
Visualization and Analysis Requirements for In Situ Processing
for a Large-Scale Fusion Simulation Code

James Kress
University of Oregon &

Oak Ridge National Laboratory
kressjm@ornl.gov

David Pugmire
& Scott Klasky

Oak Ridge National Laboratory
pugmire@ornl.gov, klasky@ornl.gov

Hank Childs
University of Oregon &

Lawrence Berkeley National Laboratory
hank@cs.uoregon.edu

Abstract—In situ techniques have become a very active re-
search area since they have been shown to be an effective
way to combat the issues associated with the ever growing
gap between computation and I/O bandwidth. In order to
take full advantage of in situ techniques with a large-scale
simulation code, it is critical to understand the breadth and
depth of its analysis requirements. In this paper, we present
the results of a survey done with members of the XGC1 fusion
simulation code team in order to gather their requirements
for analysis and visualization. We look at these requirements
from the perspective of in situ processing and present a list
of XGC1 analysis tasks performed by its physicists, engineers,
and visualization specialists. This analysis of the specific needs
and use cases of a single code is important in understanding
the nature of the needs that simulations have in terms of data
movement and usage for visualization and analysis, now and
in the future.

1. Introduction

Current trends in supercomputing point to a future where
increases in core counts are greatly outpacing increases
in memory and I/O bandwidth. These systems will make
it possible to compute far more data than can regularly
be moved to disk. As a result, the vast majority of data
produced by simulations will be lost, or the workflow will
stall under the burden of I/O [1]. Simulation scientists are
faced with the problem of deciding what small fraction of
data can be saved, and what must be discarded. Ever lurking
within these decisions is the possibility of lost scientific
knowledge.

Research efforts for efficiently using these systems are
following several paths. These paths include more efficient
use of the memory hierarchy in terms of I/O [2], [3], [4] and
burst-buffers [5], [6], data compression and subsetting [7],
[8], [9], [10], frameworks that efficiently use the available
compute cores to process data [11], [12], [13], and in situ
visualization and analysis methods [14], [15], [16], [17].

In this short paper we consider the area of in situ
visualization methods. We focus our efforts on a study of
the XGC1 [18] scientific team, and the workflows being
run on leading edge supercomputing systems. We present a

survey of the predominant visualization and analysis tasks
in this workflow, and, for each, describe how the task is
currently performed given a list of computational, time, and
resource constraints. We believe this study of the XGC1
project is valuable, since it formalizes the specifics of in
situ requirements for a simulation code for later usage by
visualization scientists. While a subset of this information
is available in several research papers, we think a study
dedicated exclusively to cataloging requirements gives a
more complete picture. This information could in turn be
used for engineering software designs, hardware designs,
and conducting feasibility studies.

We know of no efforts to provide a formalized way to
approach in situ visualization given the computational and
data constraints and requirements of a particular simulation.
Such a formalization would provide a framework to reason
about the time required for input and output on a particular
computing system, along with the scientific requirements
for visualization in a workflow, which in turn informs the
feasibility of that in situ task. While we do not solve
the feasibility problem in this work, we believe that data
gathered in this work will be input to solutions for the
feasibility question.

In the remainder of this short paper, we discuss related
works in Section 2, describe the XGC1 project and its output
data and data sizes in Section 3, and describe visualization
and analysis requirements for XGC1 from our interview
process in Section 4.

2. Related Work

The Advanced Scientific Computing Research (ASCR)
Scientific Grand Challenges Workshop Series produced a
series of reports spanning eight different scientific domains
(High Energy Physics, Climate, Nuclear Physics, Fusion,
Nuclear Energy, Basic Energy Sciences, Biology, National
Security) [19], [20], [21], [22], [23], [24], [25], [26], as
well as a summarization and exposition report that further
explored the visualization and analysis requirements from
the eight different reports as a whole [1]. Each of these
reports singles out data movement, storage, and analysis as
a major obstacle in the move to exascale. Many of these
scientific domains will be required to deal with petabytes, or



even exabytes of data over the course of a simulation. Some
even expect to need to introduce new data representations
and types. These looming problems make it important to
start understanding the entire workflows of these codes,
and to develop methods and infrastructure that will enable
them to perform on future architectures. While these reports
accomplish the goal of setting a research agenda around
visualizing large data, they do not outline an approach
for scientists to reason out their visualization needs based
on data size and complexity, computational resources, or
algorithm complexity, which contrasts with our study.

