ADIOS.

Once in the staging area they performed topological analysis, gathered descriptive

statistics, and performed visualization. They validated this approach at moderate

scale showing that it was possible and fast to perform these operations in a hybrid

fashion.

The work by Pugmire et al. focused on the development of scalable

visualization plugins that operate within the data staging of ADIOS. They show

the creation of an interactive visualization system which utilizes the RDMA

transfer capabilities of ADIOS for data transport, and VisIt for visualization.

ADIOS would send subsets of data requested by the visualization client to a

visualization cluster where VisIt scripts would operate on the data, with the final

results being viewed by a remote visualization client. Figure 6 shows the result of a

visualization using their system, which is the visualization of a turbulent eddy and

its accompanying particles within the fusion simulation code XGC1.

Kress et al. focused primarily on data reduction using ADIOS and a

separate analysis node allocation. Their premise is that at exascale, simulation

data reduction will be required in order to gain a reasonable temporal view for

visualizations. They present two different types of data reductions that can be

done in staging by altering the underlying data representations. One interesting

approach they present is representing data with reduced precision formats. That

is, simulations are typically over-resolved, so for visualization it is not necessary to

maintain full precision, and they demonstrate that visualizations are comparable

at different digits of precision. They caution however, that data reduction must be
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Figure 6. The VisIt interface window demonstrating particle tracking by ID
of particles that were inside a 3D eddy at a particular time step in the past
(from [115]).

done with domain knowledge. Data features may be lost when doing visualizations

of derived variables.

A further example that does not utilize ADIOS is by Vishwanath et

al. [137]. They describe a test of the GLEAN framework on an adaptive mesh

hydrodynamics code, in which they increased I/O speed and computed fractal

dimensions of the data as it was being written to disk. In this work, they were able

to instrument the simulation code without adding anything to the simulation code

itself, instead the I/O libraries already in use by the simulation were instrumented

to use GLEAN. Through their tests they say that it was much faster to compute

the fractal dimensions in situ versus their traditional post hoc approach, and that

they were able to increase I/O speed between 10-117x vs HDF5 and pnetcdf.

A more basic example not utilizing a framework is by Buffat et al. [32].

They describe a client-server system for in situ analysis of computational fluid

dynamics. Their workflow has the capability of performing computational steering,
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and can use VisIt Libsim for remote visualization. The core of their workflow is a

separate allocation of nodes where the visualization tasks take place in Python, and

the data is asynchronously transfered to this allocation from the simulation using

MPI.

2.4 Summary

This chapter provides a background and survey on the major topics that

intersect with this dissertation, including high performance computing, scientific

visualization, parallel graphics and its bottlenecks for scientific visualization,

and in situ visualization with an emphasis on existing in situ infrastructures.

This background material serves as a primer for the upcoming chapters, each of

which help inform the dissertation question of “In-line vs. in-transit insitu: which

paradigm is the most efficient and under what circumstances?”.
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CHAPTER III

IN SITU VISUALIZATION NEEDS: REALITY FROM THE FRONT LINES

Most of the text in this chapter comes from [74], which was a collaboration

between Scott Klasky (ORNL), David Pugmire (ORNL), Hank Childs (UO,

LBL), and myself. The writing of this paper was a collaboration between Hank

Childs, David Pugmire, and myself, and I performed the lead role on all writing.

Hank Childs provided text edits and a sounding board for designing the survey

and compiling our results. David Pugmire and I designed and conducted the

user surveys. Scott Klasky was involved in initial discussions of the survey and

manuscript.

In situ techniques have become a very active research area since they

have been shown to be an effective way to combat the issues associated with the

ever growing gap between computation and I/O bandwidth. In order to take full

advantage of in situ techniques with a large-scale simulation code, it is critical to

understand the breadth and depth of its analysis requirements. In this chapter, we

present the results of a survey done with members of the XGC1 fusion simulation

code team in order to gather their requirements for analysis and visualization.

We look at these requirements from the perspective of in situ processing and

present a list of XGC1 analysis tasks performed by its physicists, engineers, and

visualization specialists. This analysis of the specific needs and use cases of a single

code is important in understanding the nature of the needs that simulations have

in terms of data movement and usage for visualization and analysis, now and in

the future. We start by motivating the need to understand the specific in situ

visualization needs of simulation codes, describe related work, explain the specifics
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of the simulation code we surveyed, and do an in depth look at the analysis and

visualization requirements collected from the survey.

3.1 Motivation

Current trends in supercomputing point to a future where increases in core

counts are greatly outpacing increases in memory and I/O bandwidth. These

systems will make it possible to compute far more data than can regularly be

moved to disk. As a result, the vast majority of data produced by simulations

will be lost, or the workflow will stall under the burden of I/O [12]. Simulation

scientists are faced with the problem of deciding what small fraction of data can

be saved, and what must be discarded. Ever lurking within these decisions is the

possibility of lost scientific knowledge.

Research efforts for efficiently using these systems are following several

paths. These paths include more efficient use of the memory hierarchy in terms of

I/O [82, 130, 136] and burst-buffers [81, 120], data compression and subsetting [76,

80, 115, 150], frameworks that efficiently use the available compute cores to process

data [93, 97, 103], and in situ visualization and analysis methods [46, 50, 78, 112].

In this chapter, we limit our consideration of this topic to the overall

dissertation theme: in situ visualization methods. We focus our efforts on a study

of the XGC1 [33] scientific team, and the workflows being run on leading edge

supercomputing systems. We present a survey of the predominant visualization

and analysis tasks in this workflow, and, for each, describe how the task is currently

performed given a list of computational, time, and resource constraints. We believe

this study of the XGC1 project is valuable, since it formalizes the specifics of in

situ requirements for a simulation code for later usage by visualization scientists.

While a subset of this information is available in several research papers, we think
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a study dedicated exclusively to cataloging requirements gives a more complete

picture. This information could in turn be used for engineering software designs,

hardware designs, and conducting feasibility studies.

We know of no efforts to provide a formalized way to approach in situ

visualization given the computational and data constraints and requirements of a

particular simulation. Such a formalization would provide a framework to reason

about the time required for input and output on a particular computing system,

along with the scientific requirements for visualization in a workflow, which in turn

informs the feasibility of that in situ task. While we do not solve the feasibility

problem in this work, we believe that data gathered in this work will be input to

solutions for the feasibility question.

In the remainder of this chapter, we discuss related works in Section 3.2,

describe the XGC1 project and its output data and data sizes in Section 3.3, and

describe visualization and analysis requirements for XGC1 from our interview

process in Section 3.4.

3.2 Related Work

We know of no work focusing specifically on cataloging and categorizing the

different visualization and analysis tasks of a simulation code. There are however

instances of visualization and analysis requirements being reported in conjunction

with a study.

A work by Bennett et al. [22] reports on a use case with combustion

simulations using S3D, where features are tracked, identified, and visualized both

in situ and in transit. Their work utilized in situ and in transit methods using

a volume of nearly 1 billion cells and 16 seconds average wall time per time step

using 4896 cores.
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Pugmire et al. [115] explore a feature tracking and identification use case

in the XGC1 simulation code, using a data set of nearly 1 billion particles and

a time budget of 10 seconds per simulation time step. In this work, the authors

describe a system that intelligently handles the tracking of particles and features of

a simulation in real time, in a user specified area of interest.

Ellsworth et al. [48] describe a time-critical pipeline for weather forecasting

using the GEOS4 simulation code. This code is run under very tight time

constraints four times a day which requires the visualization to be performed with

minimal overhead. The visualization was performed on data consisting of 23 million

cells with up to seven 3D and four 2D fields per cell.

Malakar et al. [90] describe a series of visualization tasks done with the

LAMMPS simulation code. The data contained 1 billion atoms, using 91 GB per

simulation time step. Typical runs consisted of 1000 time steps, with output every

100 time steps.

Slawinska et al. [125] demonstrate the incorporation of ADIOS into Maya

for an astrophysics simulation workflow. Using in situ techniques, they reduced the

amount of data needed to perform their visualization and analysis task from 4.5 TB

down to 24 GB that would normally be saved to disk without in situ.

From these past works we have been able to get a sense of some of the data

sizes and visualization and analysis requirements from other large-scale simulation

codes. None of these reports however gives a full picture of the data and analysis

requirements stemming from these simulation codes. Without understanding both

the breadth and depth of the needs of these codes in terms of data movement and

usage, future research efforts on in situ techniques may miss an important aspect
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or problem that is very important to large-scale simulation codes, but just has not

been formally presented to the community.

3.3 XGC1 Project

XGC1 is a 5D gyrokinetic ion-electron particle in cell (PIC) code used to

study fusion of magnetically confined burning plasmas. XGC1 is used in particular

to study the turbulent region on the outer region of the plasma called the edge.

The simulation proceeds by computing the interactions of a very large number

of particles, and then depositing the particles onto a finite element mesh. The

mesh, as shown in Figure 7, consists of a number of 2D planes positioned uniformly

around the toroidal shape of the tokamak. The number of planes used, typically

between 16 and 64, is specified by the scientists to capture the expected waveform

distributions. The particles, which interact within the toroidal space of the mesh,

are statistically deposited onto the mesh. This deposition step provides a statistical

view of simulation, as well as helps optimize the simulation runtime.

XGC1 scientists typically run two different sizes of simulations, which we

categorize as medium and large. These run sizes are defined by three factors (1)

the number of compute processes; (2) the number of particles per process; and (3)

the number of nodes in the mesh. These factors are quantified for the medium and

large runs in Table 4.

Table 4. Simulation size characteristics, particle counts, and wall time per
simulation time step for two different XGC1 run sizes.

Medium Run Large Run
Number of Processes 65,536 262,144

Number of Particles Per Process 100,000 500,000
Number of Mesh Nodes 100,000 1,069,247

Average Wall Time Per Time Step 2-4 min 5-10 min

63



Figure 7. Example of an XGC1 mesh with planes equally spaced around the central
axis of the tokamak.

3.3.1 XGC1 Output Data Types and Sizes. In this section we

discuss the variety of outputs produced by XGC1, with an emphasis on outputs

most relevant for analysis and visualization.

The largest output file in XGC1 is the restart file, and contains the state

of each particle at a particular time step. Medium and large runs will contain

around 6 billion and 150 billion particles, respectively.

The second largest output file in XGC1 is the restartf0 file, which is used

for post-processing detection of abnormal particles. This file contains a mapping

of each plane in the unstructured grid to a regular mapping in phase space. This
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mapping produces smooth contours for non-turbulent particles, making it easier to

identify the non-smooth contours of turbulent particles.

The unstructured 3D mesh in XGC1 is described in the mesh file, which is

static over time, and specifies the points and connectivity of a single plane, and the

number of planes around the tokamak. Medium and large runs will use about 100K

and 1M points per plane respectively.

The output.bfield file contains the steady state magnetic field defined on

the unstructured mesh and is static.

The oneddiag file contains general diagnostics that are appended after

each time step. This file contains around 80 different diagnostic values, such as

densities, flow, and momentum values, and is used to calculate a number of derived

quantities.

The 3d file is produced every time step and contains data for each plane in

the simulation. The data is partitioned based on the underlying triangular mesh

describing the tokamak. That is, this data is produced during the deposition and

data reduction step in the simulation, where raw particle data is deposited onto the

triangular mesh, producing an average value for that mesh region.

The f3d file is produced every time step and consists of ion and electron

information relating to temperature, density, and velocity. The data is partitioned

just as in the 3d case, and is based on the underlying triangular mesh describing

the tokamak, resulting in an average value for each mesh region.

Table 5 contains a summary of the previously detailed information on XGC1

output files and associated file size.
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Table 5. A summary of the output data from XGC1 that is used most often by
those interviewed. The table shows average sizes for medium and large runs, as well
as how often the data changes.

File Size (GB)
File Name Medium Run Large Run Output Frequency

restart 976 19,531 1-100 Time Steps
restartf0 48 522 1-100 Time Steps

mesh 0.025 0.256 Static
output.bfield 0.075 0.75 Static

oneddiag 0.002 0.03 Every Time Step
3d 0.075 0.8 Every Time Step
f3d 0.35 2.0 Every Time Step

3.4 XGC1 User Surveys

The XGC1 project is composed of a large membership, including physicists,

experimentalists, analysts, and computer scientists. This diversity of backgrounds

leads to a broad range of activities to be performed on various parts of the data,

each requiring varying computational and data resources. In order to gain a holistic

understanding of the project, we conducted interviews with 7 different XGC1 team

members, covering key areas of the XGC1 workflow. Our interviews started with

the same questions for each participant, although follow-on questions were adapted

based on the interests and expertise of the participant. From these interviews we

have distilled a list of required and “nice-to-have” analysis routines on XGC1 data.

Finally, while our interest in these requirements is in how they apply to in situ

processing, we note that in many cases they are applicable to post hoc processing

requirements as well.

The required and nice-to-have analysis routines can generally be categorized

into three areas: (1) visualization and analysis, (2) simulation monitoring, and

(3) debugging and performance engineering. For each of these three areas we will

report on our findings from our interviews, as well as indicate which of the items
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is a Data Analysis and Visualization (DAV) task. DAV’s are specific instances of

the requirements we identified through our interview process. One key finding from

the interviews, which is highly relevant for in situ, is that XGC1 allows up to 10%

of total simulation time to be devoted to I/O. This fact must be kept in mind as

new data requirements and fidelities are output for visualization and analysis tasks.

The requirements gathered from the XGC1 team in each of the three areas are

presented in Sections 3.4.1, 3.4.2, and 3.4.3 respectively.

3.4.1 Visualization and Analysis. A common analysis task in

XGC1 is to make an image of a feature or region of interest. Images can serve

several distinct functions in XGC1: (1) a diagnostic tool for checking new physics

in the code, (2) a debugging and verification mechanism for new visualization

routines, and (3) a method of exploring, discovering, and understanding new

properties in the tokamak that either were not known or have been assumed to

exist by the physics community. There are two types of images needed from XGC1:

static plots and videos of time varying quantities.

3.4.1.1 Make Static Plots. Static plots are images of particular

regions or quantities in the simulation. These plots include graphs, contour,

histograms, pseudocolor plots, etc. The following are commonly created plots:

– DAV 1: Plots of the scalar value potential over time. This requirement

primarily draws data from the 3d file.

