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Figure 1: Our binning visualization and level-of-detail technique on a volume of 25 clusters. The image on the left uses an
isovalue of 0.5, the image in the center uses an isovalue of 50, and the image on the right uses an isovalue of 125.

ABSTRACT

We present a novel methodology for clustering and visualizing
large-scale tractography data sets. Tractography data sets contain
hundreds of millions of line segments, making visualizing and un-
derstanding this data very difficult. Our method reduces and simpli-
fies this data to create coherent groupings and visualizations. Our
input is a collection of tracts, from which we derive metrics and
perform clustering. Using the clustered data, we create a three-
dimensional histogram that contains the counts of the number of
tracts that intersect each bin. With these new data sets, we can per-
form standard visualization techniques. Our contribution is the vi-
sualization pipeline itself, as well as a study and evaluation schema.
Our study utilizes our evaluation schema to identify the best and
most influential clustering metrics, and an optimal number of clus-
ters under varying user requirements.
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1 INTRODUCTION

Researchers studying the function and structure of the brain face
a difficult imaging and visualization problem due to the complex
underlying data [9]. Non-invasive methods, such as Magnetic Res-
onance Imaging (MRI), have been developed in order to safely gen-
erate three-dimensional representations of structural components
of the living human brain. Typically, MRI data is used to pro-
vide differentiation between various tissue types (grey matter, white
matter, and Cerebral Spinal Fluid (CSF)) [12]. Diffusion MRI
(dMRI) builds on MRI technology to measure the diffusion of water
throughout tissue [20]. Since white matter neurons are myelinated,
their diffusion characteristics differ substantially from the similar
grey matter neurons. Groups of these white matter neurons, or fiber
tracts, form the basic connections between distant brain regions. It
is believed that studying white matter fiber tracts will enable re-
searchers to better understand the fine structure of the brain leading
to a more complete understanding of how it works [28].

While tractography data is clearly useful, the size of this data of-
ten makes analysis difficult. A typical tractography data set consists
of hundreds of thousands of tracts, and they can sometimes contain
much more, even hundreds of millions. Further, each advance in
technology allows more and more tracts to be identified. Each indi-
vidual tract contains multiple line segments, typically around 300.

∗e-mail: james@jameskress.com

In our study, we considered a data set with almost 500,000 tracts
and 150 million line segments.

The problem with tractography data, then, is two-fold: (1) how to
operate on these large data sets? and (2) how to create meaningful
results that do not visually overwhelm a medical researcher? Plot-
ting each of the tracts and their line segments on the screen leads to
a very complex scene; in the data set described above, there would
be 15 line segments for every pixel of a 10002 image. Instead, tech-
niques are needed that make the scale of the data more manage-
able. Specifically, techniques are needed that make tractography
data smaller to operate on while also creating scenes that are more
comprehensible for viewers.

With this work, we develop a novel approach for visualizing trac-
tography data. Previous approaches have utilized clustering based
on derived metrics; we build on this approach by taking each cluster
and creating a new data set that represents the cluster density. This
extension provides significant benefits over previous work. First,
the focus on density enables a level of detail approach for adap-
tively controlling the amount of data displayed. Second, the ap-
proach reduces the size of the data, making it easier to work with.
Finally, our cluster density representation enables evaluations that
were not possible when dealing with tracts. These evaluations help
us in two ways: (1) creating a better understanding of the efficacy of
derived metrics that was not previously possible, and (2) allowing
our algorithm to choose the best representations of the data. Putting
it all together, the contributions of this paper are: (1) a new tech-
nique for the visualization of tractography data that reduces its size
and provides a level of detail capability and (2) a technique for un-
derstanding which derived metrics are most useful for performing
clustering.

The remainder of this paper is organized as follows: Section 2
surveys related work. Our new technique is described in Section 3.
The technique is defined as a pipeline with multiple parameter val-
ues to be tuned; Section 4 describes the metrics we use to evaluate
which parameter settings are best. Section 5 provides an overview
of our experiment, and Section 6 describes our study over the pa-
rameter values. This study feeds into Section 7, which describes
our algorithm for picking the best parameter values. Section 8 de-
scribes our experiences in practice, both in terms of carrying out
the study and in terms of applying the algorithm to create new vi-
sualizations. Section 9 discusses current limitations and areas for
future extension of our work.

2 RELATED WORK

2.1 Diffusion MRI

Understanding how the various parts of the brain are interconnected
by neurons in white matter is an active topic of research [9]. dMRI



produces a series of volumetric images in which each image repre-
sents the directional strength of water diffusion in vivo. Due to the
fibrous nature of myelinated white matter neurons, water diffuses
more rapidly along these fibers than it does in other directions [11].
Once the dMRI data is acquired, the various images of directional
diffusion are coalesced into a single three dimensional image of
high-order elements. Generally, these reconstructed images are re-
ferred to as diffusivity images. While there exist many methods to
creat diffusivity images [15, 30, 33], each method requires different
data acquisition protocols that may drastically change the time it
takes to capture the overall dMRI scan. As this work focuses on the
Diffusion Tensor Imaging (DTI) family of dMRI reconstructions,
we restrict our discussion of fiber tractography methods to those
that may use this representation. One of the simpler reconstruction
techniques, DTI, uses symmetric, rank two diffusion tensors as ba-
sic elements in the diffusivity image. Scans to be used with DTI
reconstructions are considered fast to acquire (approximately fif-
teen minutes), enabling their use with at risk populations, children,
and patients that may not tolerate long scanning times [26].