We know of no work focusing specifically on cataloging
and categorizing the different visualization and analysis
tasks of a simulation code. There are however instances of
visualization and analysis requirements being reported in
conjunction with a study.

A work by Bennett et al. [27] reports on a use case
with combustion simulations using S3D, where features are
tracked, identified, and visualized both in situ and in transit.
Their work utilized in situ and in transit methods using a
volume of nearly 1 billion cells and 16 seconds average wall
time per time step using 4896 cores.

Pugmire et al. [9] explore a feature tracking and iden-
tification use case in the XGC1 simulation code, using a
data set of nearly 1 billion particles and a time budget of 10
seconds per simulation time step. In this work, the authors
describe a system that intelligently handles the tracking of
particles and features of a simulation in real time, in a user
specified area of interest.

Ellsworth et al. [28] describe a time-critical pipeline for
weather forecasting using the GEOS4 simulation code. This
code is run under very tight time constraints four times a
day which requires the visualization to be performed with
minimal overhead. The visualization was performed on data
consisting of 23 million cells with up to seven 3D and four
2D fields per cell.

Malakar et al. [29] describe a series of visualization
tasks done with the LAMMPS simulation code. The data
contained 1 billion atoms, using 91 GB per simulation time
step. Typical runs consisted of 1000 time steps, with output
every 100 time steps.

Slawinska et al. [30] demonstrate the incorporation of
ADIOS into Maya for an astrophysics simulation workflow.
Using in situ techniques, they reduced the amount of data
needed to perform their visualization and analysis task from
4.5 TB down to 24 GB that would normally be saved to disk
without in situ.

From these past works we have been able to get a sense
of some of the data sizes and visualization and analysis
requirements from other large-scale simulation codes. None
of these reports however gives a full picture of the data
and analysis requirements stemming from these simulation
codes. Without understanding both the breadth and depth
of the needs of these codes in terms of data movement and
usage, future research efforts on in situ techniques may miss
an important aspect or problem that is very important to
large-scale simulation codes, but just has not been formally
presented to the community.

Figure 1: Example of an XGC1 mesh with planes equally
spaced around the central axis of the tokamak.

3. XGC1 Project

XGC1 is a 5D gyrokinetic ion-electron particle in cell
(PIC) code used to study fusion of magnetically confined
burning plasmas. XGC1 is used in particular to study the
turbulent region on the outer region of the plasma called the
edge. The simulation proceeds by computing the interactions
of a very large number of particles, and then depositing the
particles onto a finite element mesh. The mesh, as shown
in Figure 1, consists of a number of 2D planes positioned
uniformly around the toroidal shape of the tokamak. The
number of planes used, typically between 16 and 64, is
specified by the scientists to capture the expected wave-
form distributions. The particles, which interact within the
toroidal space of the mesh, are statistically deposited onto
the mesh. This deposition step provides a statistical view of
simulation, as well as helps optimize the simulation runtime.

XGC1 scientists typically run two different sizes of sim-
ulations, which we categorize as medium and large. These
run sizes are defined by three factors (1) the number of
compute processes; (2) the number of particles per process;
and (3) the number of nodes in the mesh. These factors are
quantified for the medium and large runs in Table 1.

TABLE 1: Simulation size characteristics, particle counts,
and wall time per simulation time step for two different
XGC1 run sizes.

Medium Run Large Run
Number of Processes 65,536 262,144

Number of Particles Per Process 100,000 500,000
Number of Mesh Nodes 100,000 1,069,247

Average Wall Time Per Time Step 2-4 min 5-10 min

3.1. XGC1 Output Data Types and Sizes

In this section we discuss the variety of outputs produced
by XGC1, with an emphasis on outputs most relevant for
analysis and visualization.

The largest output file in XGC1 is the restart file,
and contains the state of each particle at a particular time
step. Medium and large runs will contain around 6 billion
and 150 billion particles, respectively.