– DAV 2: Plots of heat flux, turbulence, or the temperature on surfaces over

time. This requirement primarily draws data from the f3d file.
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– DAV 3: Plots of the moments of the distributions functions (first order,

second order, third order) of the different XGC1 variables: density, kinetic

energy, etc. This requirement primarily draws data from the f3d file.

3.4.1.2 Make Videos. Videos show the evolution of the simulation

over time. The most common types are field and particle videos. Field videos

show the statistical properties of the particles on the mesh. Particle videos show

particle evolution, requiring very large amounts of data due to the large number of

particles. The plots from DAV 1, DAV 2, and DAV 3 can also be made into videos,

but some common analysis tasks that only make sense when shown as an evolution

over time include:

– DAV 4: Average vector in a region, as shown in Figure 8a. This video type

primarily uses data stored in the restart and mesh files.

– DAV 5: Rendering particle paths as they progress around the tokamak. This

video type primarily uses data stored in the restart file.

– DAV 6: Detecting and visualizing particles that collide with the tokamak

wall, as shown in Figure 8b. A requirement of this DAV task is the

identification of particles that collide with the wall at some point in the

simulation. This requires two-passes over the data, one to identify the

particles that collide with the wall at any time, and the second to render

these identified particles and the collisions with the tokamak wall. After the

collision, these particles are removed from the scene. Because of the large size

of the particle data, and two passes over all time steps are required, there

is no known way to perform this task in situ. Even running the simulation

run twice (once to identify particles, and the second time to render identified
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particles) can be problematic, since the particles are not guaranteed to be

reproducible across runs. This video type primarily uses data stored in the

restart and mesh files.

– DAV 7: Visualizing the turbulence derived quantity. This video type

primarily uses data stored in the 3d, mesh, and oneddiag files.

3.4.1.3 Interactive Visualization and Analysis. Interactive

visualization and analysis is accomplished using ADIOS [82] and data staging,

where data are streamed from the XGC1 simulation to a data server for

visualization. The main interactive visualization task in XGC1 is blob tracking:

– DAV 8: Blob tracking involves identifying areas of high energy within the

plasma which can form nonlinear turbulent eddies. The longevity, size,

shape, and composition of these eddies are interesting to researchers, and

their visualization gives insight into their 3D structure and perturbation

to particle orbits. Blob tracking requires regions of interest to be identified

through user interaction, and then the particles composing the blobs in those

regions are tracked in subsequent time steps. This task is important because

blobs represent areas of high energy and temperature which can damage the

wall of the tokamak. Understanding the development and nature of blobs

is crucial to the design and operation of tokamaks. The data used in this

analysis includes data from the restart, 3d, mesh, and oneddiag files.

3.4.1.4 Synthetic Diagnostics. Synthetic diagnostics provide a way

to compare simulation and experimental data. Generally, experimental data are

not directly comparable to the outputs of simulations, and so a transformation

step is often required. Once transformed, experimental data can be used to verify
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(a) Average PSI velocity in a
region in XGC1

(b) Accumulation of particle impacts to the
containment vessel wall

Figure 8. Example frames from XGC1 analysis videos demonstrating common
visualization tasks.

simulation results. These capabilities are currently under development, so no

measurable data analysis and visualization task exists yet for this requirement.

3.4.2 Simulation Monitoring. Simulation monitoring is concerned

with real or near-real time reporting of simulation status to the scientists. This

monitoring can include tasks such as creating plots of important variables or

functions as the simulation progresses, detecting bad simulation states and halting

the simulation, and even simulation steering by sending instructions from the

monitoring routine back to the simulation.
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3.4.2.1 Simulation Dashboard. A simulation dashboard is an easy

to access web page from which scientists can remotely access key information about

running simulations, as well as past simulations. For data that cannot be appended

to existing plots at each time step, the dashboard must allow a mechanism to

explore plots over time. It should enable support for continuing a past simulation

run on the same dashboard, and contain links to the storage locations for the data

used in each of the visualizations for each run, making retrieval of data related to

interesting aspects of a run easy. The dashboard visualization requirements are as

follows:

– DAV 9: Plotting values on each of the poloidal planes of the simulation

for every time step, as shown in Figure 9a. The number of planes that are

plotted are equal to the number of simulated poloidal planes in the tokamak,

typically 16, 32, or 64, plus one plot that represents averages of the values of

all planes. This requirement primarily draws data from the 3d and mesh files.

– DAV 10: Plotting all of the variables contained in the oneddiag file for each

time step, as shown in Figure 9b. Typically this produces 150 different plots.

– DAV 11: The automatic creation of a video summarizing each variable at

the end of the simulation, a video of the average planes from DAV 9, and

videos summarizing the slices of the torus.

3.4.3 Debugging and Performance Engineering. There are a

number of debugging and performance tasks that are desired, or in the works, for

XGC1, but, at present, they are not part of the production codebase or analysis

and visualization workflows. We therefore have no DAV tasks to report. However,
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(a) Example of a slice plot of potential
at one time step

(b) [Example of a variable plot showing
poloidal flow over time

Figure 9. Example images produced by an XGC1 online dashboard during one
simulation time step.

we include a discussion on the major items on the wish list to illustrate directions

for future development.

3.4.3.1 Debugging. Debugging code related to the introduction of

new physics or performance enhancements in XGC1 is always challenging. Worse,

many problems only occur when running at very large scales.

– Error Logs are one method of debugging, and provide a great source of

information, though is generally underutilized. The ability for analysis and

visualization of these logs could provide useful feedback.

– Particle Loss is the loss of particles from the tokamak containment vessel, as

shown in Figure 10. Recent particle loss has manifested near the simulation

boundaries. This information is currently saved to the error log and retrieved

after the run is over.
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Figure 10. Debugging image that shows where particle loss was occurring in the
tokomak containment vessel.

3.4.3.2 Low Level Monitoring. No low level monitoring exists in

the XGC1 code, meaning that the code will not stop itself once the results become

invalid. This is an opportunity for improvement. For example, checks to detect

when a certain percent of particles have been lost from the simulation (making the

results invalid) could be implemented.

3.4.3.3 Work Division (load balancing). Work division is the

process of balancing the distribution of particles to processor ranks in a plane

of the simulation. Three possibilities exists for balancing the particles in an

XGC1 plane: (1) the toroidal direction, (2) the poloidal direction, or (3) a hybrid

combination of the two. For context, the toroidal direction is the long way around

the torus, and the poloidal direction is the short way around the torus.

– Toroidal Load Balancing is currently being done in production. Experiments

indicate this method yields the biggest performance gains.

73



– Hybrid Load Balancing is under experimental development. At this time it

is not clear if this type of load balancing would benefit the overall runtime

of the simulation. This is due to the fact that poloidal motion is very fast

and intuition tells them that it does not end up being a problem. However,

further studies into this could be beneficial.

– Imbalance detection: XGC1 currently has no mechanisms for detecting when

particle imbalance begins to become a detriment to performance, and when a

rebalance would be worth the overhead cost. Further work and analysis would

prove useful.

3.4.3.4 Collision Detection. Collision detection is a feature under

development, and attempts to balance the simulation by collisions between particles

(currently only a single species, but multiple species would be useful). Methods are

wanted to visually compare load imbalances by collision versus particle imbalances

to answer the question of how these imbalances are different, and how to optimize

for both.

3.5 Summary

We surveyed a diverse set of people associated with the large-scale fusion

simulation code XGC1, gained an understanding of how they work, and cataloged

their visualization and analysis requirements for in situ processing. This look at the

breadth and depth of in situ requirements for a large-scale simulation code provides

valuable insight into the needs of a diverse team. The identified DAV’s vary

drastically in terms of computational and data resources required, demonstrating

a wide breadth of needed in situ flexibility and capability. Finally, we believe the

breadth of requirements for XGC1 will be similar for other simulations codes, but
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that a study such as ours would need to be repeated for these teams to gain an in

depth understanding.

This study suggests several interesting directors for future work. First, there

is a need for a classification scheme in order to evaluate in situ tasks. That is,

some tasks may be best suited to run in-line, while others may be best suited to

run in-transit, and some even may be best as post process tasks. In Chapter IV

we present a work that identifies evaluation factors for evaluating the efficacy of

a task for post hoc, in-line, or in-transit implementation Second, there are large

differences between the data and computational requirements of many of the

XGC1 visualization and analysis tasks. These differences will lead to variations

in compute and time resources that need to be dedicated to each task. In addition,

these differences will likely vary for a given task depending on the timeliness of

the result needed as well as the scale that the simulation is being run. In Part II

we present two studies conducted to evaluate different classes of visualization

algorithms at varying scale in order to understand their scaling and timeliness

curves. Those studies will aid in enabling simulation scientists to make the most

efficient use of their time and compute resources.
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CHAPTER IV

COMPARISON FACTORS FOR EVALUATING IN-LINE AND IN-TRANSIT IN

SITU

Most of the text in this chapter comes from [70], which was a collaboration

between Scott Klasky (ORNL), Norbert Podhorszki (ORNL), Jong Choi (ORNL),

Hank Childs (UO, LBL), David Pugmire (ORNL), and myself. The writing of

this paper was a collaboration between Hank Childs, David Pugmire, and myself,

and I performed the lead role on all writing. Hank Childs, David Pugmire, and I

primarily created and classified all of the comparison factors in this work. Scott

Klasky, Norbert Podhorszki, and Jong Choi were involved in initial discussions and

provided edits to the manuscript.

In this chapter, we explore a set of factors by which in situ paradigms can

be evaluated and ranked for a given application scenario. The ten comparison

factors that we present span a range of issues relevant to both scientists that are

running simulations, and computer science researchers and developers that are

developing analysis and visualization methods. The purpose of these factors is to

give researchers a starting point for evaluating which in situ paradigm will be the

most effective for their given circumstances. Throughout this chapter we present

our recommendation on which in situ paradigm will likely benefit the most for a

given comparison factor, and maintain that in-transit in situ will play an important

role for in situ workflows for the foreseeable future. We start by motivating the

need for in-transit in situ and a set of comparison factors, describe the comparison

factors, discuss the interplay between the factors, and then show a subset of the

factors in practice in a scientific workflow.
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4.1 Motivation

As discussed in Chapter I, there are two major paradigms for in situ

processing, and it is unclear which paradigm simulation code groups and

visualization software developers should back, and under what circumstances. To

address this, this chapter presents 10 factors for objectively comparing an in situ

visualization approach in a given circumstance.

The remainder of this chapter is organized as follows: Section 4.2 compares

and contrasts both paradigms against the following set of 10 factors: data

access, data movement, data duplication, data translation, coordination, resource

requirements, exploratory visualization, scalability, fault tolerance, and ease of use.

Section 4.3 presents our perspective for why in-transit in situ visualization is an

important technique to consider for future and current work in in situ. Section 4.4

provides a motivating use case of in-transit in situ demonstrating a subset of the

comparison factors in practice. Section 4.5 presents our final thoughts on the long-

term benefits of in-transit in situ.

4.2 In Situ Comparison Factors

The comparison factors selected were intended to span the range of issues

relevant to both scientists that are running simulations, and computer science

researchers and developers that are deploying analysis and visualization methods.

These factors consider required HPC resources (both shared and dedicated), impact

on the running simulation, fault tolerance, and usability.

4.2.1 Data Access. With simulations producing more data than can

be saved to disk, a different data set is available for visualization and analysis

depending on when the data are accessed (in-line, in-transit, or from file).

Generally speaking, there are more data and time steps available on the simulation
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resources than there will be once the data are transferred and saved to disk. This

makes it important that the correct set of operations are performed on the data at

each stage. For operations that require all data and all time steps, that operation

should be performed on the simulation nodes before data are culled. However, if an

operation or simulation team can handle performing analysis on a sparser data set,

that operation could take place after data are saved to disk.

With in-line in situ, visualization and analysis routines can take advantage

of having the full richness of the simulation output. Operations can be done that

take into account all of the produced data for every time step.

In-transit in situ visualization routines on the other hand, often must

operate with a sparser set of data. However, it should be noted that this data

set can be more complete than those that are saved to disk, because the network

transfer can allow for a greater volume of data to be sent. Therefore, in-transit in

situ routines often work with less data than is available in situ, but more than is

available post hoc.

Favored Paradigm: in-line in situ

4.2.2 Data Movement. Moving large quantities of data from

one location to another can be an expensive task. The cost of this task varies

substantially depending on where the data are being sent, i.e. between nodes in an

allocation or off over the network, so data movement should be kept to a minimum.

Often the amount of data needed varies by the visualization algorithm

employed. For a simulation using in-line in situ visualization and analysis, the

amount of data moved can range from none, to simulation stalling levels. This is

because some visualization algorithms traditionally require large amounts of data

to be sent between the ranks, which complicates the problem when using in-line
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in situ. Communicating between every node in the simulation can be enormously

expensive compared to a smaller node allocation.

In-transit in situ visualization has a different issue with regards to data

movement. Before in-transit in situ visualization can take place, the data must

be sent from the simulation to a visualization resource for processing. This dump

from the simulation to the visualization resource can saturate the network, and

could even cause a slowdown in the simulation while it sends the data off over the

network. This data dump though has the potential to end up moving far less data,

in total, during the visualization routine vs. that of in-line in situ. This is due to

visualization allocations traditionally being much smaller than simulation node

allocations, meaning that communication takes place over a much smaller domain.

Favored Paradigm: draw

4.2.3 Data Duplication. At the conclusion of each time step of a

simulation, a new set of data are available and ready for use. On node resources

may take immediate advantage of this data, while off node resources require a copy

to be made. The act of making this copy means that the data now exists in two

places, doubling the memory footprint.

In-line in situ visualization does not have a data duplication problem. All

data are already available within the simulation, so no duplication will take place.

In-transit in situ visualization must work on a copy of the data by definition.

That is, the data are copied from the simulation nodes to whatever in-transit in

situ visualization solution is being used. This duplication now doubles the RAM

usage for each time step, possibly making it the less efficient choice.

Favored Paradigm: in-line in situ
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4.2.4 Data Translation. Simulation codes store mesh and field data

in myriad ways that visualization programs must be able to interpret and work

with. The foundation for performing such a translation is a data model (which

describes what data can be represented) and its implementation (which describes

how to lay out arrays).