2.2 White Matter Fiber Tractography
In order to study the connectivity of the brain, white matter fiber
tracts must be estimated from the diffusivity image. Tractography
reconstruction algorithms may be divided into two large classes:
probabilistic strategies, and deterministic ones [10]. Probabilistic
tractography algorithms, such as Yendiki et al.’s TRACULA [33],
use Bayesian frameworks to generate volumetric distributions of
pathway likelihoods. A more complete discussion of probabilistic
tractography is given by the work of Jbabdi et al. [19]. Determinis-
tic approaches to tractography, such as the FACT method [23], inte-
grate the diffusion tensor field to generate streamlines representing
recovered fiber paths.

Both probabilistic and deterministic methods for tractography re-
construction may be local or global in nature. Local reconstructions
seed positions at a small region of the brain in order to discover how
a single cortical region is connected. Global methods, on the other
hand, densely seed the white matter volume in order to capture a
more holistic view of white matter fiber paths.

Unfortunately, global tractography methods may take hours to
complete and produce large amounts of data. Only through the
use of data reduction techniques can these data be analyzed to
learn more about the brain’s connectivity. In this work, we rely
on the global tractography methods and acquisition parameters pro-
posed by Scherrer et al. in order to generate the large tractography
data sets required to best understand the interconnectivity of the
brain [29].

2.3 Visualization of Tractography
The visualization of whole brain tractography can generally be sep-
arated into two groups: (1) visualization of clustered tractography
and (2) visualization of non-clustered tractography. We explore
closely related works in sections 2.3.1 and 2.3.2 respectively.

2.3.1 Clustered Tractography
Partitioning tracts into groupings is an important step in analyzing
and understanding a tractography data set. Often, this partitioning
is done by clustering. Tractography clustering breaks down to two
components: (1) the tract similarity metrics used to perform the
clustering and (2) the clustering method.

Clustering methods can generally be broken down into two dif-
ferent general themes: (1) Cartesian clustering and (2) anatomical
clustering. Each of these clustering approaches attempts to pro-
vide answers to the same general questions. Anatomical clusterings
use existing knowledge of the brains structure to make assumptions
about how a given data set should be partitioned. Cartesian cluster-
ings on the other hand, solely use information that can be derived

from individual tracts or the data set as a whole, to create metrics
and a final clustering.

There has been substantial work on clustering methods and met-
rics in the past, especially in Cartesian clustering. Visser et al. [31]
and Moberts et al. [22] both employ the use of hierarchical clus-
tering using variations of the pairwise distance between tracts as
their tract similarity metrics. This work is important in that it does
not use anatomical knowledge to perform the clustering, but relies
solely on the characteristics of the data set at hand. The drawback
of this implementation however, is that it does not consider mul-
tiple aspects of the tract or the data set. There are other metrics
that can be calculated on a per tract basis that could lead to a more
comprehensive clustering.

Brun et al. [5] and Batchelor et al. [3] address this issue of low
order clustering metrics, by each using multiple metrics. Brun et
al. creates a feature vector representing each tract using the mean
of coordinates of all points on the tract, as well as the covariance of
the coordinates in a 3D space. Using this feature vector, pairwise
tract comparisons are performed to create a weighted undirected
graph, and partitions this space using normalized cuts. Whereas,
Batchelor et al. takes it a step further, and defines more metrics, by
using curvatures, torsions, and Fourier descriptors.

O’Donnel et al. [24] and Voineskos et al. [32] take a slightly
divergent path, and use derived clustering metrics, but do so only
for selected regions of interest where they perform their clusterings.
They employ a spectral clustering technique that uses a similarity
metric that is a modification of the Hausdorff distance (the upper
bound of the minimal point-to-point distance between tracts), using
high distances as low similarity and low distances as high similarity.
This approach is taken primarily to increase clustering speed, while
potentially sacrificing the insights that can be gained from whole
brain clustering and visualization.

Often, Cartesian clustering is extended through the use of
anatomical maps. One such example comes from Guevara et
al. [17]. They defined a robust clustering system for tractography
data composed of a five step process, two steps of which are parti-
tioning and Cartesian clustering. The partitioning is used to break
the brain down into anatomical regions, and hierarchical clustering
is performed separately in each region. The preprocess step of par-
titioning does allow for faster clustering, but may hide more natural
clusterings of the data, i.e., where tracts from neighboring subsets
intersect.

Another example comes from Ros et al. [27]. They proposed a
clustering method using a hybrid of hierarchical clustering and an
atlas-based classification. Their clustering classification is unique
in that they develop a method called CASTOR (Cluster Analysis
Through Smartly Extracted Representatives), which reduces the
clustering space overhead. This allows for faster clusterings, but
relies on the soundness of the representatives in creating coherent
and meaningful clusters.

Finally, Flandin et al. [14] utilized a K-means clustering based
on a geodesic distance to partition functional Magnetic Resonance
Image data. Their work was unique in that they utilized K-means
as a method for partitioning brain region activation data, which is
data that indicates regions of activity in a brain during a given task.
This data is much more localized than tractography data, which can
span the entire length of the brain, but does show promising results
for the applicability of K-means clustering with medical data.