The second largest output file in XGC1 is the
restartf0 file, which is used for post-processing detec-
tion of abnormal particles. This file contains a mapping of



TABLE 2: A summary of the output data from XGC1 that
is used most often by those interviewed. The table shows
average sizes for medium and large runs, as well as how
often the data changes.

File Size (GB)
File Name Medium Run Large Run Output Frequency

restart 976 19,531 1-100 Time Steps
restartf0 48 522 1-100 Time Steps

mesh 0.025 0.256 Static
output.bfield 0.075 0.75 Static

oneddiag 0.002 0.03 Every Time Step
3d 0.075 0.8 Every Time Step
f3d 0.35 2.0 Every Time Step

each plane in the unstructured grid to a regular mapping in
phase space. This mapping produces smooth contours for
non-turbulent particles, making it easier to identify the non-
smooth contours of turbulent particles.

The unstructured 3D mesh in XGC1 is described in the
mesh file, which is static over time, and specifies the points
and connectivity of a single plane, and the number of planes
around the tokamak. Medium and large runs will use about
100K and 1M points per plane respectively.

The output.bfield file contains the steady state
magnetic field defined on the unstructured mesh and is static.

The oneddiag file contains general diagnostics that
are appended after each time step. This file contains around
80 different diagnostic values, such as densities, flow, and
momentum values, and is used to calculate a number of
derived quantities.

The 3d file is produced every time step and contains
data for each plane in the simulation. The data is partitioned
based on the underlying triangular mesh describing the
tokamak. That is, this data is produced during the deposition
and data reduction step in the simulation, where raw particle
data is deposited onto the triangular mesh, producing an
average value for that mesh region.

The f3d file is produced every time step and consists of
ion and electron information relating to temperature, density,
and velocity. The data is partitioned just as in the 3d case,
and is based on the underlying triangular mesh describing
the tokamak, resulting in an average value for each mesh
region.

Table 2 contains a summary of the previously detailed
information on XGC1 output files and associated file size.

4. XGC1 User Surveys

The XGC1 project is composed of a large membership,
including physicists, experimentalists, analysts, and com-
puter scientists. This diversity of backgrounds leads to a
broad range of activities to be performed on various parts
of the data, each requiring varying computational and data
resources. In order to gain a holistic understanding of the
project, we conducted interviews with 7 different XGC1
team members, covering key areas of the XGC1 workflow.
Our interviews started with the same questions for each par-
ticipant, although follow-on questions were adapted based

on the interests and expertise of the participant. From these
interviews we have distilled a list of required and “nice-to-
have” analysis routines on XGC1 data. Finally, while our
interest in these requirements is in how they apply to in situ
processing, we note that in many cases they are applicable
to post hoc processing requirements as well.

The required and nice-to-have analysis routines can
generally be categorized into three areas: (1) visualization
and analysis, (2) simulation monitoring, and (3) debugging
and performance engineering. For each of these three areas
we will report on our findings from our interviews, as
well as indicate which of the items is a Data Analysis
and Visualization (DAV) task. DAV’s are specific instances
of the requirements we identified through our interview
process. One key finding from the interviews, which is
highly relevant for in situ, is that XGC1 allows up to 10%
of total simulation time to be devoted to I/O. This fact must
be kept in mind as new data requirements and fidelities are
output for visualization and analysis tasks. The requirements
gathered from the XGC1 team in each of the three areas are
presented in Sections 4.1, 4.2, and 4.3 respectively.

4.1. Visualization and Analysis

A common analysis task in XGC1 is to make an image
of a feature or region of interest. Images can serve several
distinct functions in XGC1: (1) a diagnostic tool for check-
ing new physics in the code, (2) a debugging and verification
mechanism for new visualization routines, and (3) a method
of exploring, discovering, and understanding new properties
in the tokamak that either were not known or have been
assumed to exist by the physics community. There are two
types of images needed from XGC1: static plots and videos
of time varying quantities.