In the in situ world, there are two basic options. First, the visualization

code can allocate new arrays that match its own data model implementation and

then copy data from the simulation code’s arrays into its own arrays. Obviously,

this memory bloat is often viewed as undesirable. However, this approach is

still used in VisIt’s LibSim and ParaView’s Catalyst. The second option is to

ensure that the visualization code can work on directly on the simulation data

layout. This is straightforward when writing custom code specifically for that

simulation, but much harder when trying to design a general purpose visualization

infrastructure that can be re-used with many simulation codes. The approaches

used by the community so far involve redirection of data accesses through

virtual functions (done in some cases with Catalyst), designing a data model

implementation that support many different array organizations to increase the

chances that the simulation code uses an array layout that the visualization code

can support (as with EAVL), or writing templated code that is customized to the

simulation code during the compilation process (as with SciRun).

To date, the two basic options have proven to be difficult for doing easy

and overhead-free data translation. Instead, we note that this problem has been

addressed previously, for data I/O, where simulation codes write arrays to disk and

visualization codes read them. Establishing schemas, interfaces, and conventions

was a non-trivial task in this space, but one that is now generally considered
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“solved.” With respect to in situ, the in-transit approach can take advantage of this

existing solution, by using the simulation code’s I/O calls as a way to pass data.

As a result, the path to integrating in situ technology with the loosely coupled

approach is significantly less of a burden.

Favored Paradigm: in-transit in situ

4.2.5 Coordination. Coordination is required between the simulation

and the visualization. This coordination lets the visualization know that the next

iteration of simulation data are ready and that visualization can begin.

In a in-line in situ paradigm coordination is minimal. If visualization code

is directly embedded into the simulation, this could be as simple as calling the

visualization routine at the end of the simulation main loop. For production tools

like LibSim and Catalyst the coordination is very similar, but the call is made into

the particular library.

In a in-transit in situ paradigm much more coordination is required. At the

end of each cycle in the main loop a call must be made to transfer the data to the

visualization resource. This transfer requires use of the network and coordination

on both the sending and receiving side to ensure the data are successfully sent and

received. To guard against faults, care must be taken to recover from situations

when a network call fails, or the visualization resource is not available.

Favored Paradigm: in-line in situ

4.2.6 Resource Requirements. All in situ paradigms require

additional resources of some sort. In a in-line in situ paradigm the simulation

and visualization share the same resources, including execution, memory, and

network. In an era when memory per core is steadily decreasing, visualization

tools are required to operate under very tight memory restrictions. In cases
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where intermediate results need to be computed and held in memory, this can

be a challenge. Additionally, super computing time is in high demand, and very

expensive. Therefore simulations will generally dedicate a fixed window of time

for visualization. These restrictions place challenges on visualization which have

generally run on dedicated resources with large memory, or on the development of

new techniques that operate within tight time and memory requirements.

In a in-transit in situ paradigm additional visualization nodes are required.

These additionally nodes are requested at the time the simulation is run, add to

the cost of running a simulation. However, these additional nodes can be used

asynchronously once the data are transferred. The visualization can run while the

next time step is being computed by the simulation, and there are no restrictions

on memory usage. However, care must be taken to handle the arrival of the

next time step if the visualization routines are still running. But otherwise, the

restrictions are minimal.

Favored Paradigm: draw

4.2.7 Exploratory Visualization. Exploratory visualization, a task

most associated with post processing of data on disk, is generally, not a strength in

any in situ paradigms. Typically, the visualization that is done must be specified a

priori, and so care must be taken to decide when the simulation is launched which

particular operations will be performed. However, tools like LibSim and Catalyst

do allow fully featured visualization tools access to specified parts of simulation

data, making free-form exploratory visualization possible, but at the expense of

pausing the simulation while the user interacts the data.

Favored Paradigm: draw
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4.2.8 Scalability. Any in situ paradigm is constrained to use

the concurrency of the allocated resource. In a in-line paradigm this is the

allocation for the entire simulation. While this level of concurrency might be

advantageous for embarrassingly parallel routines that require little synchronization

or communication, it can be a bottleneck for visualization routines that require

significant communication (e.g. particle tracking, etc), or algorithms that don’t

exhibit scaling up to the levels of simulation codes (e.g. hundreds of thousands of

cores). Conversely, in a in-transit paradigm, the concurrency of the visualization

resource can be appropriately configured for the tasks to be performed. Algorithms

that require significant synchronization and communication will generally perform

much better at lower levels of concurrency, and this can be used to optimize the

performance.

Favored Paradigm: in-transit in situ

4.2.9 Fault Tolerance. As supercomputers continue to grow in size

and complexity, resilience and fault tolerance at all levels become increasingly

important. For in-line in situ paradigms, where visualization and simulation run

together, fault tolerance becomes imperative. Simulations are directly exposed

to data corruption, infinite loops, or errors in visualization routines, and could

result in faults or crashes. Because of the expense of super computing time, and

the drastic impact of faults on simulation codes, fault tolerance is a requirement.

Something that in practice is very hard to achieve.

Because of the clear and distinct separation between the simulation and the

visualization in a in-transit paradigm, the exposure to faults is greatly reduced.

In this paradigm the data transfer to the visualization resource becomes the
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only point of exposure to faults. The exposure can be further reduced by using

asynchronous transfers.

Favored Paradigm: in-transit in situ

4.2.10 Ease of Use. Usability spans a wide range of topics, and

includes things such as integration, deployment, development, and dependencies.

For in-line in situ, where there is a fundamental connection between the simulation

and visualization code, software engineering practices become very important.

Because of this basic interdependence, changes in either the simulation or

visualization code, or dependencies on third party libraries need to be carefully

managed. In the case of stand-alone production packages where there is a more

separated interface point, careful coordination of releases and patches is still

required.

For in-transit in situ the interface between the simulation and visualization

takes place through the API. Here, a cleanly defined, concise and small set of APIs

determine the usability of the system.

Finally, there is no free lunch. Development costs must be taken into

account. While writing custom visualization code has the advantage of maintaining

full control and making domain-specific optimizations easy, there is the cost of not

taking advantage of community-wide investments devoted to making standard tools

and libraries. On the other hand, developing in-transit in situ frameworks is a large

undertaking, and providing the flexibility to handle a wide variety of uses cases is a

challenge.

However, given the advantages afforded by the separation of simulation and

visualization, the in-transit paradigm occupies a much stronger position.

Favored Paradigm: in-transit in situ
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4.3 Discussion

Based on the evaluation of the 10 factors we considered, there are clearly

very good reasons for using different techniques. In cases with very specific needs,

there is often a clear choice. In practice however, there are generally many factors

under consideration, and we hold that some factors are much more important than

others. In particular, we hold that fault tolerance, ease of use, and data translation

are the most important of the 10 factors discussed.

As discussed in Section 4.2.9 the increasing complexity of supercomputers

and the workflows being run on them makes fault tolerance of paramount

importance. The ability of in-transit in situ to completely separate the simulation

from the visualization makes it the clear choice.

On a related note, the complete separation of simulation and visualization

in a in-transit paradigm is a large contributor to the win for ease of use concerns

(see Section 4.2.10). This minimization of contact points between the two, along

with the flexibility provided with configuration of simulation runs and setup of

visualization choices make in-transit in situ the clear choice.

Finally, as discussed in Section 4.2.4, the diversity of data models and data

layouts in simulation codes makes efficient interfacing of simulation outputs and

visualization a daunting challenge. In-transit in situ methods solve this problem by

doing what simulations and visualization routines already do, writing and reading

data. Simulations do not even have to be aware of what happens after data transfer

calls are made, the underlying system takes care of transferring the data, and the

visualization access the data by making data read calls.

The advantages of in-transit in situ in these key areas makes it clear that

this paradigm should be a staple in visualization now, and going forward. As
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a testament to the viability of this paradigm, in-transit techniques have been

demonstrated with production runs on some of the largest super computers in the

world [22, 116, 44].

Finally, there is one final and critical point for consideration. Hybrid

methods [38], where both in-line and in-transit paradigms are used at the same

time, are an exciting and very promising direction. These methods support

the flexibility of processing data on the simulation resource before they are

either written to disk, or transferred to the visualization resource for additional

processing. In other words, it offers the ability to achieve the best of both

paradigms. However, hybrid methods are only possible within a context that

supports in-transit in situ. It is otherwise impossible.

4.4 Considering these Factors with an XGC1 Integration

The setup we employ places an emphasis on several of the factors

discussed in Section 4.2, including ease of use, fault tolerance, data translation,

scalability, and resource requirements. This maps most directly onto a in-transit

in situ paradigm. Our workflow consists of three primary elements: (1) the

simulation code; (2) a data transfer system to move data from the simulation to

the visualization nodes; and (3) an efficient parallel visualization library. The

simulation code, XGC1 [33], is a highly scalable physics code used study plasmas

in fusion tokamak devices. For the latter two elements, we utilize three important

libraries which are described below: ADIOS and DataSpaces for data management

and transfer, and VTK-m as a framework for light weight visualization plugins.

The in-transit paradigm in ADIOS and DataSpaces provides for a clean

interface and separation from XGC1 that provides ease of use, and fault tolerance.

The ability to control the concurrency of the visualization tasks independent of the
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concurrency of XGC1 is important for ensuring good scalability on the visualization

nodes. Further, the resource requirements can be specified based on the types of

visualization that will be performed. The VTK-m framework offers a data model

with the flexibility to efficiently, and optimally represent the output format for

XGC1.

4.4.1 ADIOS. The Adaptable I/O System (ADIOS) [82], is a

componentization of the I/O layer that is accessible via a posix-style interface. The

ADIOS API abstracts the operation away from implementation, allowing users to

compose their applications independent of the underlying software and hardware.

This capability, along with the functionality of DataSpaces [43] allows this same

API to support read/write operations from/to the memory space of visualization

nodes.

This type of in-transit in situ provides significant advantage for one of the

most important factors considered, namely ease of use. It is worth emphasizing that

in-transit in situ is achieved with minimal modifications to the simulation code. It

uses something the simulation is already doing, namely I/O. These further address

two of the most important factors, ease of use and fault tolerance.

4.4.2 Visualization Plugins. We designed our visualization routines

as flexible, light weight plugins. Our plugins are based on an emerging community

standard, VTK-m [123], which is a project building upon the success of three

existing visualization frameworks, Dax [97], PISTON [83], and EAVL [93, 94].

The VTK-m framework is targeted to emerging computational systems where

parallelism and the use of accelerators are dramatically increasing, and memory

per core is decreasing. An emphasis has been placed on much more powerful data
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models that allow efficiencies in representing the various mesh types and data

layouts used by simulation codes.

4.4.3 Visualization Workflows for XGC1. In previous work

we utilized the features of ADIOS and EAVL (as a precursor to VTK-m), and

demonstrated the effectiveness of in-transit in situ visualization for large scale

simulation codes using a workflow consisting ADIOS, data staging and EAVL [116].

In that work we focused on the performance, scalability, and ease of use of

visualization plugins that were used on the output of the XGC1 simulation code.

In that study we performed visualization on two different output fields from

XGC1, the plasma particles (both ions and electrons), and field variables from

the unstructured mesh. The ease of use of this system was highlighted with the

fact that no changes to XGC1 were required. All modifications to data movement

were accomplished with only a change to the ADIOS configuration file. At each

simulation step, particles of interest were identified and visualized (Figures 11a

and 11b) in parallel along with the visualization of a slice plane through the

mesh, allowing us to monitor simulation field data, such as plasma turbulence

(Figure 11c). These images were then used for monitoring the simulation and for

post run analysis.

Using the factors from Section 4.2 to compare the two paradigms

highlights the advantages of a in-transit paradigm. Using the the ADIOS API,

no modifications are made to the simulation code to send data to the visualization

nodes via DataSpaces. The only change required is to the ADIOS configuration

file which is read when the simulation starts. This affords large advantages in both

ease of use, and fault tolerance. Further, the data translation issues are avoided

since the simulation code writes data in a known format to ADIOS, which flows
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(a) Selection of particles of
interest.

(b) Particle interaction
with vessel boundary.

(c) Slice plane of field
data.

Figure 11. Representative examples of XGC1 particle and field visualization
performed with a in-transit in situ paradigm.

to the visualization nodes, and is then read by the visualization plugin. This also

highlights the ease of use advantage since the visualization is doing something

that it already does, namely, read data. Further, the separation of simulation

and visualization resources further highlights ease of use by eliminating any

dependencies between the simulation and visualization code, as well as providing

a layer of protection through fault tolerance.

4.5 Summary

In summary, this chapter presented 10 factors for comparing in-line and in-

transit in situ paradigms. Based on our evaluation of these 10 factors, there are

clearly very good reasons for using each of the techniques. Table 1 summarizes

the evaluation metrics, and which in situ paradigm is best in that area. In cases

with very specific needs, there is often a clear choice of in situ method. In practice

however, there are generally many factors under consideration, and the optimal in

situ approach will be situationally dependent.

In-line approaches will work very well when the simulation has a predefined

list of images and analyses that it needs produced. These can be directly coded
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into the simulation. We emphasize that if a visualization task has low inter process

communication and can be in-line, it is generally best to do so.

On the other hand, if interactive exploration is required, if subsets of data

should be saved for further analysis, or an open source visualization solution needs

to be employed for data visualization, in-transit might be the best approach. These

approaches avoid many of the pitfalls of being fault intolerant, they are generally

easier to deploy and maintain, they generally scale better, and the data translation

from the simulation representation to the visualization library representation

is solved through existing I/O calls. And finally, we note that the significant

advantages to be gained using a hybrid paradigm can only be realized within a

system that is based on a in-transit paradigm.

Since both paradigms are strong under varying circumstances, further

study is needed to model visualization algorithms from small to large scale in

order to obtain a performance profile that can be used for deciding how to place

in situ visualization tasks. In Part II of this dissertation, we focus heavily on the

Scalability evaluation metric, and gather performance profiles for two common

visualization algorithms to understand how time to solution and overall cost vary

between in-line and in-transit methods.
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Part II

Findings
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In this part of the dissertation, we explore and answer the questions

introduced in Section 1.2. We begin by describing the infrastructure and tests

that we conducted, and give an overview of the data we gathered (Chapter V). We

follow this introduction with in-depth explorations of both the time (Chapter VI)

and cost (Chapter VII) of in situ techniques. Finally, we conclude with answers

to each of the questions posed in this dissertation, and list multiple areas of

interesting and valuable future work (Chapter VIII).
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CHAPTER V

CORPUS OF DATA

Most of the text in this chapter comes from [71] and [73], which were

collaborations between Scott Klasky (ORNL), David Pugmire (ORNL), Matthew

Wolf (ORNL), Norbert Podhorszki (ORNL), Jong Choi (ORNL), Mark Kim

(ORNL), Matthew Larsen (LLNL), Hank Childs (UO), and myself. The

experimental infrastructure for [71] was primarily constructed by myself. Matthew

Larsen consulted on functionality and use of some of the infrastructure components.