Summarizing the previous related work, all previous efforts use
metrics derived from the input data set as input to their cluster-
ing algorithms. However, many of the works do not describe their
metrics, used metrics not suitable for whole brain clustering, or,
alternatively, describe metrics that are not suitable for large data
(for example, the work of [22, 31] considers pairwise metrics be-
tween all tracts). For our study, our focus is on the methodology
that transform tractography data into a smaller form for interactive



cluster visualization. Our methodology is conceptually capable of
dealing with any per-tract metric, and we consider six such metrics
in our own experiments.

2.3.2 Non-Clustered Tractography

Very little work has been done in the area of whole brain tractog-
raphy visualization. Most often, simple line or tube representations
are used to portray the data. These techniques have drawbacks how-
ever, the most prominent of which are a lack of depth and locality
information.

One recent work by Petrovic et al. [25] extends the tube repre-
sentation to not only include enhanced depth information, but also
add an intricate in-image tract labeling system. This work does pro-
vide a well defined sense of locality of the tracts within the data set,
and is implemented as a GPU-based renderer. One important con-
tribution of this work is a level of detail management system that
occludes low level tracts when the user is too far away to meaning-
fully view them. This enhances the speed and performance of the
system, but lacks a fine tuning ability for a user to directly dial in
the exact level of detail they need.

Two other works [13, 16] follow the same general pattern of
Petrovic et al., and provide new and different ways of emphasiz-
ing tracts within the view plane. However, one item missing from
each of these methods is that they do not focus on data reduction
or gaining insight into the structural qualities of the brain. Instead,
they focus on the beautification of the very dense data they display.

With our study, we present a new visualization technique that
incorporates important aspects from each of these works. We ex-
tend those works by enhancing the level of detail abilities of the
rendering, and enabling interactive rendering of individual clusters.
This ability combined with the space saving size of the visualiza-
tion files, combine to form an intuitive visualization method for
large-scale tractography data sets.

3 METHODOLOGY

Our method transforms tractography data into a set of three-
dimensional histograms through a series of transformations. These
histograms can then be visualized with traditional techniques. The
transform has free parameters that affect how the transform is car-
ried out. As the output of the transform varies greatly based on
parameter choices, a key part of our methodology is to locate the
parameter values that optimize the output.

In the following sections, we describe the details of the trans-
form and the parameters that affect it (Section 3.1), how we evaluate
whether one set of parameters is better than another (Section 3.2),
and, lastly, we discuss the visualization options for our histograms
(Section 3.3).

3.1 Transform

The transform occurs over three distinct phases: (1) calculating
metrics on individual tracts, (2) clustering the tracts using these
metrics, and (3) binning the tractography data for each cluster into
a three-dimensional histogram. The first transformation takes raw
tracts (sets of line segments) and creates derived values through the
use of different metrics (discussed in Section 3.1.1). The second
transformation uses the metrics to cluster the tracts, with individ-
ual clusters of tracts being saved for later use (discussed in Sec-
tion 3.1.2). The third transform takes the clustered tracts and creates
a set of three-dimensional histograms, with one histogram created
and saved per cluster (discussed in Section 3.1.3). The resulting
data can then be visualized using traditional scientific visualization
techniques. Figure 2 illustrates the individual stages of our trans-
form.

The following subsections describe each of the phases in the
transform.

3.1.1 Tractography Metrics: Phase I
The purpose of this phase is to augment each tract in the data set
with descriptive values. We do this by calculating metrics on a per
tract basis, and we considered six metrics in this study. In order to
prevent some metrics from overwhelming others, all metrics were
normalized to values between 0 and 1.

The motivation for choosing these six metrics were based on sev-
eral constraints and goals we had for this study. Metrics should be
calculated on a per tract basis, and not by comparing two or more
tracts. Additionally, we wanted to create clusterings of tracts that
were similarly sized and in similar positions within the brain. Other
metrics can easily be added to our system at any time, and should
be added when the goals of the clusterings change. For example,
if we wanted to cluster similarly shaped tracts together, we could
add metrics such as torsion and Fourier-descriptors. In this study
however, we were specifically trying to prevent shape characteris-
tics from overwhelming our location characteristics, so they were
not included in this analysis.

The six metrics were:
• Tract Area (A), computed by taking the area of the bounding

box around a tract.
• Tract Length (L), computed by summing the individual line

segment lengths between each pair of points that compose a
tract.

• Tract Curvature (C), computed by evaluating the maximum
curvature along a tract. Specifically, we considered each pair
of connected line segments within a tract, calculated its cur-
vature, and then assigned the maximum value as the curvature
of the tract.

• Tract Linear Distance (LD), computed by calculating the
linear distance between the starting and ending points of a
tract.

• Tract Start Position (SP), computed by calculating the lin-
ear distance from the starting point in a tract to a reference
point. This was actually a family of metrics, measuring dis-
tance from three different reference points. Each of the ref-
erence points coincided with the bounding box of the overall
data set.

• Tract End Position (EP), computed similarly to Tract Start
Position, but using the last point in a tract.

While it is possible to use all six of these metrics, it is not clear
that they are all useful, i.e., that they lead to better clusterings. So
we treat the metrics as one of our free parameters, i.e., which met-
rics should be used to cluster? We allow for all combinations except
for the choice where none of the six metrics are used, meaning there
were 26 −1 or 63 parameter choices.

3.1.2 Tractography Clustering: Phase II
The purpose of this phase is to cluster tracts, and this is done using
the metrics from Phase I. The output of Phase II is k clusters, with
the clusters forming a partition over the original tractography data.