Make Static Plots. Static plots are images of par-
ticular regions or quantities in the simulation. These plots
include graphs, contour, histograms, pseudocolor plots, etc.
The following are commonly created plots:

• DAV 1: Plots of the scalar value potential over time.
This requirement primarily draws data from the 3d
file.

• DAV 2: Plots of heat flux, turbulence, or the tem-
perature on surfaces over time. This requirement
primarily draws data from the f3d file.

• DAV 3: Plots of the moments of the distributions
functions (first order, second order, third order) of
the different XGC1 variables: density, kinetic energy,
etc. This requirement primarily draws data from the
f3d file.

Make Videos. Videos show the evolution of the sim-
ulation over time. The most common types are field and
particle videos. Field videos show the statistical properties
of the particles on the mesh. Particle videos show particle
evolution, requiring very large amounts of data due to the
large number of particles. The plots from DAV 1, DAV 2,
and DAV 3 can also be made into videos, but some common



(a) Average PSI
velocity in a re-
gion in XGC1.

(b) Accumulation of particle impacts
to the containment vessel wall.

Figure 2: Example frames from XGC1 analysis videos
demonstrating common visualization tasks.

analysis tasks that only make sense when shown as an
evolution over time include:

• DAV 4: Average vector in a region, as shown in Fig-
ure 2(a). This video type primarily uses data stored
in the restart and mesh files.

• DAV 5: Rendering particle paths as they progress
around the tokamak. This video type primarily uses
data stored in the restart file.

• DAV 6: Detecting and visualizing particles that col-
lide with the tokamak wall, as shown in Figure 2(b).
A requirement of this DAV task is the identification
of particles that collide with the wall at some point
in the simulation. This requires two-passes over the
data, one to identify the particles that collide with
the wall at any time, and the second to render
these identified particles and the collisions with the
tokamak wall. After the collision, these particles are
removed from the scene. Because of the large size of
the particle data, and two passes over all time steps
are required, there is no known way to perform this
task in situ. Even running the simulation run twice
(once to identify particles, and the second time to
render identified particles) can be problematic, since
the particles are not guaranteed to be reproducible
across runs. This video type primarily uses data
stored in the restart and mesh files.

• DAV 7: Visualizing the turbulence derived quantity.
This video type primarily uses data stored in the 3d,
mesh, and oneddiag files.

Interactive Visualization and Analysis. Interactive
visualization and analysis is accomplished using ADIOS [2]
and data staging, where data are streamed from the XGC1
simulation to a data server for visualization. The main
interactive visualization task in XGC1 is blob tracking:

• DAV 8: Blob tracking involves identifying areas of
high energy within the plasma which can form non-
linear turbulent eddies. The longevity, size, shape,
and composition of these eddies are interesting to
researchers, and their visualization gives insight into

their 3D structure and perturbation to particle orbits.
Blob tracking requires regions of interest to be iden-
tified through user interaction, and then the particles
composing the blobs in those regions are tracked in
subsequent time steps. This task is important because
blobs represent areas of high energy and temper-
ature which can damage the wall of the tokamak.
Understanding the development and nature of blobs
is crucial to the design and operation of tokamaks.
The data used in this analysis includes data from the
restart, 3d, mesh, and oneddiag files.

Synthetic Diagnostics. Synthetic diagnostics provide
a way to compare simulation and experimental data. Gen-
erally, experimental data are not directly comparable to the
outputs of simulations, and so a transformation step is often
required. Once transformed, experimental data can be used
to verify simulation results. These capabilities are currently
under development, so no measurable data analysis and
visualization task exists yet for this requirement.

4.2. Simulation Monitoring

Simulation monitoring is concerned with real or near-
real time reporting of simulation status to the scientists. This
monitoring can include tasks such as creating plots of im-
portant variables or functions as the simulation progresses,
detecting bad simulation states and halting the simulation,
and even simulation steering by sending instructions from
the monitoring routine back to the simulation.

