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ABSTRACT
In this position paper, we argue that the loosely coupled in
situ processing paradigm will play an important role in high
performance computing for the foreseeable future. Loosely
coupled in situ is an enabling technique that addresses many
of the current issues with tightly coupled in situ, including,
ease-of-integration, usability, and fault tolerance. We sur-
vey the prominent positives and negatives of both tightly
coupled and loosely coupled in situ and present our recom-
mendation as to why loosely coupled in situ is an enabling
technique that is here to stay. We then report on some re-
cent experiences with loosely coupled in situ processing, in
an effort to explore each of the discussed factors in a real-
world environment.

CCS Concepts
•Human-centered computing → Visualization; Visu-
alization theory, concepts and paradigms; Visualiza-
tion application domains; •General and reference→ Ref-
erence works;

Keywords
Visualization techniques and methodologies; Scientific visu-
alization; In situ; Tightly coupled in situ; Loosely coupled
in situ; perspective

1. INTRODUCTION
The amount of data available to scientists is quickly out-

pacing the ability to move, process, analyze and thereby fully
comprehend. One of the fundamental barriers to knowledge
extraction from scientific data are the increasing costs of
data movement, particularly moving data to disk [1]. There
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appears to be no end to this trend as recently deployed su-
percomputers, as well as those planned for the future, pro-
vide far more computational capacity than I/O bandwidth.

Because visualization is particularly sensitive to I/O band-
width [5, 6] the community has turned to in situ techniques
to alleviate this growing problem. Broadly speaking, two
paradigms have emerged [4]. First, co-processing, or tightly
coupled methods. We define tightly coupled to mean when
the simulation and visualization code run in the same pro-
cess using the same resources. Second, concurrent-processing,
or loosely coupled methods. We define loosely coupled to
mean when the simulation transfers data over the network
to a separate set of visualization nodes for processing. For
simplification, we view these two paradigms as on-node and
off-node. Tightly coupled can be thought of as running on
the same node as the simulation, and not utilizing asyn-
chronous data transfers from the simulation to the visu-
alization routines, while loosely coupled can be viewed as
off-node.

There has been significant work and successes with both
paradigms [9, 12, 16, 19, 20]. As a result, it is unclear which
paradigm simulation code groups and visualization software
developers should back.

The remainder of this position paper is organized as fol-
lows: Section 2 compares and contrasts both paradigms
against the following set of 10 factors: data access, data
movement, data duplication, data translation, coordination,
resource requirements, exploratory visualization, scalability,
fault tolerance, and ease of use. Section 3 presents our per-
spective for why loosely coupled in situ visualization is best
suited for future and current work using these paradigms.
Section 4 provides a motivating use case of tightly coupled
in situ in practice. Section 5 presents our final thoughts on
terminology and the long-term benefits of loosely coupled in
situ.

2. COMPARISON FACTORS
The comparison factors selected were intended to span the

range of issues relevant to both scientists that are running
simulations, and computer science researchers and develop-
ers that are deploying analysis and visualization methods.
These factors consider required HPC resources (both shared
and dedicated), impact on the running simulation, fault tol-



erance, and usability.

2.1 Data Access
With simulations producing more data than can be saved

to disk, a different data set is available for visualization and
analysis depending on when the data are accessed. Gener-
ally speaking, there are more data and timesteps available
on the simulation resources than there will be once the data
are transfered and saved to disk. This makes it important
that the correct set of operations are performed on the data
at each stage. For operations that require all data and all
timesteps, that operation should be performed on the sim-
ulation nodes before data are culled. However, if an opera-
tion or simulation team can handle performing analysis on a
sparser data set, that operation could take place after data
are saved to disk.

With tightly coupled in situ, visualization and analysis
routines can take advantage of having the full richness of
the simulation output. Operations can be done that take
into account all of the produced data for every timestep.

Loosely coupled in situ visualization routines on the other
hand, often must operate with a sparser set of data. How-
ever, it should be noted that this data set can be more com-
plete than those that are saved to disk, because the network
transfer can allow for a greater volume of data to be sent.
Therefore, loosely coupled in situ routines often work with
less data than is available in situ, but more than is available
post hoc.