To perform the clustering, we opted to use the K-means++ al-
gorithm [2]. The goal of K-means++ is to partition n observations
(tracts) into k clusters which minimize intra-cluster variance. K-
means++ operates similarly to the K-means algorithm, only differ-
ing in the selection of initial seed locations. Tracts are represented
by their metric values. That is, when a combination of metrics is
used for clustering, they combine to form a point in the Cartesian
frame and intra-cluster variance is minimized using these points.
The intra-cluster variance is calculated based on the clustering do-
main in this Cartesian space. The algorithm starts by distributing k
centroid points in the clustering domain. The points are placed ac-
cording to the updated initialization algorithm developed by Arthur
and Vassilvitskii [2]. The algorithm then iterates through a series of
steps that update the positions of the k centroid points, attempting
to minimize the intra-cluster sum of squares.
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Figure 2: A diagram of the flow of data through our clustering and visualization pipeline. This figure demonstrates the transformation of raw
tracts to derived metrics, to clustered tracts, to a binned volume, and to the final visualization solution.

While k can be as low as one (meaning one cluster total) and
as high as Ntracts (meaning one cluster per tract), both of these ex-
tremes are likely sub-optimal in terms of maximizing user insight.
We leave k as a free parameter for our subsequent optimization
phase and note that this means there is a total of Ntracts options
for the value of k.

3.1.3 Tractography Binning: Phase III
The purpose of this phase is to create bins of the tractography data,
i.e., a three-dimensional histogram. These three-dimensional his-
tograms provide density information for a cluster by indicating the
number of tracts running through that region, allowing visualiza-
tions to focus on regions with higher densities in the binned vol-
umes. We use the clusters created in the previous step to create and
save one three-dimensional binned volume per cluster. The binning
of the tracts is accomplished in two steps:

1. A binning volume is created to store a count of the number
of tracts that cross any given bin in the volume. This volume
is sized to be large enough to encompass the minimum and
maximum extents of the entire input tractography data set.

2. Counts for each bin are calculated. This is done by consider-
ing each segment of each tract, determining the bins that each
segment overlaps, and increasing the counts in those bins ac-
cordingly.

The Tract Binning step in Figure 2 demonstrates the binning con-
cept in two dimensions.

One control in this process is the granularity of the histogram,
i.e., the total number of bins in the volume. If the total number of
bins is high, then the storage costs are higher, but the subsequent
visualizations are at a finer resolution. On the other hand, if the
total number of bins is low, then the storage costs are lower, but the
subsequent visualizations are coarser.

For our tests, we fixed the grid resolution to be 420×420×420.
This resolution was chosen as it fine enough to capture features
of the underlying tractography data set. With a lower resolution,
we would have lost many of the finer structures within the data
set. Additionally, this resolution was small enough to allow for
interactive visualization of individual clusters. We feel that this
resolution is representative of the detail needed for representing this
data, and thus, did not treat grid size as a free parameter during the
optimization phase.

3.2 Choices for Free Parameters
Let (m,k) be a choice in the parameter space, such that:

• m is a Boolean tuple. In our study, the tuple had six elements,
since we considered six metrics. The value of m[i] was true if
the ith metric was used as an input to the clustering and false
otherwise. This was the free parameter associated with Phase
1 (Section 3.1.1).

• k is an integer denoting the total number of clusters. This was
the free parameter associated with Phase 2 (Section 3.1.2).

We then chose an (m,k) configuration and ran the clustering and
evaluation steps based on those inputs.

Discussion of our approach for evaluating the optimum set of
free parameters can be found in Section 4.

3.3 Interactive Cluster Exploration
The cluster histograms from our three-phase process enables inter-
active exploration either of the entire tractography data set or of in-
dividual clusters. There are multiple end user tools for large-scale
visualization that can be used to accomplish this task. Examples
include VisIt [7], ParaView [1], EnSight [8], and FieldView [21].
These tools provide interactivity through parallelization: parallel
I/O requests, parallel processing, and parallel rendering [6]. As an
additional benefit, these tools provide rich sets of algorithms. One
particularly useful algorithm for our study was the ability to identify
connected components on large data sets [18], and to then discard
small components.

For our study we utilized VisIt. Using the VisIt isosurfacing fil-
ter on cluster histograms readily shows the areas that have high
concentrations of tracts, and hides areas with low concentrations.
Visualizing the data like this provides an intuitive level of detail
approach for setting the amount of displayed detail needed for ac-
complishing exploration tasks.

4 SELECTING FREE PARAMETERS

Our goal is to select a tuple of free parameters (m,k) such that the
resulting histograms from the transform process are optimized for
the user.

4.1 Evaluation Metrics
We considered two metrics to evaluate this optimization:

1. The depth complexity: This metric captures, on average, the
number of cluster components stacked up in depth along a
pixel. If the depth complexity is low, then the scene is likely
comprehensible for the viewer. However, a low choice also
may force unrelated things to be grouped together into the
same cluster.

2. The average number of connected components per cluster:
See Figure 3, which shows a single cluster that contains mul-
tiple components, i.e., distinct regions that do not touch. Ide-
ally, each cluster would have exactly one component, meaning
the clustering algorithm grouped only very similar things to-
gether. However, in practice, each cluster contains multiple
components; achieving one component per cluster requires
increasing the total number of clusters (k) to a point that in-
creases the depth complexity.