I ran all the experiments, compiled the results, created all of the initial analysis

and figures, and wrote the majority of the manuscript text. David Pugmire was

involved in helping to design the experiments, providing help and instruction for

getting all of the tests completed, as well as editing of the final manuscript. Hank

Childs provided extensive feedback during the work and was involved in editing

the manuscript. Scott Klasky, Matthew Wolf, Norbert Podhorszki, Mark Kim,

Jong Choi and Matthew Larsen were involved in initial discussions and provided

comments on the final manuscript. The experimental infrastructure for [73] was

primarily constructed by myself. Matthew Larsen consulted on functionality and

use of some of the infrastructure components. I ran all the experiments, compiled

the results, created all of the initial analysis and figures, and did a significant

amount of writing for the manuscript. David Pugmire was involved in helping to

design the experiments, providing help and instruction for getting all of the tests

completed, as well as being heavily involved in editing of the final manuscript.

Hank Childs provided extensive feedback during the work and had a major hand

in writing sections of the report. Scott Klasky, Matthew Wolf, Norbert Podhorszki,
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Mark Kim, Jong Choi and Matthew Larsen were involved in initial discussions and

provided comments on the final manuscript.

In this chapter we introduce our corpus of data from which we draw our

findings for the following two chapters. We introduce our software, hardware, run

configurations, and perform an overview of all of the data that we collected. This

chapter serves to reduce redundancy in Chapter VI and Chapter VII, as such, we

will not reintroduce this information, but will instead refer back to this one.

5.1 The Corpus

In this section we detail the experimental setup, methods, and software

used to generate our corpus of data, as well as a cursory overview of the data we

collected.

5.1.1 Experiment Software Used. To generate data for this study,

we use CloverLeaf3D [2, 91], a hydrodynamics proxy-application. Cloverleaf3D

spatially decomposes the data uniformly across distributed memory processes,

where each process computes a spatial subset of the problem domain. To couple

CloverLeaf3D with both in-transit and in-line in situ, we leveraged existing

integrations with Ascent [77].

In-line visualization used Ascent’s integration with VTK-m [103] for

visualization operations. The visualization is described through a set of actions

which Ascent turns into a data flow graph, and then executed. Figure 12a depicts

how the software components interact in the in-line workflow.

In-transit visualization used Ascent’s integration with the Adaptable I/O

System (ADIOS) [82] to transport data from the simulation nodes to the in-transit

nodes using its RDMA capabilities [43, 147]. ADIOS requires the use of dedicated

staging nodes to hold the metadata necessary to service RDMA requests. Once
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(a) In-line visualization setup. The simulation and visualization alternate in
execution, sharing the same resources.

(b) In-transit visualization setup. The simulation and visualization operate
asynchronously, and each have their own dedicated resources..

Figure 12. Comparison of the two workflow types used in this study.

the data are transported, the visualization tasks are performed using VTK-m.

To be clear, the same VTK-m code was being used for both in-line and in-transit

visualization. The only differences are the number of nodes used for visualization

and the use of ADIOS for data transport to a separate allocation. Figure 12b

depicts how the software components interact in the in-transit workflow.

5.1.2 Visualization Tasks Studied. There were two classes of

visualization tasks in this study, computation heavy and one that is communication

heavy. The computation heavy task was isocontouring and parallel rendering,

while the communication heavy task was volume rendering. Visualization was

performed after each simulation step. The computation heavy task consisted of

creating two isocontours at values of 33% and 67% between the minimum and
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maximum value of the simulation’s energy variable, followed by ray tracing-based

rendering. The ray tracing algorithm first locally rendered the data it contained,

then all of the locally rendered images were composited using Radix-k [65]. The

communication heavy task consisted of volume rendering the simulation’s energy

variable. Compositing for volume rendering is implemented as a direct send.

5.1.3 Application/Visualization Configurations. In this study we

used five different in situ configurations of the application and visualization:

– Sim only: Baseline simulation time with no visualization

– In-line: Simulation time with in-line visualization

– Alloc(12%): In-transit uses an additional 12% of simulation resources

– Alloc(25%): In-transit uses an additional 25% of simulation resources

– Alloc(50%): In-transit uses an additional 50% of simulation resources

For in-transit visualization, pre-determined percentages of simulation

resources for visualization were selected. These percentages were selected based

off of a rule of thumb where simulation’s typically allow up to 10% of resources

for visualization. 10% was our starting point, and we then selected two additional

higher allocations to explore a range of options. We initially considered in-transit

allocations that were below 10%, but due to the memory limitations on Titan

(32 GB per node), the visualization nodes ran out of memory. We leave a lower

percentage study as future work on a future machine. Finally, we ran each one of

these configurations with weak scaling with concurrency ranging between 128 and

32,768 processes, with 1283 cells per process (268M cells to 68B cells).

CloverLeaf3D uses a simplified physics model. As such, it has a relatively

fast cycle time. This fast cycle time is representative for some types of simulation’s,
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but we also wanted to study the implications with simulation’s that have longer

cycle times. We simulated longer cycle times by configuring CloverLeaf3D to pause

after each cycle completes, using a sleep command. This command was placed after

the simulation computation, and before any visualization calls were made. We used

three different levels of delay:

– Delay(0): simulation ran with no sleep command.

– Delay(10): a 10 second sleep was called after each simulation step.

– Delay(20): a 20 second sleep was called after each simulation step.

Lastly, we ran each test for 100 time steps using a fixed visualization

frequency of once every time step. This frequency ensures that fast evolving

structures in simulation data are not missed. Also, very frequent visualization gives

us an upper bound for how visualization will impact the simulation.

Due to the scheduling system on Titan each of our tests at different levels of

delay had to be run on different days and times. These differences meant that the

system load on other parts of the system varied from run to run, as did the location

of our physical allocation on Titan. We were also not able to run each of the tests

multiple times due to limited core hours being available on Titan. As such, the

results that focus on total time or total cost are prone to variations due to noise,

the most apparent variations happen when comparing across the different delay

levels.

5.1.4 Study Hardware. All runs in this study were performed on

the Titan supercomputer deployed at the Oak Ridge Leadership Compute Facility

(OLCF). Because CloverLeaf3D runs on CPUs only, we restricted this study to

simulation’s and visualizations run entirely on the CPU.
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Table 6. Resource configuration for each experiment in our scaling study.

Sim Procs 128 256 512 1024 2048 4096 8192 16384 32768
Test

Configuration
Data Cells 6483 8163 10243 12963 16323 20483 25923 32643 40963

In-line Total Nodes 8 16 32 64 128 256 512 1024 2048
Vis Nodes 1 2 4 8 16 32 54 128 256
Staging Nodes 1 2 2 4 4 8 8 16 16

In-
transit
Alloc(12%)Total Nodes 10 20 38 76 148 296 584 1168 2320

Vis Nodes 2 4 8 16 32 64 128 256 512
Staging Nodes 1 2 2 4 4 8 8 16 16

In-
transit
Alloc(25%)Total Nodes 11 22 42 84 164 328 648 1296 2576

Vis Nodes 4 8 16 32 64 128 256 512 1024
Staging Nodes 1 2 2 4 4 8 8 16 16

In-
transit
Alloc(50%)Total Nodes 13 26 50 100 196 392 776 1552 3088

5.1.5 Launch Configurations. The configuration for each

experiment performed is shown in Table 6. Isosurfacing plus rendering was run

on up to 16K cores, volume rendering was run on up to 32K cores. Because

CloverLeaf3D is not an OpenMP code, the in-line in situ and the simulation only

configurations were launched with 16 ranks per node. The in-transit configurations

used 4 ranks per visualization node and 4 OpenMP threads to process data

blocks in parallel. Therefore, in-transit and in-line both used 16 cores per node.

Additionally, the in-transit configuration required the use of dedicated staging

nodes to gather the metadata from the simulation in order to perform RDMA

memory transfers from the simulation resource to the visualization resource. These

additional resources are accounted for in Table 6 and are used in the calculation of

all in-transit results.

5.1.6 Overview of data collected. In total, we ran 255 individual

tests, each for 100 time steps. From each of these tests we collected the total time

for each time step from both the application and visualization resources, as well

as more fine grained timers placed around major operations. After the runs were
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Figure 13. Stacked bar chart comparing the total time per step for using in-
transit and in-line methods for isosurfacing plus rendering. This charts look
at time from the applications perspective, meaning that the time for in-transit
visualization is only how long it takes to transfer the data from the application,
unless the in-transit resources block, in which case the application becomes idle.
In-transit visualization is broken down into the time it takes to receive data data
from the application and how long the application is blocked by the in-transit
resources being too slow. In-line has a single time, how long it took to perform
the visualization task. The application time is excluded from this chart as it is the
same for each level of Delay, and obfuscates the times for visualization and data
transfer.

complete, the total cost was calculated by multiplying the total time by the total

number of nodes listed in Table 6.

Figure 13 shows the total time per time step we observed for each of the

isosurfacing plus rendering tests and Figure 14 shows the total time per time step
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Figure 14. Stacked bar chart comparing the total time per step for using in-transit
and in-line methods for volume rendering. This charts look at time from the
applications perspective, meaning that the time for in-transit visualization is only
how long it takes to transfer the data from the application, unless the in-transit
resources block, in which case the application becomes idle. In-transit visualization
is broken down into the time it takes to receive data data from the application
and how long the application is blocked by the in-transit resources being too slow.
In-line has a single time, how long it took to perform the visualization task. The
application time is excluded from this chart as it is the same for each level of Delay,
and obfuscates the times for visualization and data transfer.

we observed for each of the volume rendering tests. These charts break down the

time of each step associated with each of our runs, showing if the application was

blocked by the visualization and how long that blocking lasted, how long it took

to transfer data from the application to the in-transit resources, and how long

the in-line visualization operation took. With these charts it is easy to directly

100



compare the relative times of each of our different test configurations, and we can

see very few cases where in-line took less time to use. This is especially apparent

in the volume rendering tests, where in-transit was faster in every case. Conversely,

we can see that there are cases for isosurfacing, where there was a fast simulation

cycle time, where in-line was the fastest choice. This really highlights the need to

understand the performance of visualization algorithms at all scales, as it would

have been a better choice to skip visualizing some steps in those cases in order to

not block the simulation.

Looking more in depth at the time charts, there are marked differences in

the performance of the isosurfacing and rendering runs versus the volume rendering

runs. The isosurfacing tests have large periods of blocking in the Delay(0) cases,

seen in the figure as App Idle Cost, whereas the volume rendering runs have very

little. This observation further highlights the need to understand performance of

visualization algorithms at different levels of concurrency, as the blocking time

was cut by more than 50% in almost all cases when the in-transit resources were

doubled from Alloc(12%) to Alloc(25%). Lastly, the in-line visualization times show

an interesting trend as the application is scaled up. For isosurfacing, the in-line

visualization times go up by nearly 7x, while volume rendering only increases by

approximately 4x.

Figure 15 shows the total cost per time step we observed for each of the

isosurfacing plus rendering tests and Figure 16 shows the total cost per time step

we observed for each of the volume rendering tests. These charts break down the

cost of each step associated with each of our runs, showing if the application was

blocked by the visualization and how much that blocking cost, how much it cost

to transfer data from the application to the in-transit resources, how long the
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Figure 15. Stacked bar chart comparing the total cost per step for using in-transit
and in-line methods for isosurfacing plus rendering. In-transit visualization is
broken down into cost for the time that the visualization is actively working,
cost for the time that it is idle, cost for the time it is receiving data from the
application, and cost associated with blocking the application. The application
active cost is excluded from this chart as it is the same for each level of Delay, and
obfuscates the times for visualization and data transfer.

visualization resources were active and their cost, how long they were idle and that

cost, and how long the in-line visualization operation took and its associated cost.

With these charts it is easy to directly compare the relative costs of each of our

different test configurations, and we can see many cases where in-line cost less to

use. This is especially apparent in the isosurfacing plus rendering tests. Conversely,

we can see that there are cases, especially at large-scale, where in-transit cost less,

sometimes much less than the comparable in-line case. This really highlights the
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Figure 16. Stacked bar chart comparing the total cost per step for using in-transit
and in-line methods for volume rendering. In-transit visualization is broken down
into cost for the time that the visualization is actively working, cost for the time
that it is idle, cost for the time it is receiving data from the application, and cost
associated with blocking the application. The application active cost is excluded
from this chart as it is the same for each level of Delay, and obfuscates the times
for visualization and data transfer.

need to understand the performance of visualization algorithms at scale in order to

choose the appropriate processing paradigm.

Looking more in depth at the cost charts, there are marked differences in

the performance of the isosurfacing and rendering runs versus the volume rendering

runs. The isosurfacing tests have large periods of blocking, seen in the figure as

App Idle Cost, whereas the volume rendering runs have very little. One reason

for that blocking was that on average, isosurfacing and rendering took twice as
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long per step as volume rendering. Finally as the application cycle time increased,

isosurfacing and rendering benefited more than volume rendering, showing that the

isosurfacing tests were compute bound on the in-transit resources.

5.2 Summary

This chapter presented the data from a large scaling study ranging from

128 MPI tasks up to 32,768 MPI tasks. This scaling study used two different

visualization algorithms, three different levels of in-transit allocation sizes, and a

simulation with three distinct cycle times, for a total of 255 individual test runs.

This data will be further analyzed in the following two chapters. Chapter VI will

do a deep dive into the time to complete the visualization task for each of the

configurations, and draw conclusions about configurations and scenarios which

lend themselves to be more time efficient in-transit vs in-line. Chapter VII will

do a deep dive into the costs for each of the configurations, and draw conclusions

about configurations and scenarios which lend themselves to be more cost efficient

in-transit vs in-line.