Winner: tightly coupled in situ

2.2 Data Movement
Moving large quantities of data from one location to an-

other can be an expensive task. The cost of this task varies
substantially depending on where the data are being sent,
i.e. between nodes in an allocation or off over the network,
so data movement should be kept to a minimum.

Often the amount of data needed varies by the visualiza-
tion algorithm employed. For a simulation using tightly cou-
pled in situ visualization and analysis, the amount of data
moved can range from none, to simulation stalling levels.
This is because some visualization algorithms traditionally
require large amounts of data to be sent between the ranks,
which complicates the problem when using tightly coupled
in situ. Communicating between every node in the simu-
lation can be enormously expensive compared to a smaller
node allocation.

Loosely coupled in situ visualization has a different is-
sue with regards to data movement. Before loosely coupled
in situ visualization can take place, the data must be sent
from the simulation to a visualization resource for process-
ing. This dump from the simulation to the visualization
resource can saturate the network, and could even cause a
slowdown in the simulation while it sends the data off over
the network. This data dump though has the potential to
end up moving far less data, in total, during the visualiza-
tion routine vs. that of tightly coupled in situ. This is due
to visualization allocations traditionally being much smaller
than simulation node allocations, meaning that communica-
tion takes place over a much smaller domain.

Winner: draw

2.3 Data Duplication
At the conclusion of each time step of a simulation, a

new set of data are available and ready for use. On node
resources may take immediate advantage of this data, while
off node resources require a copy to be made. The act of
making this copy means that the data now exists in two
places, doubling the memory footprint.

Tightly coupled in situ visualization does not have a data
duplication problem. All data are already available within
the simulation, so no duplication will take place.

Loosely coupled in situ visualization must work on a copy
of the data by definition. That is, the data are copied from
the simulation nodes to whatever loosely coupled in situ vi-
sualization solution is being used. This duplication now dou-
bles the RAM usage for each timestep, possibly making it
the less efficient choice.

Winner: tightly coupled in situ

2.4 Data Translation
Simulation codes store mesh and field data in myriad ways

that visualization programs must be able to interpret and
work with. The foundation for performing such a trans-
lation is a data model (which describes what data can be
represented) and its implementation (which describes how
to lay out arrays).

In the in situ world, there are two basic options. First,
the visualization code can allocate new arrays that match its
own data model implementation and then copy data from
the simulation code’s arrays into its own arrays. Obviously,
this memory bloat is often viewed as undesirable. However,
this approach is still used in VisIt’s LibSim and ParaView’s
Catalyst. The second option is to ensure that the visual-
ization code can work on directly on the simulation data
layout. This is straightforward when writing custom code
specifically for that simulation, but much harder when try-
ing to design a general purpose visualization infrastructure
that can be re-used with many simulation codes. The ap-
proaches used by the community so far involve redirection of
data accesses through virtual functions (done in some cases
with Catalyst), designing a data model implementation that
support many different array organizations to increase the
chances that the simulation code uses an array layout that
the visualization code can support (as with EAVL), or writ-
ing templated code that is customized to the simulation code
during the compilation process (as with SciRun).

To date, the two basic options have proven to be difficult
for doing easy and overhead-free data translation. Instead,
we note that this problem has been addressed previously,
for data I/O, where simulation codes write arrays to disk
and visualization codes read them. Establishing schemas,
interfaces, and conventions was a non-trivial task in this
space, but one that is now generally considered “solved.”
With respect to in situ, the loosely coupled approach can
take advantage of this existing solution, by using the simu-
lation code’s I/O calls as a way to pass data. As a result,
the path to integrating in situ technology with the loosely
coupled approach is significantly less of a burden.

Winner: loosely coupled in situ

2.5 Coordination
Coordination is required between the simulation and the

visualization. This coordination lets the visualization know
that the next iteration of simulation data are ready and that
visualization can begin.

In a tightly coupled in situ paradigm coordination is mini-



mal. If visualization code is directly embedded into the sim-
ulation, this could be as simple as calling the visualization
routine at the end of the simulation main loop. For produc-
tion tools like LibSim and Catalyst the coordination is very
similar, but the call is made into the particular library.