Our two metrics, then, are in tension. Minimal depth complexity
is achieved by setting k to one (and thus having many connected
components per cluster) and minimal connected components per
cluster is achieved by setting k to be the same as the number of
tracts (and thus having very high depth complexity). Our approach



Figure 3: Single cluster containing multiple distinct components.

was to allow the user to set a cutoff for acceptable depth complexity.
Our thinking was that the user would want the most information
that they could comprehend, and that the depth complexity should
be fixed to be at that point.

We therefore define optimal to mean the choice of (m,k) that
produces the combination with the lowest depth complexity and
lowest average number of connected components.

4.2 Search Space
Optimizing the selection of the free parameters required many dif-
ferent data runs to be conducted in a search space that contains up
to Ntracts ×63 possible configurations. We evaluated which values
for the free parameters, (m,k), produced optimized clusterings, and
present our findings in Section 6.

5 EXPERIMENTAL OVERVIEW

5.1 Clustering Software
Three distinct pieces of software were used in this work. We devel-
oped the first and third and utilized existing software for the second
piece.

The first piece of software creates the derived clustering metrics.
This code reads through the entire tractography data set, and creates
metrics for each tract. These metrics are then given to the clustering
software to perform clustering.

The second piece of software is the clustering software; the AL-
GLIB Free Edition package [4]. ALGLIB is a cross-platform nu-
merical analysis and data processing library. Specifically, we used
the ALGLIB k-means++ clustering implementation for all cluster-
ing tests.

The third piece of software is the binning code. This code creates
a 3D grid space with a given resolution, and then bins an input trac-
tography data set. This binning is performed by calculating which
bins the tract intersects by tracking which bin faces the tract inter-
sects.

5.2 Data Set
We used one data set in our evaluation. The data set that we worked
with was generated was provided by Electrical Geodesics Inc. The
data set contained a total of 496,646 tracts, each of which was com-
posed of approximately 300 individual line segments, for a total of
3.6 Gigabytes.

5.3 Experimental Machines
Two different machines were used during the development and
evaluation stages of our work:

• A desktop computer containing two 2.60 GHz Intel Xeon(R)
E5-2650 v2 8 core CPUs and a total of 64 GB of memory.

• The parallel Oak Ridge National Laboratory Sith machine,
containing 39 nodes. Each node contains four 2.3 GHz 8 core
AMD Opteron processors and 64 GB of memory, configured
with an 86 TB Lustre file system for scratch space.

We ran more than 15,000 different test configurations during the
course of our study, and used more than 50,000 node hours.

6 EXPLORING RELATIONSHIPS OVER (m,k)

Our analysis of (m,k) consisted of two distinct experiments. In
the first, we explored the relationships and patterns in our tractog-
raphy metrics (m) from Section 3.1.1. In the second, we explore
the effects of varying the value for (k). The analysis of these two
experiments are in Sections 6.1 and 6.2, respectively.

6.1 Selecting Optimal Values for (m)

As the target value for (k) varies, the best set of metrics (m) may
also vary. That is, for some clusters, one set of metrics may be best,
and, for other clusters, another set of metrics may be best. With this
first part of our analysis, we wanted to understand how the various
configurations of (m) affected clustering quality for varying values
of (k).

To determine this relationship, we set up a series of tests using
every possible combination of (m), with eight different values for
(k). From these runs we then plotted and evaluated the clustering
performance at each value of (k), using the metrics we defined in
Section 3.1.1. The plots show a persistent pattern in the quality of
the clusterings produced, as shown in Figure 4. There are six dis-
tinct groups that form for every value of (k) studied. These groups
demonstrate that the quality of the clusterings produced by differ-
ent values of (m) are fairly persistent across different values for (k).
We demonstrate this persistence with the colored values in each of
the plots that show three of the best values for (m), and how they
track across various (k).

From this data we can say which metrics (discussed in Section
3.1) are more useful than others, and which combinations of met-
rics produce the best clusterings under our evaluation schema. The
absolute worst clusterings are featured in the upper four groupings
in each of the graphs. Consistently, the worst metric was curvature
used by itself. In every test, this produced the number one worst re-
sult. In fact, when Area, Length, Curvature, and Linear Distance are
used alone, their performance is worse than when any combination
of metrics is used, and significantly worse, than when Start Position
and End Position are used on their own. Table 1 demonstrates the
performance of each of the clustering metrics used singularly. This
table is representative of the results seen at other values of (k).

We were able to conclude that to have a clustering that performed
well under our evaluation, it had to include Start Position, End Po-
sition, or both. Used singularly with other metrics, they performed
well, but not as well when used together. Further, when both are
used in conjunction with Length, Area, or both Length and Area,
we saw the best performing clusterings.

A further clear trend in this analysis is that we are generally able
to pick metrics that reduce both the number of connected compo-
nents and the total surface area of our clusterings. That is, our op-
timal metrics generally had both the lowest number of connected
components and surface areas of all the metric combinations stud-
ied. Occasionally, depending on the (k) used, one or more of our
chosen metrics would not have the lowest number of connected
components when compared against all of the other metrics (e.g.
4(d)), but they would have a substantially lower surface area. This
performance remained consistent throughout our tests, meaning

Table 1: Table showing the performance of each of the metrics used
singularly for (k = 50) in terms of the average number of connected
components and total surface area.

Metric Total Surface Area Average # of
Con. Comp.