104



CHAPTER VI

TIME ANALYSIS

Most of the text in this chapter comes from [71], which was a collaboration

between Scott Klasky (ORNL), David Pugmire (ORNL), Matthew Wolf (ORNL),

Norbert Podhorszki (ORNL), Jong Choi (ORNL), Mark Kim (ORNL), Matthew

Larsen (LLNL), Hank Childs (UO), and myself. The experimental infrastructure

for this work was primarily constructed by myself. Matthew Larsen consulted

on functionality and use of some of the infrastructure components. I ran all the

experiments, compiled the results, created all of the initial analysis and figures, and

wrote the majority of the manuscript text. David Pugmire was involved in helping

to design the experiments, providing help and instruction for getting all of the

tests completed, as well as editing of the final manuscript. Hank Childs provided

extensive feedback during the work and was involved in editing the manuscript.

Scott Klasky, Matthew Wolf, Norbert Podhorszki, Mark Kim, Jong Choi and

Matthew Larsen were involved in initial discussions and provided comments on

the final manuscript.

In this chapter we compare the time-to-solution for in-line and in-transit

in situ visualization, analyzing when one paradigm is faster than another. To

perform this comparison, we create a corpus of data by running a scaling study

using two common visualization algorithms (isosurfacing and volume rendering),

with in-line and in-transit. Our experiments vary an array of parameters, including

the size of the in-transit in situ allocation, the simulation cycle time, and the

scale of the simulation (up to 32,768 cores and 64 billion total cells). We then

analyze this corpus of data and draw conclusions about when each paradigm is the

fastest. Our findings show that in-transit is faster than in-line when inter-process
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communication was high (up to 35% more efficient) and when our computation-

bound algorithm was run at large scale (up to 47% more efficient). On the other

hand, in-line was faster with our computation-bound algorithm and a short

simulation cycle time (up to 42% more efficient). Finally, this work informs future

directions for understanding other classes of in situ visualization algorithms.

6.1 Motivation

This chapter considers the goal of minimizing time-to-solution with in situ

processing. There are multiple thrusts in HPC that motivate time-to-solution. One

motivation for this problem includes “urgent HPC,” i.e., real-time monitoring

and fast turnaround. Examples include weather prediction [86], wildfires [92],

hurricanes [68], earthquakes [58], and other catastrophic global events [31]. In

these cases, fast in situ visualization helps the overall goal of each simulation.

Another motivation is when domain scientists are actively studying the results

(urgent HPC or otherwise) and would like to get visualizations as quickly as

possible. One important use case within this latter motivation is the combination of

simulation, observation, and experiment [55, 124]. Overall, these motivations form

the fundamental premise behind our research: that in some cases domain scientists

will want in situ visualization results as quickly as possible.

In this chapter we present a study comparing time-to-solution for in-line and

in-transit in situ visualization, measuring impact on the ability of the simulation

to progress quickly. Our contributions from this study inform desirable in situ

configurations across a variety of simulation scales for both a computation-bound

and communication-bound visualization operation.
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6.2 Related Works

Several studies already exist that consider in-transit and in-line from

the perspective of time-to-solution. Morozov et al. [105] describes a system for

launching in situ/in-transit analysis routines, and compares each in situ technique

based on time to solution for two different analysis operations. Friesen et al. [53]

describes a setup where in-line and in-transit visualization are used in conjunction

with a cosmological code to run two different analysis routines. Bennett et al. [22]

use both in-line and in-transit techniques for analysis and visualization of a

turbulent combustion code. Ayachit et al. [18] performed a study of the overheads

associate with using the generic SENSEI data interface to perform in situ analysis

using both in-line and in-transit methods. The common theme between these and

other studies is that they primarily consider analysis pipelines, which can have

different communication and computation overheads versus visualization pipelines.

Our work approaches the problem differently than these past works. First,

we concentrate on in situ visualization pipelines. Second, we focus specifically on

in-line in situ vs. in-transit in situ from the perspective of simulation cycle time,

visualization type, resource requirements, and how different combinations of these

factors impact the final time-to-solution of the simulation.

There are three highly relevant works preceding this work:

– Oldfield et al. [111] consider in-transit and in-line times for analysis tasks,

but only see a small margin of cases where in-transit is faster, due to the

scaling characteristics of the algorithms they studied. As such our findings

are complimentary to theirs in terms of the algorithms studied.

– Malakar et al. did twin studies on cost models, one for in-line [90] and one

for in-transit [89]. Once again, these studies did not consider optimizing the

107



time-to-solution. Further, they considered optimizing analysis frequencies and

resource allocations, which is complementary to our effort.

– The authors of this paper considered tradeoffs between in transit and inline

in a previous work [72]. Our previous study showed strong evidence for in-

transit time savings for the simulation. However, the algorithm considered

was computation-heavy, so the extent of the effect was smaller. The current

paper focuses exclusively on time savings, considering both computation- and

communication-heavy visualization algorithms. Finally, we note our corpus of

data for this study in part draws on runs from that study.

6.3 Factors Affecting Time-to-Solution

The primary drawback of incorporating in situ visualization routines into

a simulation code are the negative effects on the simulation’s runtime. In-line

visualization pauses the simulation while the visualization completes. For fast

visualization operations this impact may be minimal, but it also may be prohibitive

for slower communication-heavy operations. Conversely, in-transit pauses the

simulation while the data is being transferred from the simulation nodes to the

visualization nodes. This pause can be short or long, depending upon a number of

factors. The pause will be shorter if the visualization nodes are ready to receive

data as soon as the simulation completes a step and is ready to transmit data.

The pause will be longer if the simulation completes a step and the visualization

nodes are still busy finishing operations on the previous time step. In this case, the

simulation will have to wait for the visualization nodes to finish, and then transfer

the data, incurring a larger time penalty. Pausing the simulation here is not the

only possible scenario, but it is the choice we made in the context of this study, as

we did not want to loose simulation time steps.
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Given that each in situ paradigm necessitates pausing the simulation to

some degree, the paradigm that blocks the least will have a faster run time. In

order for in-line to have the smallest impact on overall runtime, the visualization

needs to scale well at the concurrency level of the simulation. In order for in-transit

to have the smallest impact on overall runtime, the data transfer needs to be fast,

and the visualization needs to scale well at the concurrency level of the smaller

in-transit allocation. In this work, we focus our scope to the execution time of

visualization operations both in-transit and in-line. Our goal is to evaluate the

performance of different visualization algorithms across a variety of simulation and

in-transit allocation sizes.

Our hypotheses in this chapter is that there should be clear distinctions

between scenarios in which an algorithm performs well in-line or in-transit, and

a major contribution of this work is confirmation of that hypothesis In order to

confirm our hypothesis, we ran 255 individual in situ workflows, covering a range of

concurrencies (up to 32,768 cores), simulation cycle times (5, 15, and 25 seconds),

in situ configuration (in-line, and in-transit), and two visualization workflows, one

that was computation-bound (isosurfacing) and one that was communication-bound

(volume rendering). From these experiments we found that our communication-

bound workload ran faster in-transit versus in-line, in all cases. In addition, we

found that our computation-bound workload was faster in-line in many cases with

a short simulation cycle time; as simulation cycle time increased however, in-transit

became faster. Further contributions of this work include a detailed analysis of

when to choose in-line or in-transit in situ by comparing algorithm performance

across a variety of simulation cycle times and in-line and in-transit allocation sizes.
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6.3.1 Conceptual Timing Scenarios for In Situ Visualization.

When integrating in situ visualization, a key question is which type to use (in-line

or in-transit). Here, we will discuss two primary things: (1) factors that influence

one paradigm being more time efficient than the other, (2) the effect of those

factors on in-line versus in-transit workflows. Figure 17 contains the four example

scenarios we will discuss. Each of these scenarios will demonstrate ways in which

both in-line and in-transit in situ can succeed or fail at being time efficient.

6.3.1.1 Scenario 1: In-transit Data Transfer is Fast.

Figure 17a depicts this scenario. In this case the time it takes to transfer data to

the in-transit resources is less than the corresponding time for in-line visualization.

In addition, the in-transit visualization time is larger than that of in-line, but it

does not impact the simulation because it is performed asynchronously and the

resources are ready for the next step by the time the simulation is ready to perform

the next write. In this example, moving the data off of the simulation nodes results

in an overall faster time to solution, allowing 4 steps to be completed in-transit

when in-line only completed three.

6.3.1.2 Scenario 2: In-transit Visualization Scales Better.

Figure 17b depicts this scenario. In this case the time it takes to perform in-transit

visualization is roughly half of that of in-line visualization. This speaks to the

scalability of the visualization algorithm itself. The time to solution was larger

in-line because the algorithm was communication bound, whereas on the in-transit

resources the communication bottleneck was sidestepped by operating on fewer

nodes, completing much faster. In this example, faster visualization allowed for

twice as many simulation cycles to be completed vs. that of in-line.
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(a) Here, the data transfer for in-transit
is faster than the visualization step for in-
line, meaning the in-transit simulation can
advance more quickly.

(b) Here, the in-transit visualization
exhibits better scaling than the in-line
visualization, meaning in-transit is more
efficient on fewer resources.

(c) Here, the in-line visualization
exhibits better scaling that the in-transit
visualization, meaning that in-transit was
compute bound.

(d) Here, data transfer for in-transit
takes as long as the corresponding in-line
visualization cycle, meaning in-transit can
never be more time efficient.

Figure 17. Gantt charts showing possible scenarios of how the simulation and
visualization could progress over time (from left to right) with both in-line and
in-transit in situ. Each example will show a possible scenario and the effects to the
simulation and overall time.

6.3.1.3 Scenario 3: In-line Visualization Scales Better.

Figure 17c depicts this scenario. In this case the time to perform visualization

in-transit takes three times as long as in-line. This speaks to the scalability

of the visualization algorithm itself. The time-to-solution was larger in-transit

because the algorithm was compute bound, whereas on the in-line resources the

compute bottleneck was sidestepped by operating at the full scale of the simulation,

completing much faster. In this example, faster in-line visualization allowed for
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three visualization cycles to be completed in-line, with only two completed in-

transit.

6.3.1.4 Scenario 4: In-transit Data Transfer is Slow.

Figure 17d depicts this scenario. In this case the time it takes to transfer data

to the in-transit resources is equal to the time it takes to perform the in-line

visualization task. Even though the in-transit visualization time is small enough

to not block the simulation once it reaches the next step, the long transfer time

has eliminated all chance of saving time in-transit. This example speaks to the

challenge that in-transit visualization faces, it can only achieve a time savings if the

data transfer time is fast, giving it a relatively small window to be efficient. In this

case, due to the transfer time and visualization time being equal, both in-transit

and in-line advance the simulation to the same place.

6.4 Results

The objective of our experiments was to understand the performance of

both a computation-bound, and a communication-bound, visualization algorithm

both in-transit and in-line. Our results focus on in situ time-to-solution. First, we

evaluate factors that limit in situ speed-ups in Section 6.4.1. Second, we determine

whether in-transit in situ can keep up with the pace of the simulation, focusing on

in-transit allocation size, workload, and simulation frequency in Section 6.4.2.

6.4.1 Breaking Down the Time-to-Solution. In this section we

will look at the limiting factors for in situ visualization in the context of both in-

transit and in-line paradigms. We will first analyze the breakdowns of where each

in situ method spent its time in each of our experiments, and draw conclusions

about performance under varying visualization workload and system constraints.

We will then explore why in-line rendering performs poorly in comparison to in-

112



128
Producers

256
Producers

512
Producers

1,024
Producers

2,048
Producers

4,096
Producers

8,192
Producers

16,384
Producers

Solver Tim
e + 0 D

elay
Solver Tim

e + 10 D
elay

Solver Tim
e + 20 D

elay

0

5

10

15

20

25

0
5

10
15
20
25
30

0
5

10
15
20
25
30
35

Allocation Sizes/Types

Ti
m

e 
(S

ec
on

ds
)

Vis Res. Active Time
In−line Vis Time
Transfer Time
App Idle Time
App Time

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Allo
c(1

2%
)

Allo
c(2

5%
)

Allo
c(5

0%
)

In−
lin
e

Si
m Vi
s

Si
m Vi
s

Si
m Vi
s

Figure 18. Comparing the total time per step for using in-transit and in-line
methods for isosurfacing plus rendering. This chart looks at time from the
applications perspective, meaning that the time for in-transit visualization is only
how long it takes to transfer the data from the application, unless the in-transit
resources block, in which case the application becomes idle. In-transit visualization
is broken down into the time it takes to receive data data from the application and
how long the application is blocked by the in-transit resources being too slow. A
second column is present for each in-transit case that shows how long the in-transit
resources were active during a single time step, giving a better sense of where
blocking and idle time occurs. In-line has a single time, how long it took to perform
visualization.

transit rendering, and how in-transit in situ can effectively take advantage of this

performance characteristic.

Figure 18 shows the total time per time step we observed for each of the

isosurfacing plus rendering experiments and Figure 19 shows the total time per

time step we observed for each of the volume rendering tests. The times on these

charts are broken down into the following categories: (1) Orange Bars: the time

that the application active. (2) Purple Bars: the time that the application was
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Figure 19. Comparing the total time per step for using in-transit and in-line
methods for volume rendering. This chart looks at time from the applications
perspective, meaning that the time for in-transit visualization is only how long
it takes to transfer the data from the application, unless the in-transit resources
block, in which case the application becomes idle. In-transit visualization is broken
down into the time it takes to receive data data from the application and how long
the application is blocked by the in-transit resources being too slow. A second
column is present for each in-transit case that shows how long the in-transit
resources were active during a single time step, giving a better sense of where
blocking and idle time occurs. In-line has a single time, how long it took to perform
visualization.

idle. (3) Green Bars: the time to transfer data to the in-transit resources. (4)

Red Bars: the time to perform in-transit visualization. (5) Blue Bars: the time

to perform in-line visualization.

Now that the basic elements of the charts have been explained, we will

discuss the timings for our isosurfacing experiments from Figure 18. The first

thing to notice in this chart, is the poor performance of in-transit in situ in the

Alloc(12%) and Alloc(25%) experiments at Delay(0). All of these experiments
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have large portions of time where the simulation is blocked because the in-transit

visualization was unable to keep up with the simulation. This blocking effect

made it so that in-line in situ was the most performant choice for all but the

largest scale (16,384 processes). Another observation from this chart is the absence

of simulation blocking in all of the Delay(20) cases. In each of those cases, the

only time delay for the simulation was the time to transfer data to the in-transit

resources. However, these case also showcase the other negative of in-transit

visualization, idle in-transit resources. In every case, the in-transit resources were

idle for some percentage of the simulation cycle, the worst being Alloc(50%), which

was idle for up to 80% of each simulation cycle. This level of idle time means

that resources were severely over allocated, and either the resources need to be

reduced, or the visualization pipeline needs to be adaptive, and to dynamically add

new visualization operations to the queue in order to make productive use of the

allocated resources.