In a loosely coupled in situ paradigm much more coor-
dination is required. At the end of each cycle in the main
loop a call must be made to transfer the data to the visu-
alization resource. This transfer requires use of the network
and coordination on both the sending and receiving side to
ensure the data are successfully sent and received. To guard
against faults, care must be taken to recover from situations
when a network call fails, or the visualization resource is not
available.

Winner: tightly coupled in situ

2.6 Resource Requirements
All in situ paradigms require additional resources of some

sort. In a tightly coupled in situ paradigm the simulation
and visualization share the same resources, including execu-
tion, memory, and network. In an era when memory per core
is steadily decreasing, visualization tools are required to op-
erate under very tight memory restrictions. In cases where
intermediate results need to be computed and held in mem-
ory, this can be a challenge. Additionally, super computing
time is in high demand, and very expensive. Therefore sim-
ulations will generally dedicate a fixed window of time for
visualization. These restrictions place challenges on visual-
ization which have generally run on dedicated resources with
large memory, or on the development of new techniques that
operate within tight time and memory requirements.

In a loosely coupled in situ paradigm additional visual-
ization nodes are required. These additionally nodes are
requested at the time the simulation is run, add to the cost
of running a simulation. However, these additional nodes
can be used asynchronously once the data are transferred.
The visualization can run while the next time step is being
computed by the simulation, and there are no restrictions on
memory usage. However, care must be taken to handle the
arrival of the next time step if the visualization routines are
still running. But otherwise, the restrictions are minimal.

Winner: draw

2.7 Exploratory Visualization
Exploratory visualization, a task most associated with

post processing of data on disk, is generally, not a strength
in any in situ paradigms. Typically, the visualization that is
done must be specified a priori, and so care must be taken
to decide when the simulation is launched which particu-
lar operations will be performed. However, tools like Lib-
Sim and Catalyst do allow fully featured visualization tools
access to specified parts of simulation data, making free-
form exploratory visualization possible, but at the expense
of pausing the simulation while the user interacts the data.

Winner: draw

2.8 Scalability
Any in situ paradigm is constrained to use the concurrency

of the allocated resource. In a tightly coupled paradigm this
is the allocation for the entire simulation. While this level
of concurrency might be advantageous for embarrassingly
parallel routines that require little synchronization or com-
munication, it can be a bottleneck for visualization routines

that require significant communication (e.g. particle track-
ing, etc), or algorithms that don’t exhibit scaling up to the
levels of simulation codes (e.g. hundreds of thousands of
cores). Conversely, in a loosely coupled paradigm, the con-
currency of the visualization resource can be appropriately
configured for the tasks to be performed. Algorithms that
require significant synchronization and communication will
generally perform much better at lower levels of concurrency,
and this can be used to optimize the performance.

Winner: loosely coupled in situ

2.9 Fault Tolerance
As supercomputers continue to grow in size and complex-

ity, resilience and fault tolerance at all levels become in-
creasingly important. For tightly coupled in situ paradigms,
where visualization and simulation run together, fault toler-
ance becomes imperative. Simulations are directly exposed
to data corruption, infinite loops, or errors in visualization
routines, and could result in faults or crashes. Because of the
expense of super computing time, and the drastic impact of
faults on simulation codes, fault tolerance is a requirement.
Something that in practice is very hard to achieve.

Because of the clear and distinct separation between the
simulation and the visualization in a loosely coupled para-
digm, the exposure to faults is greatly reduced. In this para-
digm the data transfer to the visualization resource becomes
the only point of exposure to faults. The exposure can be
further reduced by using asynchronous transfers.

Winner: loosely coupled in situ

2.10 Ease of Use
Usability spans a wide range of topics, and includes things

such as integration, deployment, development, and depen-
dencies. For tightly coupled in situ, where there is a funda-
mental connection between the simulation and visualization
code, software engineering practices become very important.
Because of this basic interdependence, changes in either the
simulation or visualization code, or dependencies on third
party libraries need to be carefully managed. In the case of
stand-alone production packages where there is a more sep-
arated interface point, careful coordination of releases and
patches is still required.