Curvature 9,148,415 74.2
Linear Distance 6,382,081 45.8
Length 6,253,787 48.1
Area 5,698,423 8.1
Start Position 1,591,580 4.8
End Position 1,412,429 4.7
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Figure 4: Average number of connected components compared against surface area for all 63 clustering metrics. The best metrics that we
chose are shown as square: red is L/SP/EP, green is SP/EP/A, blue is L/SP/EP/A

that we are able to eliminate the majority of (m) from considera-
tion when optimizing (k).

Three of the top performing metrics were:
• L/SP/EP: Length, Start Position, End Position
• SP/EP/A: Start Position, End Position, Area
• L/SP/EP/A: Length, Start Position, End Position, Area

We treated these three metrics as optimal configurations for the
remaining tests in our study. We could have also chosen SP/EP,
L/C/SP/EP, or L/C/A/SP/EP, but they were less persistent across
tests, and showed more variation.

6.2 Studying the Effects of (k)

As the value for (k) varies, the performance of our clusterings,
based on the metrics from Section 4, will vary. In order to un-
derstand the trends in performance, we ran tests on 200 values for
(k), using the top three optimal metrics as determined in Section
6.1. From these runs we then plotted and evaluated the clustering
performance at each value of (k).

The plot in Figure 5 shows the two trends for our evaluation cri-
teria. The lower the value of (k), the more connected components
per cluster. While the higher the value of (k), the fewer connected
components. The initial decreases in average number of connected
components as the values for (k) vary from (k = 1) to (k = 25) are
substantial, dropping from 66 to approximately 7.7.

Another trend in Figure 5 is that surface area increases as (k)
increases. As each new cluster is introduced, the surface area rises,
giving us a constantly increasing surface area for larger and larger
values of (k). This is opposite the trend seen with average number
of connected components, which constantly decreases with higher
values of (k).

An important observation from Figure 5 is that the benefits of
increasing the number of clusters diminishes quickly. The average
number of connected components for (k = 30) using the L/SP/EP/A
metric is 6.3. Whereas, using the same metric at (k = 200), the
average number of connected components only drops to 2.75, while
surface area rises from 1.08 million to 1.98 million. The drop in
average connected components is quite small when compared to
the large rise in total surface area, and the added visual complexity
of 170 more clusters.

7 ALGORITHM FOR SELECTING (m,k)

Given the optimum set of clustering metrics from Section 6.1, and
the clustering performance curves from Section 6.2, we can now
describe an algorithm for selecting (m,k) pairs.

Given a depth complexity requirement, we can select a value for
(m,k) that produces the optimal configuration. In our study, we
use total surface area of all clusters to analogously represent depth
complexity. We do this by making the following assumptions:

• The tracts were binned on a 4203 grid;
• An orthographic projection (any projection will do, but this

simplifies calculations);
• The data set projects to cover the whole image;
• The user sets a depth complexity requirement per pixel (e.g.,

6.5 triangles per pixel in depth on average).
Figure 6 demonstrates the depth complexity of the scene for eight
different values, from (k = 25) to (k = 200), in increments of 25.
An important point to note in this image is that all of the clusters are
being displayed, meaning that the depth complexity is at its highest.
During an exploration task many clusters can and should be turned
off in the visualization, and since they are all binned and stored sep-
arately this is quick and easy to accomplish. By turning off many of
the clusters during exploration, only the data and areas of interest
will be displayed, making the exploration more meaningful.
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Figure 5: Average number of connected components per cluster
(o) versus the total surface area of all clusters (+) using the three
optimum clustering metrics.



(a) 25 Clusters (b) 50 Clusters (c) 75 Clusters (d) 100 Clusters

(e) 125 Clusters (f) 150 Clusters (g) 175 Clusters (h) 200 Clusters
Figure 6: Plots showing an isosurface (value = 10), clipped in half. This demonstrates the varying depth complexity for different values of
(k) using metric L/SP/EP/A

Using our assumptions, we can then start by selecting a value
for (k). Assuming the user asks for a depth complexity of 6.5,
we start by multiplying 6.5 by the number of grid cells in a sin-
gle plane of the data, 4202, which gives us our analogous surface
area value 1,146,600. Using the surface area value, we then search
for a (k) that creates clusters as close to this surface area value as
possible. Visually, this process corresponds to drawing a horizon-
tal line across the total surface area curve from our chart at the total
surface area value of 1,146,600, as in Figure 7. We then draw a ver-
tical line down to the x-axis, to get the values for (m) and (k). This
line gives a value of (k = 36), and the (m) at that point produces the
fewest number of connected components, (m = L/SP/EP/A).

8 METHOD IN PRACTICE

Our software pipeline consists of three distinct phases. (1) Creating
Derived Metrics; (2) Clustering; and (3) Binning. Each stage of
this pipeline is constrained by different time and size bounds. In
Table 2, we present the time and size complexity of each stage in
Big O notation.

Clustering is the most time intensive phase in our pipeline, as it
is dependent on the number of clusters, the number of input tracts,
and the dimensionality of the derived clustering metrics. As more
clusters, tracts, or dimensions are introduced, the clustering time
will likewise increase. The current clustering implementation will
likely present a bottleneck for tractography data sets that contain
hundreds of millions of tracts. However, this can be addressed
through the use of parallel clustering such as the method described
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Figure 7: Drawing the horizontal and vertical lines at the user spec-
ified depth complexity to determine the optimal value for (m,k)

by Zhao et al. [34]. We did not address parallel clustering in the
scope of this work as our studies did not require it.