Simulation Dashboard. A simulation dashboard is an
easy to access web page from which scientists can remotely
access key information about running simulations, as well
as past simulations. For data that cannot be appended to
existing plots at each time step, the dashboard must allow
a mechanism to explore plots over time. It should enable
support for continuing a past simulation run on the same
dashboard, and contain links to the storage locations for the
data used in each of the visualizations for each run, making
retrieval of data related to interesting aspects of a run easy.
The dashboard visualization requirements are as follows:

• DAV 9: Plotting values on each of the poloidal
planes of the simulation for every time step, as
shown in Figure 3(a). The number of planes that are
plotted are equal to the number of simulated poloidal
planes in the tokamak, typically 16, 32, or 64, plus
one plot that represents averages of the values of all
planes. This requirement primarily draws data from
the 3d and mesh files.

• DAV 10: Plotting all of the variables contained in
the oneddiag file for each time step, as shown
in Figure 3(b). Typically this produces 150 different
plots.

• DAV 11: The automatic creation of a video summa-
rizing each variable at the end of the simulation, a
video of the average planes from DAV 9, and videos
summarizing the slices of the torus.



(a) Example of a slice plot
of potential at one time step.

(b) Example of a variable plot
showing poloidal flow over time.

Figure 3: Example images produced by an XGC1 online
dashboard during one simulation time step.

4.3. Debugging and Performance Engineering

There are a number of debugging and performance tasks
that are desired, or in the works, for XGC1, but, at present,
they are not part of the production codebase or analysis
and visualization workflows. We therefore have no DAV
tasks to report. However, we include a discussion on the
major items on the wish list to illustrate directions for future
development.

Debugging. Debugging code related to the introduc-
tion of new physics or performance enhancements in XGC1
is always challenging. Worse, many problems only occur
when running at very large scales.

• Error Logs are one method of debugging, and pro-
vide a great source of information, though is gener-
ally underutilized. The ability for analysis and visu-
alization of these logs could provide useful feedback.

• Particle Loss is the loss of particles from the toka-
mak containment vessel. Recent particle loss has
manifested near the simulation boundaries. This in-
formation is currently saved to the error log and
retrieved after the run is over.

Low Level Monitoring. No low level monitoring
exists in the XGC1 code, meaning that the code will not stop
itself once the results become invalid. This is an opportunity
for improvement. For example, checks to detect when a cer-
tain percent of particles have been lost from the simulation
(making the results invalid) could be implemented.

Work Division (load balancing). Work division is the
process of balancing the distribution of particles to proces-
sor ranks in a plane of the simulation. Three possibilities
exists for balancing the particles in an XGC1 plane: (1) the
toroidal direction, (2) the poloidal direction, or (3) a hybrid
combination of the two. For context, the toroidal direction
is the long way around the torus, and the poloidal direction
is the short way around the torus.

• Toroidal Load Balancing is currently being done in
production. Experiments indicate this method yields
the biggest performance gains.

• Hybrid Load Balancing is under experimental de-
velopment. At this time it is not clear if this type of

load balancing would benefit the overall runtime of
the simulation. This is due to the fact that poloidal
motion is very fast and intuition tells them that it
does not end up being a problem. However, further
studies into this could be beneficial.

• Imbalance detection: XGC1 currently has no mech-
anisms for detecting when particle imbalance begins
to become a detriment to performance, and when a
rebalance would be worth the overhead cost. Further
work and analysis would prove useful.

Collision Detection. Collision detection is a feature
under development, and attempts to balance the simulation
by collisions between particles (currently only a single
species, but multiple species would be useful). Methods are
wanted to visually compare load imbalances by collision
versus particle imbalances to answer the question of how
these imbalances are different, and how to optimize for
both.

5. Conclusion and Future Work

We surveyed a diverse set of people associated with
the large-scale fusion simulation code XGC1, gained an
understanding of how they work, and cataloged their vi-
sualization and analysis requirements for in situ processing.
This look at the breadth and depth of in situ requirements
for a large-scale simulation code provides valuable insight
into the needs of a diverse team. The identified DAV’s vary
drastically in terms of computational and data resources
required, demonstrating a wide breadth of needed in situ
flexibility and capability. Finally, we believe the breadth of
requirements for XGC1 will be similar for other simulations
codes, but that a study such as ours would need to be
repeated for these teams to gain an in depth understanding.