For loosely coupled in situ the interface between the sim-
ulation and visualization takes place through the API. Here,
a cleanly defined, concise and small set of APIs determine
the usability of the system.

Finally, there is no free lunch. Development costs must
be taken into account. While writing custom visualization
code has the advantage of maintaining full control and mak-
ing domain-specific optimizations easy, there is the cost of
not taking advantage of community-wide investments de-
voted to making standard tools and libraries. On the other
hand, developing loosely coupled in situ frameworks is a
large undertaking, and providing the flexibility to handle a
wide variety of uses cases is a challenge.

However, given the advantages afforded by the separation
of simulation and visualization, the loosely coupled para-
digm occupies a much stronger position.

Winner: loosely coupled in situ

3. DISCUSSION
Based on the evaluation of the 10 factors we considered,

there are clearly very good reasons for using a different tech-



niques. In cases with very specific needs, there is often a
clear choice. In practice however, there are generally many
factors under consideration, and we hold that some factors
are much more important than others. In particular, we
hold that fault tolerance, ease of use, and data translation
are the most important of the 10 factors discussed.

As discussed in Section 2.9 the increasing complexity of
supercomputers and the workflows being run on them makes
fault tolerance of paramount importance. The ability of
loosely coupled in situ to completely separate the simulation
from the visualization makes it the clear choice.

On a related note, the complete separation of simulation
and visualization in a loosely coupled paradigm is a large
contributor to the win for ease of use concerns (see Sec-
tion 2.10). This minimization of contact points between the
two, along with the flexibility provided with configuration
of simulation runs and setup of visualization choices make
loosely coupled in situ the clear choice.

Finally, as discussed in Section 2.4, the diversity of data
models and data layouts in simulation codes makes efficient
interfacing of simulation outputs and visualization a daunt-
ing challenge. Loosely coupled in situ methods solve this
problem by doing what simulations and visualization rou-
tines already do, writing and reading data. Simulations
do not even have to be aware of what happens after data
transfer calls are made, the underlying system takes care of
transferring the data, and the visualization access the data
by making data read calls.

The advantages of loosely coupled in situ in these key
areas makes it clear that this paradigm should be a staple
in visualization now, and going forward. As a testament
to the viability of this paradigm, loosely coupled techniques
have been demonstrated with production runs on some of
the largest super computers in the world [2, 17, 8].

Finally, there is one final and critical point for consider-
ation. Hybrid methods [4], where both tightly and loosely
coupled paradigms are used at the same time, are an excit-
ing and very promising direction. These methods support
the flexibility of processing data on the simulation resource
before they are either written to disk, or transferred to the
visualization resource for additional processing. In other
words, it offers the ability to achieve the best of both para-
digms. However, hybrid methods are only possible within a
context that supports loosely coupled in situ. It is otherwise
impossible.

4. IN PRACTICE
The setup we employ places an emphasis on several of the

factors discussed in Section 2, including ease of use, fault
tolerance, data translation, scalability, and resource require-
ments. This maps most directly onto a loosely coupled in
situ paradigm. Our workflow consists of three primary ele-
ments: (1) the simulation code; (2) a data transfer system
to move data from the simulation to the visualization nodes;
and (3) an efficient parallel visualization library. The sim-
ulation code, XGC1 [3], is a highly scalable physics code
used study plasmas in fusion tokamak devices. For the lat-
ter two elements, we utilize three important libraries which
are described below: ADIOS and DataSpaces for data man-
agement and transfer, and VTK-m as a framework for light
weight visualization plugins.

The loosely coupled paradigm in ADIOS and DataSpaces
provides for a clean interface and separation from XGC1

(a) Selection of parti-
cles of interest

(b) Particle inter-
action with vessel
boundary

(c) Slice plane of
field data

Figure 1: Representative examples of XGC1 particle and
field visualization performed with a loosely coupled in situ
paradigm.

that provides ease of use, and fault tolerance. The ability to
control the concurrency of the visualization tasks indepen-
dent of the concurrency of XGC1 is important for ensuring
good scalability on the visualization nodes. Further, the re-
source requirements can be specified based on the types of
visualization that will be performed. The VTK-m frame-
work offers a data model with the flexibility to efficiently,
and optimally represent the output format for XGC1.