The phase in our pipeline that generates the most data is binning.
A new file is created for each cluster generated, at a fixed size per
file dependent on the grid size. These files represent regular grids,
and due to the data locality introduced by clustering, these files end
up with large very sparse regions. Using compression, we are able
to compress these files at a minimum ratio of 370 to 1, using our
current input data set. This compression leaves us with clustered bi-
nary files that are much smaller than the input data set, reducing the
storage overhead associated with the raw tract files. Table 3 shows
the total visualization file sizes and run times for the clustering sec-
tion of the pipeline for eight varied values of (k).

As demonstrated in Table 3, file sizes for the binary clustered
files become quite large as the number of clusters grows beyond
50. Large enough, in fact, that visualizing this data on a single com-
modity node becomes prohibitive due to RAM limitations. This ob-
stacle can be overcome by utilizing a visualization tool that operates
on sparse data in compressed form, however, we did not investigate
this path. Instead, we accomplished the visualization for large num-
bers of clusters using a distributed memory version of VisIt, running
across multiple nodes on Sith.

One effective visualization technique that emphasizes areas of
high tract concentration is isosurfacing. In Figure 1 you can see the
areas of very high tract density emphasized as higher isovalues are
applied.

8.1 Example Workflow
Each stage in our pipeline is presented below, along with a rep-
resentative amount of time spent in that section using a value of
(k = 50).

• Creating Derived Metrics (82 seconds)
– This stage calculates the derived metrics for each tract

so that clustering can be performed. For the data we

Table 2: Table showing the Big O time and storage size complexity
of each phase of our pipeline. n denotes the number of tracts to
be clustered, s denotes the average number of segments per tract, k
denotes the number of clusters, d denotes the dimensionality of the
derived clustering metrics, and g denotes the binning grid size.

Derived Metrics Clustering Binning

Time: O(n× s×d) O(nd×k+1 × logn) O(n×s+k×g3)
Size: O(n×d) O(n) O(k×g3)∗

(* Represents size for uncompressed sparse grid)



Table 3: Table showing the run time for clustering (the most time
intensive section of the pipeline), the total size of all of the binary
files used in post-hoc visualization in raw and compressed form,
and the achieved compression factor.

Num
Clusters

Clustering
Time (min)

Binary
File Size

gzip
Compressed

Compression
Ratio

25 4.9 7.2 GB 19.4 MB 371.1
50 9.4 14.5 GB 29.2 MB 496.6
75 20.5 21.7 GB 38.5 MB 563.6

100 25.9 28.9 GB 47.5 MB 608.4
125 32.5 37.0 GB 56.3 MB 657.2
150 45.0 43.4 GB 65.1 MB 666.7
175 58.1 50.7 GB 73.8 MB 687.0
200 72.8 57.9 GB 82.5 MB 701.2

experimented on, this file is 38 MB.
• Clustering (564 seconds)

– This stage is where the clusters are determined based on
the derived clustering metrics. Each cluster is saved for
reuse as well as the next stage, at approximately 5 MB
per file.

• Binning (100 seconds)
– Using the clustered tracts from the previous stage, sep-

arate binary files containing the binned tracts for each
cluster are created and saved to allow for post-hoc visu-
alization. At current bin resolution of 4203, this is 294.6
MB per cluster uncompressed, or 584 kB compressed.

• Visualization (70 seconds)
– Performing an isosurface on the 50 binned binary files

running a parallel memory version if VisIt on 15 Sith
nodes. This time may be reduced by utilizing a visu-
alization tool that operates on sparse data. The major-
ity of this time is spent in I/O; new isosurfaces can be
calculated in approximately 10 seconds, and rendering
occurs at approximately 10 frames per second.

Overall, the total time to generate 50 clusters and perform an initial
visualization with the current input data size is approximately 13.6
minutes. This time can still be reduced by exploring parallel clus-
tering and a visualization tool that operates on compressed sparse
data.

9 DISCUSSION

The aim of our study was to create a pipeline that would enable the
clustering and visualization of large scale tractography data, as well
as provide a set of methods for determining suitable configurations
based on the data and user input. Our experiments were not ex-
haustive, so, with this section, we discuss what we could learn with
future experiments and what extrapolations we feel are reasonable
from the experiments we did perform:

• Grid resolution. We utilized a grid resolution of 420×420×
420, chosen because it allowed some of the finer tract features
to be distinguished in the binned volume while still maintain-
ing interactive visualization of individual clusters. We did not
present results in varying this resolution, but our initial ex-
periments showed that the grid resolution did not affect the
choices of optimum metrics at all, and of optimum cluster
sizes only minorly. Our belief is that grid resolution is not
an important parameter for future studies, and that the grid
resolution can continue to be chosen based on the tradeoffs
between capturing features and data size.

• Number of clusters (k). We feel that k will likely vary as the
number of tracts change, and as the input data set changes.
On this front, we feel our contribution is the methodology for
calculating a k. We also think that k could be determined in
a more automated way once more data sets are explored, al-

though we consider this future work.
• Cluster metrics (m). Introducing more clustering metrics be-

yond the six we considered may lead to better clustering. On
this front, we feel that our analysis of the six we did con-
sider was interesting, and we believe their relative usefulness
is likely be persistent across future data sets. That said, our
primary contribution is on a pipeline that can use the metrics
(and clustering) to make new data sets that are smaller than
the original and more interactive to work with.

• Computational efficiency. The usage of sparse histograms and
a visualization tool that could work with sparse histograms (or
an alternative approach like limiting the spatial extents of the
histogram to non-zero regions) would definitely improve in-
teractivity in visualization. Moreover, parallel clustering will
be necessary to enable the overall pipeline to process even big-
ger data sets. These two improvements together should allow
our approach to scale to tens of millions of tracts.