Next, we will discuss the timings for our volume rendering experiments

in Figure 19. The performance of in-transit volume rendering is significantly

different from isosurfacing. In most cases in-transit volume rendering was faster

than the simulation cycle time. Only at the two larges cases (16,384 and 32,768

procs) with the Delay(0) caused the simulation to block. This difference is because

volume rendering was communication bound, and is more efficient at smaller scale.

This fact led in-transit volume rendering to be faster than in-line in every single

experiment we performed. This success at not blocking the simulation also had a

pitfall however, which was idle in-transit resources. As evidenced by the large idle

times (up to 88% of the total runtime), some of the allocations were too large. We
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could have achieved similar time-to-solution by using fewer resources, which would

have reduced the resource idle time.

Finally, taking what we learned from both Figure 18 and Figure 19, we will

compare and contrast differences to provide general guidelines for which in situ

method will perform the best with a given workload and concurrency. The first

point to raise is that there are very few cases where in-line took less time to use.

This is especially apparent in the volume rendering tests, where in-transit was

faster in every case. Conversely, we can see that there are cases for isosurfacing,

where there was a fast simulation cycle time, where in-line was the fastest choice.

Looking more in depth at the time charts, there are marked differences

between the performance of the isosurfacing and volume rendering runs. The

isosurfacing tests have large periods of blocking in the Delay(0) cases, seen in the

figure as App Idle Cost, whereas the volume rendering runs have very little. This

observation further highlights the need to understand performance of visualization

algorithms at different levels of concurrency, as the blocking time was cut by

more than 50% in almost all cases when the in-transit resources were doubled

from Alloc(12%) to Alloc(25%). Lastly, the in-line visualization times show an

interesting trend as the application is scaled up. For isosurfacing, the in-line

visualization times go up by nearly 7x, while volume rendering only increases by

approximately 4x.

In order to better understand these visualization performance differences,

we look specifically at the cumulative rendering and compositing times in

Figure 20. Rendering scales very well up through 4, 096 processes. Beyond that,

the communication at higher levels of concurrency leads to a drop in scalability

for in-line isosurfacing and volume rendering. Isosurfacing for example, has the
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Figure 20. Total time per step to render and composite an image, both in-transit
and in-line. The results from isosurfacing (triangles) and volume rendering (circles)
are shown. Experiments are grouped by color (configuration) and connected by
lines (concurrency sequence).

compositing and rendering time rise from 1 second per step at 4, 096 processes

up to 9 seconds at 16, 384 processes; an increase of 9x. Volume rendering has a

much smaller rise in time, from 2.5 seconds at 4, 096 processes, up to 5.5 seconds at

16, 384 processes; an increase of about 2.5x. In summary, these trends show how in-

line scalability problems create an opportunity for in-transit to be faster, especially

at scale.

6.4.2 Can In-transit Visualization Keep Up?. In this section we

will look at whether in-transit in situ visualization if fast enough to not block the

simulation. First, we will explore the differences in the time to move the data from

the simulation to the in-transit resources compared against the time to perform

in-line visualization. Second, we will analyze the cases where in-transit was able
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to keep up. Finally, we will compare how home many simulation steps both in-line

and in-transit can complete in 500 seconds.

Figure 21 highlights the differences in time to perform an in-transit data

transfer vs. the time it takes to perform in-line visualization for both isosurfacing

and volume rendering. In this figure we see that there are no instances where the

data transfer takes more time than the associated in-line visualization operation.

This means that for the algorithms we tested, in-transit visualization always has a

chance to be faster than in-line visualization. The other main feature to see in this

figure is the widening gap between data transfer time and the comparable in-line

visualization times as scale increases. This widening gap helps to explain how in-

transit isosurfacing was able to become faster than in-line at 16, 384 processes (see

Figure 18).

Figure 22 highlights a important feature of in-transit visualization, that

it is difficult to both keep the in-transit resources busy for an entire simulation

cycle while also not blocking the simulation. This figure shows how long the in-

transit resources were idle each simulation cycle in relation to the length of a

simulation cycle. For example, in order for the in-transit idle percentage to be 0%,

the simulation and visualization cycle time would need to be the same. If the in-

transit idle percentage is −100% idle, the visualization would be 2X the simulation

cycle time.

Looking at the Delay(0) column of Figure 22, we can see that there is

a large variation in the idle times for in-transit. In the worst case (from the

simulation’s perspective) in-transit blocks the simulation from proceeding for 3.5

(−350%) simulation cycles. While the best cases have in-transit being neither

idle, nor blocking the simulation This trend highlights the effects of simulation
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simulation nodes compared against the time that in-line takes to perform either
the isosurfacing or volume rendering operations. In essence, this chart shows how
long the simulation had to pause each simulation step for visualization to take
place, either in-line, or in-transit by moving the data to a separate allocation and
performing the visualization asynchronously to the simulation.

cycle time on the size of the in-transit resources necessary to complete a task in

time. Looking at the Delay(10) and Delay(20) columns, almost every case was

able to complete without blocking the simulation. Overall, the volume rendering

runs were less adversely affected by simulation cycle time, further highlighting the

performance differences between compute and communication bound visualization

algorithms.
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during each simulation cycle. An idle time of 0% indicates in-transit resources
were always busy and never blocked. 100% idle means the in-transit resources
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the simulation from proceeding for an entire simulation cycle. The results from
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Figure 23 is a shows the impact of visualization on the progress of the

simulation. Given a fixed time allocation of 500 seconds, the graphs show how

many simulation time steps can be completed with and without visualization. The

case where no visualization is performed is the high water mark for each graph.
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For example, a Delay(0) volume rendering configuration with 16, 384 simulation

processors can complete 43 cycles using in-line visualization and 64 cycles using

in-transit (Alloc(25%)). This means that a 25% increase in resources led to a 48%

increase in productivity (64/43×100%−100%). Similarly, for isosurfacing, Delay(0)

and Alloc(50%) yields a 100% increase in productivity (26 cycles to 52 cycles) for

50% more resources, Delay(10) and Alloc(12%) yields a 46% increase (15 cycles to

22 cycles) for 12% more resources, and Delay(10) and Alloc(25%) yields an 80%

increase (15 cycles to 27 cycles) for 25% more resources. In summary, this chart

shows that depending upon the length of the simulation cycle, a large increase in

productivity is possible (50% or more in some configurations), with only a small

increase in resource allocation (as small as 12% more).
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6.5 Summary

In this chapter we have presented a study that compares the time-to-

solution for in-line and in-transit in situ visualization, and provide an analysis

of when and why one paradigm is faster than another. We believe that for use

cases where time-is-of-the-essence, these insights will help simulation teams run

on increasingly larger computing resources. Without these insights, simulation

teams run the risk of performing an overly limited set of visualizations out of an

abundance of caution, or choosing the an in situ paradigm that results in slower

times. With this work we have analyzed the time-to-solution performance of two

common visualization algorithms at scale. Our experiments gave insight into our

hypothesis presented in Section 6.3, and we were able to show that the two classes

of algorithms we studied did indeed exhibit different scaling properties. We found

that for our communication-bound algorithm (volume rendering), in-transit in

situ enabled the simulation to advance further in a majority of cases vs in-line,

especially at large scale. We also found that our computation-bound algorithm

(isosurfacing), in-line had better performance, especially at smaller scale.

This paper highlights several interesting areas of future work. First, this

paper explored two different types of algorithms. These two algorithms exhibited

different behaviors which helped us to understand these two classes of algorithms.

We intend to study additional classes of algorithms to understand the behavior

and performance at scale using different in situ paradigms. Second, studying the

implications of even larger scale is required. Timings started to change significantly

for in-line at the largest scales. Examination of these trends at higher scales will

provide additional insight into in situ visualization. Finally, the Alloc sizes chosen

in this study were much too large for some of our experiments. Studying lower
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percentages of in-transit allocations will help to reduce resource requirements for

future in situ integrations, while also ensuring a fast time-to-solution.
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CHAPTER VII

COST ANALYSIS

Most of the text in this chapter comes from [73], which was a collaboration

between Scott Klasky (ORNL), David Pugmire (ORNL), Matthew Wolf (ORNL),

Norbert Podhorszki (ORNL), Jong Choi (ORNL), Mark Kim (ORNL), Matthew

Larsen (LLNL), Hank Childs (UO), and myself. The experimental infrastructure

for this work was primarily constructed by myself. Matthew Larsen consulted

on functionality and use of some of the infrastructure components. I ran all the

experiments, compiled the results, created all of the initial analysis and figures, and

did a significant amount of writing for the manuscript. David Pugmire was involved

in helping to design the experiments, providing help and instruction for getting

all of the tests completed, as well as being heavily involved in editing of the final

manuscript. Hank Childs provided extensive feedback during the work and had a

major hand in writing sections of the report. Scott Klasky, Matthew Wolf, Norbert

Podhorszki, Mark Kim, Jong Choi and Matthew Larsen were involved in initial

discussions and provided comments on the final manuscript.

In this chapter we analyze the opportunities for in-transit visualization to

provide cost savings compared to in-line visualization. We begin by developing

a cost model that includes factors related to both in-line and in-transit which

allows comparisons to be made between the two methods. We then run a series of

studies to create a corpus of data for our model. We run two different visualization

algorithms, one that is computation heavy and one that is communication heavy

with concurrencies up to 32, 768 cores. Our primary results are in exploring the

cost model within the context of our corpus. Our findings show that in-transit

consistently achieves significant cost efficiencies by running visualization algorithms
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at lower concurrency, and that in many cases these efficiencies are enough to

offset other costs (transfer, blocking, and additional nodes) to be cost effective

overall. Finally, this work informs future studies, which can focus on choosing

ideal configurations for in-transit processing that can consistently achieve cost

efficiencies. We start by motivating the benefits and findings of our cost model,

discuss related works, describe the details of the cost model, and then discuss our

findings and their implications.

7.1 Motivation

In-transit visualization incurs new costs that do not exist with in-line

visualization. There are additional resources for the in-transit nodes, and a new

activity to perform: transferring the data from the simulation nodes to the in-

transit nodes. Further, if the in-transit nodes are not able to perform their tasks

quickly enough, they can block the simulation from advancing. (Blocking the

simulation is not the only possible decision for this scenario, but it is the decision

we consider in the context of this paper.)

Despite these additional costs, in-transit also has a potential cost advantage

that in-line does not have. The number of in-transit nodes is typically much less

than the simulation nodes. Further, when algorithms exhibit poor scaling, fewer

nodes are more efficient. In effect, in-transit has the potential to reduce costs

that result from poor scaling of visualization algorithms. Consider a scenario: if a

visualization algorithm takes 1 second on 1000 nodes running in-line, but the same

algorithm takes 50 seconds on 10 nodes running in-transit, then the visualization

cost is 1000 node seconds for in-line and 500 node seconds for in-transit. We

define a term to capture this phenomenon: Visualization Cost Efficiency

Factor (VCEF). VCEF is the in-line visualization cost divided by the in-transit
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visualization cost. In the scenario just described, the VCEF would be 1000/500

or 2 — the cost to perform in-line is 2X more than in-transit. Of course, VCEF is

just one consideration, alongside the other (unhelpful for cost savings) factors for

in-transit: extra resources, transfer costs, and blocking.

Our hypothesis entering this study is that there are configurations of in-

transit visualization such that the cost to reach the final solution are less in-

transit than in-line. To that end, for this study, we consider the topic of relative

costs between in-transit and in-line visualization. What makes our study novel

is the identification and usage of VCEF. We observe that VCEF is a significant

phenomenon; our communication-heavy algorithm regularly yields a VCEF of

four or above, and even our computation-heavy algorithm yields such values at

very high concurrency. This high VCEF value in turn allows in-transit to become

cost effective overall in many scenarios, as the savings are enough to offset other

costs. We also provide a model for reasoning about this space, and a corpus of data

that reflects experiment times for currently popular software. Overall, this study

provides significant evidence that in-transit can be cost effective.

7.2 Related Works

There are three highly relevant works preceding this work:

– Oldfield et al. [111] also considered in-transit and in-line costs. The main

difference between their work and our own is that they focused on analysis

tasks which did not benefit from a V CEF speedup. As such, their findings

differ from ours.

– Malakar et al. did twin studies on cost models, one for in-line [90] and one for

in-transit [89]. Once again, these studies did not consider V CEF . Further,
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they considered optimizing allocation sizes and analysis frequencies which is a

complementary task to our effort.

– Work by Kress et al. [72] considered trade-offs between in-transit and in-

line for isosurfacing at high concurrencies. This study was the first to show

evidence of V CEF . However, the algorithm considered was computation-

heavy, so the extent of the effect was smaller and only appeared at very

high concurrency. Further, that paper lacked a cost modeling component,

rather just observing that the phenomenon was possible. Our paper

focuses exclusively on cost savings, providing a model and considering both

computation- and communication-heavy visualization algorithms. Finally, we

note the corpus of data for our study in part draws on runs from the Kress et

al. study.

7.3 Cost Model

This section defines a cost model for determining when in-transit

visualization can cost less than in-line visualization. First, terms are introduced

for the operations that occur in both in-line and in-transit visualization. Next,

we use those terms to demonstrate when in-transit will cost less than in-line

visualization, and provide a discussion for when and how this occurs. Finally, we

derive a formulation to determine the degree of scalability of in-transit over in-line,

(VCEF), that is required for in-transit to be cost effective.

7.3.1 Definition of Terms. Below we define terms for both in-line

and in-transit visualization operations.

– Let T be the time for the simulation to advance one cycle.

– Let N be the number of nodes used by the simulation code.
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– Let Resp be the proportion of nodes (resources) used for in-transit

visualization. E.g., if the number of nodes for the simulation (N) is 10,000

and the number of nodes for in-transit visualization is 1,000, then Resp =

1, 000/10, 000, which is 0.1.

– Let V isp be the proportion of time spent doing visualization in the in-line

visualization case. E.g., if T is 5 seconds and the in-line visualization time is

1 second, then V isp = 1/5, which is 0.2.