4.1 ADIOS
The Adaptable I/O System (ADIOS) [10], is a componen-

tization of the I/O layer that is accessible via a posix-style
interface. The ADIOS API abstracts the operation away
from implementation, allowing users to compose their ap-
plications independent of the underlying software and hard-
ware. This capability, along with the functionality of DataS-
paces [7] allows this same API to support read/write oper-
ations from/to the memory space of visualization nodes.

This type of loosely coupled in situ provides significant
advantage for one of the most important factors considered,
namely ease of use. It is worth emphasizing that loosely
coupled in situ is achieved with minimal modifications to the
simulation code. It uses something the simulation is already
doing, namely I/O. These further address two of the most
important factors, ease of use and fault tolerance.

4.2 Visualization Plugins
We designed our visualization routines as flexible, light

weight plugins. Our plugins are based on an emerging com-
munity standard, VTK-m [18], which is a project building
upon the success of three existing visualization frameworks,
Dax [15], PISTON [11], and EAVL [13, 14]. The VTK-m
framework is targeted to emerging computational systems
where parallelism and the use of accelerators are dramati-
cally increasing, and memory per core is decreasing. An em-
phasis has been placed on much more powerful data models
that allow efficiencies in representing the various mesh types
and data layouts used by simulation codes.

4.3 Visualization Workflows for XGC1
In previous work we utilized the features of ADIOS and

EAVL (as a precursor to VTK-m), and demonstrated the
effectiveness of loosely coupled in situ visualization for large
scale simulation codes using a workflow consisting ADIOS,
data staging and EAVL [17]. In that work we focused on
the performance, scalability, and ease of use of visualization
plugins that were used on the output of the XGC1 simulation
code.



In that study we performed visualization on two different
output fields from XGC1, the plasma particles (both ions
and electrons), and field variables from the unstructured
mesh. The ease of use of this system was highlighted with
the fact that no changes to XGC1 were required. All mod-
ifications to data movement were accomplished with only a
change to the ADIOS configuration file. At each simulation
step, particles of interest were identified and visualized (Fig-
ures 1(a) and 1(b)) in parallel along with the visualization of
a slice plane through the mesh, allowing us to monitor sim-
ulation field data, such as plasma turbulence (Figure 1(c)).
These images were then used for monitoring the simulation
and for post run analysis.

Using the factors from Section 2 to compare the two para-
digms highlights the advantages of a loosely coupled para-
digm. Using the the ADIOS API, no modifications are made
to the simulation code to send data to the visualization
nodes via DataSpaces.The only change required is to the
ADIOS configuration file which is read when the simulation
starts. This affords large advantages in both ease of use,
and fault tolerance.Further, the data translation issues are
avoided since the simulation code writes data in a known for-
mat to ADIOS, which flows to the visualization nodes, and
is then read by the visualization plugin. This also highlights
the ease of use advantage since the visualization is doing
something that it already does, namely, read data. Further,
the separation of simulation and visualization resources fur-
ther highlights ease of use by eliminating any dependencies
between the simulation and visualization code, as well as
providing a layer of protection through fault tolerance.

5. FINAL THOUGHTS
The terms tightly and loosely coupled in situ are overladed

in the community and are often used to mean disparately
different things. This becomes especially true when the case
for asynchronous data transfers on the simulation nodes are
brought in, when GPUs and accelerators are considered, and
when visualization codes begin to exploit deeper memory
hierarchies. We presented our evaluation of the 10 factors
based on one definition, but maintain however, that even
in these more complicated scenarios, loosely coupled in situ
visualization would remain the winner.

In conclusion, we presented 10 factors for comparing tightly
and loosely coupled in situ paradigms. We have presented
our perspective of each paradigm with respect to each of the
factors and have found that the loosely coupled paradigm is
significantly better suited for both the near term, and the
foreseeable future. And finally, we note that the significant
advantages to be gained using a hybrid paradigm can only be
realized within a system that is based on a loosely coupled
paradigm.
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