As part of our future work, we plan to develop a
performance model for each DAV that incorporates com-
putational, time, and resource constraints to predict if it is
viable to be performed in situ. This performance model will
answer the question of whether or not the integration of
in situ visualization and analysis techniques into key areas
of a workflow is viable under varying user and system
requirements. This predictive capability will allow scientific
teams to properly assess, and then appropriately select, the
set of visualization tasks that will minimize the impact on
the running simulation, while maximizing the extraction of
scientific knowledge.

Acknowledgments

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Award Number
14-017566. The authors thank the XGC1 code team for their
participation, and also the anonymous reviewers for their
helpful comments.



References

[1] S. Ahern, A. Shoshani, K.-L. Ma, A. Choudhary, T. Critchlow,
S. Klasky, V. Pascucci, J. Ahrens, E. Bethel, H. Childs et al.,
“Scientific discovery at the exascale,” Report from the DOE ASCR
2011 Workshop on Exascale Data Management, 2011.

[2] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.
Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello adios: the challenges and lessons of developing leadership
class i/o frameworks,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1453–1473, 2014. [Online]. Available:
http://dx.doi.org/10.1002/cpe.3125

[3] The HDF Group, “Hdf5 users guide,” https://www.hdfgroup.org/
HDF5/doc/UG/, accessed: 6/20/2016.

[4] V. Vishwanath, M. Hereld, and M. E. Papka, “Toward simulation-time
data analysis and i/o acceleration on leadership-class systems using
glean,” in Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on. IEEE, 2011, pp. 9–14.

[5] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class
storage systems,” in Mass Storage Systems and Technologies (MSST),
2012 IEEE 28th Symposium on. IEEE, 2012, pp. 1–11.

[6] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. de Supinski,
N. Maruyama, and S. Matsuoka, “A user-level infiniband-based file
system and checkpoint strategy for burst buffers,” in Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on. IEEE, 2014, pp. 21–30.

[7] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, “Compressing the incompressible
with isabela: In-situ reduction of spatio-temporal data,” in European
Conference on Parallel Processing. Springer, 2011, pp. 366–379.

[8] S. Li, K. Gruchalla, K. Potter, J. Clyne, and H. Childs, “Evaluating
the Efficacy of Wavelet Configurations on Turbulent-Flow Data,”
in Proceedings of IEEE Symposium on Large Data Analysis and
Visualization (LDAV), Chicago, IL, Oct. 2015, pp. 81–89.

[9] D. Pugmire, J. Kress, H. Childs, M. Wolf, G. Eisenhauer, R. Churchill,
T. Kurc, J. Choi, S. Klasky, K. Wu, A. Sim, and J. Gu, “Visualiza-
tion and analysis for near-real-time decision making in distributed
workflows,” in High Performance Data Analysis and Visualization
(HPDAV) 2016 held in conjuction with IPDPS 2016, May 2016.

[10] H. Zou, Y. Yu, W. Tang, and H. M. Chen, “Improving i/o performance
with adaptive data compression for big data applications,” in Parallel
& Distributed Processing Symposium Workshops (IPDPSW), 2014
IEEE International. IEEE, 2014, pp. 1228–1237.

[11] J. S. Meredith, S. Ahern, D. Pugmire, and R. Sisneros, “EAVL:
the extreme-scale analysis and visualization library,” in Eurographics
Symposium on Parallel Graphics and Visualization. The Eurograph-
ics Association, 2012, pp. 21–30.

[12] K. Moreland, U. Ayachit, B. Geveci, and K.-L. Ma, “Dax toolkit: A
proposed framework for data analysis and visualization at extreme
scale,” in Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on, Oct 2011, pp. 97–104.

[13] K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pug-
mire, J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-
M. Chen, R. Maynard, and B. Geveci, “VTK-m: Accelerating the
Visualization Toolkit for Massively Threaded Architectures,” IEEE
Computer Graphics and Applications (CG&A), vol. 36, no. 3, pp.
48–58, May/Jun. 2016.

[14] E. P. Duque, D. E. Hiepler, R. Haimes, C. P. Stone, S. E. Gorrell,
M. Jones, and R. Spencer, “Epic–an extract plug-in components
toolkit for in situ data extracts architecture,” in 22nd AIAA Com-
putational Fluid Dynamics Conference, 2015, p. 3410.