– Let Blockp be the proportion of time that the simulation code is blocking

while waiting for in-transit visualization to complete. E.g., if T is 5 seconds

and the simulation has to wait an additional 2 seconds for the in-transit

resources to complete, then Blockp = 2/5, which is 0.4. If the in-transit

visualization completes and does not block the simulation, then Blockp is

0.

– Let V CEF be the term identified earlier in this paper that captures

the efficiency achieved by running at lower concurrency. E.g., if in-line

visualization took 1 second on 10,000 nodes, but in-transit visualization took

5 seconds on 1,000 nodes, then V CEF would be 1×10,000
5×1,000

, which is 2.

We have two terms for transferring data because sending data from the simulation

side may be faster than receiving it on the in-transit side. For example, if 8

simulation nodes send to 1 visualization node, then that 1 visualization node

will need to unserialize eight times as much data as each of the simulation nodes

serialized.
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– Let Sendp be the proportion of time by the simulation code sending data to

in-transit visualization resources. E.g., if T is 5 seconds and the send time is 2

seconds, then Sendp = 2/5, which is 0.4.

– Let Recvp be the proportion of time spent receiving data on the in-transit

visualization resources. E.g., if T is 5 seconds and the transfer time is 2

seconds, then Recvp = 2/5, which is 0.4.

7.3.2 Base Model Defined. We define our base cost model below.

This cost model will be refined in Section 7.3.4 as we consider the implications of

blocking. The cost for in-transit visualization will lower than in-line visualization

when:

(total resources with in-transit)× (time per cycle for simulation with in-transit)

<

(total resources with in-line)× (time per cycle for simulation with in-line)

=⇒

(# in-transit nodes + # simulation nodes)×

(simulation cycle time + transfer time + block time)

<

(# simulation nodes)× (simulation cycle time + in-line vis time)

(7.1)

Using the terms defined above in Section 7.3.1, this becomes:

(N ×Resp +N)× (T + T × Sendp + T ×Blockp) < (N)× (T + T × V isP ) (7.2)
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This equation can be simplified by dividing both sides by the simulation cycle time

(T ) and number of nodes (N):

(1 +Resp)× (1 + Sendp +Blockp) < (1 + V isP ) (7.3)

If Equation 7.3 is true, then in-transit costs less than in-line.

7.3.3 Base Model Discussion. In-transit visualization has three

different costs that do not occur with in-line. (1) In-transit visualization requires

data transfer, which slows down the simulation nodes. (2) In-transit visualization

requires dedicated resources beyond those required for in-line. If the in-transit

visualization finishes quickly, these additional resources sit idle, and yet still incur

cost. (3) In-transit can block the simulation if the visualization is not finished

before the simulation is ready to send data for the next cycle. This is very harmful

since it slows down the simulation nodes. There are alternatives to blocking, for

example skipping cycles, and only visualizing the latest. In this study, our focus is

on blocking, and we do not consider the alternatives.

Given the three additional costs incurred by in-transit, the only way for it

to cost less than in-line is for the visualization to run faster at lower concurrency.

In other words, the cost savings with in-transit can only occur if the benefit of

(V CEF ) outweighs the combined effects of the three additional costs described

above. The fact that certain operations are more efficient at lower levels of

concurrency provides an opporunity for a more cost effective solution.

That said, there are scenarios where any value of V CEF is insufficient to

achieve cost savings. Examples where in-transit can never be more cost effective,

regardless of V CEF , are discussed below:
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– If blocking takes longer than in-line visualization (e.g., Blockp = 0.3, V isp =

0.2), it is impossible to be more cost efficient. For example, even if T = ε,

then (1 + ε)× (1 + ε+ 1.3) < (1 + 1.2) is not possible.

– Further, even if Blockp = 0 (no blocking), then some in-transit configurations

will still always be less efficient:

∗ if the simulation transfer cost is bigger than the in-line visualization time

(e.g., Sendp = 0.4, V isp = 0.2), then: (1 + ε)× (1 + 0.4 + 0) < 1.2

∗ if there are many in-transit nodes (e.g., Resp = 0.5) and the in-line

visualization time is sufficiently fast (e.g., V isp = 0.5), then: (1 + 0.5) ×

(1 + ε+ 0) < 1 + 0.5

7.3.4 When Does Blocking Occur?: Replacing BlockpBlockpBlockp via

V CEFV CEFV CEF . In this section we expand the model by using the V CEF term to

determine when blocking will occur. We then present two new equations that define

when in-transit will cost less if blocking does or does not occur.

Consider what it means to block. Blocking occurs when in-transit resources

are taking longer to do their job than the simulation resources are taking to do

their job. Similarly, “not blocking” means that the in-transit resources are doing

their job faster than the simulation resources take to do their job. So, what does

“time to do their job” mean? For the simulation side, this means the time to

advance the simulation plus the time to send the data, i.e., T + T × Sendp. For

the in-transit side, this means the time to receive data (T × Recvp) plus the time to

do the visualization task. This latter time is explored below.

Nominally, assuming that visualization scaled perfectly as a function of

concurrency, the cost (number of node seconds) to do the visualization task can

be directly calculated from the in-line case: N× (V isp×T ). However, a key premise
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of this study is that in-transit has an advantage at lower concurrency because of

V CEF . Because in-transit is running at a lower concurrency, the cost is scaled by

the V CEF term: N×(V isp×T )

V CEF
. Finally, the time to carry out the visualization task

on the in-transit nodes would be the V CEF -reduced cost divided by the resources

(N ×Resp). Thus, the in-transit visualization time is:

N × (T × V isp)
V CEF ×N ×Resp

(7.4)

Canceling out N gives a simpler form:

V isp × T
V CEF ×Resp

(7.5)

Restating, blocking occurs with in-transit when the time to receive data plus the

visualization time is greater than the simulation time plus the time to send data:

Recvp × T +
V isp × T

V CEF ×Resp
> T × (1 + Sendp) (7.6)

This means that blocking does not occur if:

Recvp × T +
V isp × T

V CEF ×Resp
≤ T × (1 + Sendp) (7.7)

The terms in Equation 7.7 can be rearranged to find the V CEF values when

blocking does not occur:

V isp
Resp × (1 + Sendp −RecvP )

≤ V CEF (7.8)

This analysis on blocking informs the original question: when does in-transit incur

less cost than in-line? This can be answered using a combination of Equations 7.3

and our observations about blocking in this section. If blocking does not occur,

then Blockp drops out as zero, and Equation 7.3 is simplified:

(1 +Resp)× (1 + Sendp) < (1 + V isP ) (7.9)

If blocking does occur, then the simulation advances only as fast as the in-transit

resources can take new data. This means that the time term for the left-hand side
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of Equation 7.3, which was previously 1 + Sendp, is replaced with the in-transit

time. Using the relationship in Equation 7.6, we get:

(1 +Resp)× (Recvp +
V isp

V CEF ×Resp
) < (1 + V isP ) (7.10)

7.3.5 Cost Model Discussion. The basis of the cost model are

described above in Equations 7.3, 7.8, 7.9, and 7.10. This model allows the

relative costs of in-line and in-transit visualization for a particular configuration

to be analyzed. The first step is to determine the cost feasibility of in-transit.

Equation 7.3 serves as a threshold for determining when this is possible. If

Equation 7.3 is false, in-line visualization is the cost-effective solution. Otherwise,

when Equation 7.3 is true, Equations 7.8, 7.9, and 7.10 are used to determine cost

feasibility based on blocking, as follows:

– The V CEF value necessary to prevent blocking is given by Equation 7.8:

V CEF ≥ V isp
Resp×(1+Sendp−RecvP )

∗ For cases when there is no blocking, using Equation 7.9 shows that in-

transit is cost efficient if:

(1 +Resp)× (1 + Sendp) < (1 + V isP ) 2mm

∗ Otherwise, for cases where blocking occurs, using Equation 7.10 shows

that in-transit is cost efficient if:

(1 +Resp)× (Recvp + V isp
V CEF×Resp

) < (1 + V isP )

7.4 Results

In this section we use the model described in Section 7.3 to analyze the data

collected from our experiments. In particular, we follow the discussion detailed in

Section 7.3.5. In Section 7.4.1, we discuss and analyze the magnitude of V CEF
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(Equation 7.8) for each experiment. In 7.4.2 we use Equation 7.3 from our model

to determine the in-transit cost savings feasibility for each experiment. Finally, in

Section 7.4.3, we combine these two and discuss the experiments that are feasible

and have sufficient V CEF to produce cost savings using in-transit for both non-

blocking and blocking cases (Equations 7.9 and 7.10).

7.4.1 V CEFV CEFV CEF Magnitude Across Experiments. Figure 24 shows

the V CEF for each experiment. We felt the most surprising result was how large

V CEF values were as a whole. Many of the experiments had values above 4X,

which creates significant opportunities for the cost effectiveness of in-transit.

Surprisingly, volume rendering experiments where the in-transit resources were

50% of the simulation (Alloc(50%)) were able to achieve V CEF values of about

4X. Putting this number in perspective, if an Alloc(50%) experiment runs in the

same amount of time as its in-line counterpart using half the concurrency, then

its V CEF would be 2. This is because it would have run using half the resources

while taking the same amount of time as in-line. Higher values indicate that the

runtime has decreased at smaller concurrency, i.e., 4X cost efficiency via using

half the resources and running 2X faster. Further, we note this volume rendering

algorithm has been extensively optimized and is used in a production setting.

This result highlights the significant advantage that V CEF provides. Algorithms

with poor scalability (i.e., heavy communication) are able to run at lower levels of

concurrency, and therefore achieve better performance.

As expected, V CEF is heavily dependent on the type of algorithm. The

volume rendering experiments were communication-heavy, lending itself to higher

cost efficiency when running at lower concurrency. The isosurfacing experiments

were computation-heavy — first, an isosurface is calculated, and then it was
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with a circle glyph. Each glyph is scaled by the concurrency of the experiment
(isosurfacing: 8-1024; volume rendering: 8-2048). Experiments are grouped by color
(configuration) and connected by lines (concurrency sequence).

rendered. The isosurface calculation is embarrassingly parallel, so there is no reason

to expect a high V CEF . That said, the parallel rendering became very slow at

high concurrency, as evidenced by the high in-line times (>10 seconds). This was

due to the communication required to perform the image compositing and the final

reduction using the radix-k algorithm. In these cases, the V CEF values increased

from 3X to 6X.
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While the main takeaway of Figure 24 is high V CEF values, a secondary

takeaway looks ahead to our analysis of cost savings, and in particular establishing

intuition about which configurations will be viable for cost savings. All volume

rendering experiments had high V CEF values, while only isosurfacing experiments

at very high concurrency had high V CEF values. The isosurfacing experiments

at lower concurrencies had smaller V CEF values, which makes them less likely to

offset the additional costs incurred for in-transit (transfer times, blocking, idle).

7.4.2 Feasibility of Cost Savings. Equation 7.3 from our model

is used to determine the feasibility of cost savings for in-transit visualization.

When Equation 7.3 is true, then cost feasibility is possible. Figure 25 uses this

equation to show the feasibility for each experiment. The black line shows where

in-line and in-transit costs are identical, and the region above the black line is

cost feasibility for in-transit. This figure follows discussion from Section 7.3.3. For

example, if the in-line cost is less than the transfer cost, then no V CEF value can

make in-transit cost effective. Or if the resources devoted to in-transit are very

large, then they will likely sit idle and be a incur cost at no gain. About half of

our experiments were in this category, incapable of achieving cost savings with in-

transit, because the transfer and resource costs exceeded the in-line costs. In the

remaining half of the experiments, our choice for the number of in-transit nodes

created a potentially feasible situation — the resources dedicated to in-transit and

the cost of transferring data was less than the in-line visualization cost. That said,

only some of these experiments actually led to cost savings with in-transit. This

is because the feasibility test for Figure 25 placed no consideration on whether the

in-transit resources were sufficient to perform the visualization task. In some cases,

V CEF was enough that the in-transit resources could complete its visualization
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Figure 25. Plot of cost savings feasibility for each test case. Each glyph denotes
the in-line cost as a function of transfer and resource costs. Glyph size represents
the number of simulation nodes used in each test (isosurfacing: 8-1024; volume
rendering: 8-2048). Hollow glyphs indicate in-line was more cost efficient and solid
glyphs indicate that in-transit was more cost efficient. The black line marks where
in-line and in-transit costs are equal. Above the line is where in-transit can be cost
effective. In this plot, blocking is not considered. Some glyphs above the line are
hollow however due to V CEF being insufficient to achieve overall cost savings.

task within the allotted time. In others cases, V CEF was not sufficient, and this

caused the in-transit resources to block. Figure 26 takes this blocking into account,

and faithfully plots the terms from Equation 7.3 from Section 7.3.2. The difference

between Figure 25 and 26, then, is whether blocking is included when considering

in-transit costs.
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A final point from Figure 25 is the trend as concurrency increases — in-

line visualization increases at a much higher rate than transfer costs. Consider

the example of isosurfacing, with Alloc(50%) and Delay(0) i.e., the blue lines on

the right of Figure 25 with triangle glyphs. These experiments have in-line costs

that go from 0.6X of the simulation cycle time at the smallest scale to 2.2X for the
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Figure 26. Plot of cost savings feasibility for each test case. Each glyph denotes
the in-line cost as a function of transfer and resource costs. Glyph size represents
the number of simulation nodes used in each test (isosurfacing: 8-1024; volume
rendering: 8-2048). Hollow glyphs indicate in-line was more cost efficient and solid
glyphs indicate that in-transit was more cost efficient. The black line marks where
in-line and in-transit costs are equal. Above the line is where in-transit can be cost
effective. This plot is an update of Figure 25 to include blocking costs. This plot
demonstrates that our cost model is able to perfectly infer when cost savings can be
achieved with in-transit, as only hollow glyphs appear below the black line and only
solid glyphs appear above it.
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largest scale. Further, the x-values (i.e., transfer cost and resource cost) change in

a much more modest way (0.75X to 0.85X, with this representing only a variation

in transfer since the resource cost is fixed at 0.5 for this case). This is a critical

point to bring up for in-line visualization: It can be very difficult to scale some

algorithms up to the scale of the simulation without incurring huge penalties. All

of the other families of experiments exhibit a similar trend, with little variation

in X (transfer and resource) and significant increases in Y (in-line visualization)

as scale increases. Extrapolating forward, the opportunities demonstrated in our

experiments will only become greater as supercomputers get larger and larger.