10 CONCLUSIONS AND FUTURE WORK

We have described a methodology for the interactive visualization
of individual clusters of tractography data. We have shown the cre-
ation of whole brain tractography clusters based on the creation
of derived metrics and K-means++ clustering. We have shown a
process under which the set of optimal clustering metrics chosen
from the initial set of clustering metrics can be found, as well as a
method for evaluating and determining the optimal number of clus-
ters. Our clusterings, combined with our binning visualization tech-
nique, provide a unique visualization and space saving solution.

Using compression, we are able to drastically reduce the size of
our binned data sets, below that of the size of the original input
data set. This space savings will likely be even larger on data sets
with 10’s of millions of tracts, and when the number of clusters is
increased.
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Visualizing and Analyzing Very Large Data. In High Performance
Visualization—Enabling Extreme-Scale Scientific Insight, pages 357–
372. Oct. 2012.



[8] Computational Engineering International, Inc. EnSight website, June
2015.

[9] F. DellAcqua and M. Catani. Structural human brain networks:
hot topics in diffusion tractography. Current opinion in neurology,
25(4):375–383, 2012.

[10] M. Descoteaux, R. Deriche, T. Knosche, and A. Anwander. Determin-
istic and probabilistic tractography based on complex fibre orientation
distributions. Medical Imaging, IEEE Transactions on, 28(2):269–
286, 2009.

[11] P. Douek, R. Turner, J. Pekar, N. Patronas, and D. Le Bihan. Mr color
mapping of myelin fiber orientation. Journal of computer assisted
tomography, 15(6):923–929, 1991.

[12] R. R. Edelman and S. Warach. Magnetic resonance imaging. New
England Journal of Medicine, 328(10):708–716, 1993.

[13] M. H. Everts, H. Bekker, J. B. Roerdink, and T. Isenberg. Depth-
dependent halos: Illustrative rendering of dense line data. Visual-
ization and Computer Graphics, IEEE Transactions on, 15(6):1299–
1306, 2009.

[14] G. Flandin, F. Kherif, X. Pennec, G. Malandain, N. Ayache, and
J.-B. Poline. Improved detection sensitivity in functional mri data
using a brain parcelling technique. In Medical Image Computing
and Computer-Assisted InterventionMICCAI 2002, pages 467–474.
Springer, 2002.

[15] A. Goh, C. Lenglet, P. M. Thompson, and R. Vidal. Estimating
orientation distribution functions with probability density constraints
and spatial regularity. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2009, pages 877–885. Springer, 2009.

[16] A. J. Golby, G. Kindlmann, I. Norton, A. Yarmarkovich, S. Pieper,
and R. Kikinis. Interactive diffusion tensor tractography visualization
for neurosurgical planning. Neurosurgery, 68(2):496, 2011.

[17] P. Guevara, C. Poupon, D. Rivière, Y. Cointepas, M. Descoteaux,
B. Thirion, and J.-F. Mangin. Robust clustering of massive tractog-
raphy datasets. Neuroimage, 54(3):1975–1993, 2011.

[18] C. Harrison, J. Weiler, R. Bleile, K. Gaither, and H. Childs. A
Distributed-Memory Algorithm for Connected Components Labeling
of Simulation Data. In Topological and Statistical Methods for Com-
plex Data – Tackling Large-Scale, High-Dimensional, and Multivari-
ate Data Sets, pages 3–21. Springer, Dec. 2014.

[19] S. Jbabdi, M. Woolrich, J. Andersson, and T. Behrens. A bayesian
framework for global tractography. Neuroimage, 37(1):116–129,
2007.

[20] H. Johansen-Berg and T. E. Behrens. Diffusion MRI: from quantitative
measurement to in vivo neuroanatomy. Academic Press, 2013.

[21] S. M. Legensky. Interactive Investigation of Fluid Mechanics Data
Sets. In VIS ’90: Proceedings of the 1st conference on Visualization
’90, pages 435–439. IEEE Computer Society Press, 1990.

[22] B. Moberts, A. Vilanova, and J. J. van Wijk. Evaluation of fiber clus-
tering methods for diffusion tensor imaging. In Visualization, 2005.
VIS 05. IEEE, pages 65–72. IEEE, 2005.

[23] S. Mori, B. J. Crain, V. Chacko, and P. Van Zijl. Three-dimensional
tracking of axonal projections in the brain by magnetic resonance
imaging. Annals of neurology, 45(2):265–269, 1999.

[24] L. ODonnell, M. Kubicki, M. E. Shenton, M. H. Dreusicke, W. E. L.
Grimson, and C.-F. Westin. A method for clustering white matter fiber
tracts. American Journal of Neuroradiology, 27(5):1032–1036, 2006.

[25] V. Petrovic, J. Fallon, and F. Kuester. Visualizing whole-brain dti
tractography with gpu-based tuboids and lod management. Visual-
ization and Computer Graphics, IEEE Transactions on, 13(6):1488–
1495, 2007.

[26] Y. Rathi, O. Michailovich, K. Setsompop, S. Bouix, M. E. Shenton,
and C.-F. Westin. Sparse multi-shell diffusion imaging. In Medi-
cal Image Computing and Computer-Assisted Intervention–MICCAI
2011, pages 58–65. Springer, 2011.
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