[15] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion,
B. Gevecik, M. Rasquin, and K. E. Jansen, “The paraview copro-
cessing library: A scalable, general purpose in situ visualization
library,” in Large Data Analysis and Visualization (LDAV), 2011 IEEE
Symposium on. IEEE, 2011, pp. 89–96.

[16] M. Larsen, E. Brugger, H. Childs, J. Eliot, K. Griffin, and C. Harrison,
“Strawman: A batch in situ visualization and analysis infrastructure
for multi-physics simulation codes,” in Proceedings of the First Work-
shop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization. ACM, 2015, pp. 30–35.

[17] S. G. Parker and C. R. Johnson, “Scirun: a scientific programming
environment for computational steering,” in Proceedings of the 1995
ACM/IEEE conference on Supercomputing. ACM, 1995, p. 52.

[18] C. Chang, S. Ku, P. Diamond, Z. Lin, S. Parker, T. Hahm, and
N. Samatova, “Compressed ion temperature gradient turbulence in
diverted tokamak edgea),” Physics of Plasmas (1994-present), vol. 16,
no. 5, p. 056108, 2009.

[19] R. Blandford, Y.-K. Kim, N. Christ et al., “Challenges for the
understanding the quantum universe and the role of computing at
the extreme scale,” in ASCR Scientific Grand Challenges Workshop
Series, Tech. Rep, 2008.

[20] W. Washington, “Challenges in climate change science and the role of
computing at the extreme scale,” in Proc. of the Workshop on Climate
Science, 2008.

[21] G. Young, D. Dean, M. Savage et al., “Forefront questions in nuclear
science and the role of high performance computing,” in Technical
report, ASCR Scientific Grand Challenges Workshop Series, 2009.

[22] W. Tang, D. Keyes, N. Sauthoff, N. Gorelenkov, J. Cary, A. Kritz,
S. Zinkle, J. Brooks, R. Betti, W. Mori et al., “Scientific grand
challenges: Fusion energy sciences and the role of computing at the
extreme scale,” in DoE-SC Peer-reviewed report on major workshop
held March, 2009, pp. 18–20.

[23] R. Rosner, E. Moniz et al., “Science based nuclear energy systems
enabled by advanced modeling and simulation at the extreme scale,”
in ASCR Scientific Grand Challenges Workshop Series, Tech. Rep,
2009.

[24] G. Galli, T. Dunning et al., “Discovery in basic energy sciences: The
role of computing at the extreme scale,” in ASCR Scientific Grand
Challenges Workshop Series, Tech. Rep, 2009.

[25] R. Stevens, M. Ellisman et al., “Opportunities in biology at the
extreme scale of computing,” in ASCR Scientific Grand Challenges
Workshop Series, Tech. Rep, 2009.

[26] A. Bishop, P. Messina et al., “Scientific grand challenges in national
security: The role of computing at the extreme scale,” in ASCR
Scientific Grand Challenges Workshop Series, Tech. Rep, 2009.

[27] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci et al., “Combining
in-situ and in-transit processing to enable extreme-scale scientific
analysis,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for. IEEE, 2012, pp.
1–9.

[28] D. Ellsworth, B. Green, C. Henze, P. Moran, and T. Sandstrom, “Con-
current visualization in a production supercomputing environment,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 12,
no. 5, pp. 997–1004, 2006.

[29] P. Malakar, V. Vishwanath, T. Munson, C. Knight, M. Hereld, S. Leyf-
fer, and M. E. Papka, “Optimal scheduling of in-situ analysis for
large-scale scientific simulations,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis. ACM, 2015, p. 52.

[30] M. Slawinska, M. Clark, M. Wolf, T. Bode, H. Zou, P. Laguna,
J. Logan, M. Kinsey, and S. Klasky, “A maya use case: adaptable
scientific workflows with adios for general relativistic astrophysics,”
in Proceedings of the Conference on Extreme Science and Engineer-
ing Discovery Environment: Gateway to Discovery. ACM, 2013,
p. 54.