7.4.3 Achieved Cost Savings. Figure 27 extends Figure 26

by plotting the results of Equation 7.8 for each of the points that did provide

cost savings. Equation 7.8 calculates the required V CEF value for a in-transit

experiment to not block the simulation. While blocking the simulation is certainly

not an ideal configuration, it is still possible to achieve cost savings if the cost

savings gained through V CEF is greater than the cost of the blocked simulation.

About a third of the experiments that provided cost savings from Figure 26

actually blocked the simulation (points to the right of the black line).

The main takeaway from this plot though, is the rate at which V CEF

allowed in-transit visualization to achieve cost savings and prevent blocking.

About two thirds of the cases that achieved cost savings did so by not blocking

the simulation. This was in large part due to the high values for V CEF that were

achieved in those cases.

Looking back to the intuition we established in Section 7.4.1 about which

experiments would be viable from a cost savings standpoint, we see that our

intuition was correct. Our intuition was that volume rendering would lead to
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Figure 27. This plot takes the points from experiments in Figure 26 where in-
transit was cost effective and plots the achieved V CEF as a function of the
required V CEF to prevent blocking. The black line is Equation 7.8. Points above
the line did not block, while those below did block. This plot shows two things:
first, the necessary V CEF speedup required to prevent blocking, and second, that
cost feasibility is possible even with simulation blocking.

more experiments with cost savings vs. isosurfacing due to its high V CEF values

across all concurrencies, whereas isosurfacing only had high V CEF values at

high concurrency. Looking at Figure 27, we see that the majority of the points

are for volume rendering, 19 cost winners, vs. isosurfacing, 9 cost winners. This

trend indicates two important things: first, at even higher concurrency we should

expect to see larger values for V CEF , with even more cost winners for in-transit,

and second, in future as more algorithms are studied, those with even more
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Figure 28. This plot takes the points from experiments in Figure 26 where in-
transit was cost effective and plots the in-transit cost as a function of the in-line
cost using Equation 7.9 (if no blocking occurred), or Equation 7.10 (otherwise).
The black line indicates where costs are equal.

communication than volume rendering should see even greater cost savings due

to V CEF .

Figure 28 takes all of the cases that achieved cost savings from Figure 26

and shows what the observed in-transit and in-line costs were in each case. The

further the points are from the black line the larger the in-transit cost savings.

This chart shows that 30 cases out of a possible 58 cases from Figure 25 were able

to achieve cost savings. Meaning that overall, out of our 153 in-transit tests, we

demonstrated high V CEF values and cost savings in 30, or 20%, of our cases. We
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note that these test cases were originally conceived for a study on the fastest time

to solution, not cost savings, so seeing 20% of cases winning from a cost perspective

is encouraging. Stated differently, our experiments did not focus on optimizing

over resources, and so it is possible that more success could have been found. By

focusing on smaller allocations, these studies should see a much higher percentage

of cost winners for in-transit.

7.5 Summary

The primary results from this chapter are three-fold: (1) VCEF values

are surprisingly high, and in particular high enough to create opportunities

for in-transit to be cost effective over in-line, (2) a model for considering the

relative costs between in-transit and in-line that incorporates V CEF , and (3)

consideration of that model over a corpus of data that demonstrated that VCEF-

based savings do in fact create real opportunities for in-transit cost savings. We

feel this result is important, since it provides simulation teams a valuable metric

to use in determining which in situ paradigm to select. Combined with in-transit’s

other benefits (such as fault tolerance), we feel this new information on cost could

be impactful in making a decision. In our studies, our communication-heavy

algorithm showed more promise for in-transit cost benefit than the computation-

heavy algorithm. This observation speaks to an additional role for in-transit:

sidestepping scalability issues by offering the ability to run at lower concurrency.

This is particularly important as the visualization community considers critical

algorithms like particle advection, topology, connected components, and Delaunay

tetrahedralization. In terms of future work, we would like to explore V CEF with

more simulation codes and different algorithms, consider the implications to V CEF

if we choose to not perform visualization every step, what can be accomplished
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if slack time on the in-transit nodes is used to perform additional visualization,

and to explore the feasibility of creating models to predict V CEF values for

common visualization algorithms. Finally, we would like to incorporate a measure

of uncertainty into our plots (and predictions once future work is completed) that

accounts for system noise and variation in timings between different instances of

the same test run. These additions will give end-users of our models and plot more

realistic expectations for results for the set of tests that fall within these regions of

uncertainty
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CHAPTER VIII

CONCLUSIONS AND FUTURE DIRECTIONS

Some of the text in this chapter comes from [71, 73], which were described in

detail in Chapter VI and Chapter VII.

8.1 Conclusions

In situ visualization for scientific simulations is becoming increasingly

important as the discrepancy between compute and I/O continues to grow in

modern supercomputers. In order for scientists to get the most knowledge out

of their data they will need to embrace in situ methods for automatic analysis,

visualization, reduction, and extract selection. Therefore, it is critical to understand

how to perform these tasks efficiently, with the least impact to the simulation and

the simulations cost. There is currently very limited work in the area of scalability

performance understanding for in situ visualization techniques. This dissertation

investigated the scalability and performance of two different common visualization

algorithms from small to large scale both in-line and in-transit in order to answer

its central question: “In-line vs. in-transit insitu: which technique to use at scale?”

In Section 1.2 we presented six sub-questions to aid in answering the central

question of this dissertation. We will now look at those six sub-questions and what

we discovered during the course of this dissertation’s research.

Q: How does communication between ranks affect in-line visualization (is it more

efficient for some algorithms vs. others)?

A: The idea that some algorithms are more efficient on smaller allocations

due communication between the ranks is the core of this dissertation.

We saw that the algorithm type does play an important role in

determining what will be time and cost efficient. Isosurfacing has
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very little communication, so ranks are free to operate on data almost

independently. This is in stark contrast to volume rendering which

has both a compute and communication component. We observed

that the inter-rank communication with volume rendering (image

compositing) was a primary driving factor in the high V CEF values

for all of the isosurfacing test cases. These results suggest then that for

communication heavy algorithms at large scale, that in-line visualization

is a poor choice if done frequently, and will incur large costs for the

simulation vs. in-transit. On the other hand for computation heavy

algorithms, in-line performed well at moderate scale, only failing at the

scaling limits of our study.

Q: At lower concurrency, are in-line techniques more efficient?

A: This depends highly on the cycle time of the simulation. In-line benefits

less from longer cycle times than in-transit visualization, so it has fewer

opportunities for wins. With shorter simulation cycles however, there are

cases where in-line visualization at lower concurrencies is more efficient

than in-transit. This stems in great part from a delicate balance between

the compute and network requirements for visualization operations.

At smaller concurrencies, these algorithms may no longer be network

bound, so are able to efficiently take advantage of the in-line resources,

being more efficient than the corresponding, even smaller, in-transit

allocations.

Q: What are the overheads associated with in-transit techniques?
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A: In-transit techniques can have fairly significant overhead in terms of cost.

This is due to the required additional resources that in-transit requires

for operation, as well as the time to complete the desired visualization

tasks. These costs can be tailored, however, to a simulation’s budget

by modifying the frequency of visualization, the complexity of the

visualizations performed, and size of the visualization allocation. In

this way the cost of in-transit visualization can in fact become

a net positive for the simulation by moving some inherently

unscalable visualization algorithms off of the simulation

resources to smaller visualization allocations.

Q: Does in-transit ever cost less to use than in-line?

A: Yes, in-transit does in fact cost less than in-line in certain configurations.

In our studies we saw a cost savings for in-transit in 30 cases, or

20% of the time. With continued understanding of the performance

of visualization algorithms we can expect this percentage to rise

significantly.

Q: What percentage of simulation resources are needed for in-transit so that it

does not block the simulation (so that it keeps up)?

A: This question depends upon the visualization algorithm chosen, the

simulation cycle time, as well as the visualization frequency. If the

simulation cycle time is long enough, then it is possible to use 12% of

the simulation resources or less and not block the simulation using in-

transit visualization. As the simulation cycle decreases that percentage

will have to rise, or the visualization frequency will need to drop.
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Q: What size of resource allocation is needed for in-transit visualization so that

resources are not wasted when doing infrequent visualization?

A: This question depends upon the same factors as the previous question.

That is, the longer the simulation cycle time the fewer resources are

needed in order to keep up with the simulation. For example, in our

study, when we had the 15 and 25 second simulation cycle times, we

needed fewer than Alloc(12%) resources for most cases, meaning that

in order to not waste resources we needed to test smaller allocations.

The shorter the cycle time the less impact we see from wasting in-transit

resources as they are completely busy in most all cases.

Summarizing the findings of this dissertation, we found that the type of

visualization algorithm is critical in deciding where to place the operation, either

in-line or in-transit. With high communication algorithms we see that in-transit

visualization has some of the best prospects at scale. Whereas, low communication

algorithms more favor in-line visualization at scale.

A primary contribution of our work is the identification of V CEF and the

associated model that was developed for considering relative costs between in-

line and in-transit visualization. We feel this result is important, since it provides

simulation teams a valuable metric to use in determining which in situ paradigm to

select. Combined with in-transit’s other benefits (such as fault tolerance), we feel

this new information on cost could be impactful in making a decision on placement.

In our studies, our communication-heavy algorithm showed more promise for in-

transit cost benefit than the computation-heavy algorithm. This observation

speaks to an additional role for in-transit: sidestepping scalability issues

by offering the ability to run at lower concurrencies.
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8.2 Future Work

In the following subsections, we detail five areas of future research that build

on the work from this dissertation.

8.2.1 Selecting Appropriately Sized In-Transit Allocations.

The first direction is in selecting an in-transit allocation that is likely to create

cost benefits. Our corpus of data was originally conceived for a study on time

savings. This is why it included configurations like Alloc(50%), which have very

little chance of providing cost savings. Saying it another way, although we put little

effort into choosing configurations that could achieve cost savings, we still found

these cost savings occurred 20% of the time. If we put more effort into choosing

such configurations, perhaps by incorporating the work of Malakar [89, 90], who

had complementary ideas on choosing allocation sizes and analysis frequencies,

this proportion could rise significantly. A twin benefit to choosing an appropriately

sized in-transit allocation is that potentially more nodes would be available for

simulation use, as over allocating an in-transit allocation can limit the maximum

size of a simulation scaling run.

8.2.2 Understanding the Benefits of Hybrid In Situ Methods.

The second direction is in exploring the benefits and applications of hybrid in

situ methods. Hybrid in situ methods have the potential to remove the negatives

of both the in-line and in-transit paradigms. That is, for algorithms that are

embarrassingly parallel and operate most efficiently at simulation scale, it would

be faster, and most likely, more cost effective, to perform the algorithm on the

simulation resources. Algorithms that are communication-bound perform most

efficiently at scales below that of the full simulation. In this latter case, moving the

data to the in-transit allocation would be the best choice.
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Combining these two ideas, it is possible to create a system of in-line

and in-transit resources that cooperates to achieve the best performance for the

lowest cost. Take for example the first algorithm that we presented in Chapter VI,

isocontouring plus rendering. With this algorithm it would be most efficient to first

perform the isocontouring on the in-line resources and then move the intermediate

result to a in-transit allocation. Then, the in-transit allocation can perform the

parallel rendering and compositing at a smaller scale, being much more efficient.

The research here comes in on two fronts. First, it is not clear which

algorithms can be performed in a hybrid environment. In fact, some algorithms

may need to be rewritten to break them into separate phases that can each be

called on different resources. Second, the time and cost savings with this form of in

situ is currently based off of experience and conjecture, studies to determine these

for hybrid in situ are still required. Furthermore, it is likely that hybrid methods

will see a drop in the necessary in-transit resources needed to both keep up with

the simulation and to stay cost efficient, provided that high computation algorithms

are performed on the simulation resources.

8.2.3 Understanding and Predicting V CEFV CEFV CEF . The third direction

is in understanding and being able to predict V CEF . For our study, we ran

production software for two algorithms. We were able to observe V CEF factors

after the run, but we are not able to predict them. Predicting V CEF is hard

— it will vary based on algorithm, data size, architecture, and possibly due to

data-dependent factors. This difficulty may even increase when hybrid in situ is

considered, as there are more variables and costs to consider. More studies will

need to be performed on a wider set of algorithms, data sizes and complexities,

and in-depth AI models created to model each algorithm with an understanding
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of different machine architectures. These studies however will have great benefit,

as being able to predict V CEF would lead to being able to choose cost effective

configurations for in situ visualization routines.

8.2.4 Alternatives to Blocking the Simulation and Idle In-

Transit Resources. The fourth direction is in considering more alternatives

to blocking the simulation and having in-transit resource sitting idle. Making the

choice to block simplified our cost model and study. A twin choice was to ignore

idle time — we could have tried to do “more visualization” when the in-transit

resources completed their initial task and went idle. Making a system that is more

dynamic (not blocking and instead visualizing data from the next time step and/or

also adding tasks when there is idle time) would be an interesting future direction.

Such a system would be able to realize cost savings compared to in-line, provided

V CEF can offset transfer costs.

8.2.5 Incorporating a V CEFV CEFV CEF Predictor into a Visualization

Workflow Generator. The fifth direction is in extending our understanding of

V CEF once we are able to predict it, and incorporate this into scientific workflows

in a natural and agile way. For instance, a simulation team may have a set of

10 different intentions, or analysis operations, that they would like completed

during a simulation campaign. Each of these intentions has a need for a certain

temporal fidelity, data fidelity, accuracy, frequency, and timeliness. In addition,

each intention will have a priority associated with it, that indicates if it is an

operation that is critical and must happen, or if it would just be nice to have if

there is available time and the cost is low enough. By having a model for predicting

V CEF , a semantic system like this can be created that will allow for easy creation,

scheduling, and cost efficient use of analysis and visualization with a simulation.
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A critical component to the success of this system will be in the use of learning

techniques that will allow the V CEF predictor and the overall workflow predictor

to learn on the fly, enabling it to make better predictions and scheduling choices as

machines, workloads, data sizes, and data density changes. An analysis workflow

tool like this will help to make visualization and analysis better, more prevalent,

and cheaper, helping to push forward scientific discovery.
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