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Abstract. With this work, we explore the feasibility of using in situ
data binning techniques to achieve significant data reductions for par-
ticle data, and study the associated errors for several post-hoc analysis
techniques. We perform an application study in collaboration with fu-
sion simulation scientists on data sets up to 489 GB per time step. We
consider multiple ways to carry out the binning, and determine which
techniques work the best for this simulation. With the best techniques we
demonstrate reduction factors as large as 109x with low error percentage.
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1 Introduction

As leading-edge supercomputers get increasingly powerful, scientific simulations
running on these machines are generating ever larger volumes of data. However,
the increasing cost of data movement, in particular moving data to disk, lim-
its the ability to process, analyze, and fully comprehend simulation results [1].
Specifically, while I/O bandwidths regularly increase with each new supercom-
puter, they are well below corresponding increases in computational ability and
data generated. Further, this trend is predicted to persist for the foreseeable
future.

Given this reality, many large-scale simulation codes are attempting to bypass
the I/O bottleneck by using in situ visualization and analysis, i.e., processing
simulation data when it is generated. In situ processing can be difficult however,
as it is generally not known a priori all of the analysis tasks that will be done
on simulation output. One method supporting unanticipated analysis, or explo-
ration, is to produce a reduced representation which can be written to disk.
Examples of data reductions include compression techniques (both lossy and
lossless), reduced precision representations, data subsets and extracts, spatial
resampling, and summary data. Here care must be taken in order to preserve
the information content in the data while at the same time, minimizing the size.

With this research, we consider the model where in situ processing is used to
produce an information preserving reduced data representation of the simulation
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data that can be saved to disk. This reduced representation data can then be
used for post processing analysis, visualization, and exploration. Additionally, we
evaluate the errors introduced when doing a variety of analysis and visualization
operations on these reduced data representations.

In this paper we apply this in situ model to XGC1 [3], a plasma fusion
simulation code that runs at scale on supercomputers. XGC1 is a gyrokinetic
particle-in-cell code that is used for modeling the physics of plasmas in fusion
tokamak devices. XGC1 uses a large number of particles to represent the kinetic
behavior of the plasma. Summarizations of these particles are imposed upon an
unstructured grid, which is small enough that it can be saved to disk. Currently,
the particles, which are the representation of the plasma, are too large to save
out at each time step.

In this paper we study and apply multiple data binning techniques to these
particles to extract a vector field representation from the individual particle
trajectories. The resulting vector field, which is orders of magnitude smaller than
the entire set of particles, can be easily saved to disk and used for post processing
analysis and visualization. To evaluate this method, we use streamlines and
Poincaré analysis using particle advection on the vector field representations for
the full and reduced representation data, and examine the errors associated with
different binning techniques. One of the best binning techniques operates on 500
GB of data per time step, achieving a reduction of 109x with an average error
of 1.15% in under 140 seconds.

In the remainder of this paper, we discuss related works in Section 2, describe
the binning of fusion particle data in Section 3, describe our in situ workflow in
Section 4, and present the results from our analyses in Section 5.

2 Related Work

We present the related work for information preserving in situ data reduction
and visualization of particles in three sub-categories: (1) in situ visualization,
(2) XGC1 visualization, and (3) large-scale particle visualizations.

2.1 In Situ Visualization

Visualization algorithms are particularly sensitive to I/O bandwidth [4, 5], caus-
ing the community to turn to in situ techniques to alleviate this growing prob-
lem. There has been significant work and successes with the in situ visualization
paradigm. For instance, ParaView Catalyst coprocessing[6] and VisIt LibSim [22]
are frameworks that are tightly-coupled to the simulation, i.e, the visualization
runs at scale with the simulation. Alternatively, visualization and analytics can
be performed during the transport of the simulation data to the I/O layer.
Three examples of this loosely coupled approach are Nessie [16], GLEAN [21],
and ADIOS[11]. For a more thorough overview of the three loosely-coupled in
situ visualization frameworks, we refer the reader to [2].
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2.2 XGC1 Visualization

Early work on production visualization for XGC1 mainly focused on addressing
the immediate data needs of scientists during the course of a simulation run. One
example of this was an online dashboard that was developed for XGC1 simulation
monitoring called eSimon [20]. This dashboard was launched in conjunction with
each simulation run, and was responsible for performing common visualization
and analysis tasks in XGC1.

More recent work has focused on expanding the visualization capabilities
and opportunities for XGC1 through the utilization of in situ methods. For
example, they utilized the features of ADIOS and EAVL [17], and demonstrated
the effectiveness of loosely coupled in situ visualization for large scale simulation
codes using a workflow with dedicated data staging nodes. In that work, they
focused on the performance, scalability, and ease of use of visualization plugins
that were used on the output of the XGC1 simulation code. One component of
this study looked at optimizing the parallel rendering pipeline in situ, and gave
insight into getting high performing renderings in continuing studies.

Recent research with XGC1 has cataloged their common visualization and
analysis tasks, analyzed their workflow, and captured common data sizes pro-
duced by the simulation [8], in an effort to prepare for their challenges at ex-
ascale. Further research has also done preliminary work at identifying areas of
interest and some of the challenges associated with information preserving data
reductions within XGC1 [7]. This work points out how data reductions must be
done carefully in order to preserve the integrity of the underlying data when
post-hoc analysis will need to generate derived quantities from reduced data.
These derivations can end up with completely inaccurate information if data
reductions are not done carefully.

2.3 Large-scale Particle Visualization

There have been several works in recent years that focus on visualizing large-
scale particle data sets. The first set of works that will be described tackle this
problem as a post-hoc task. The first work looked at the visualization of trillion
particle data sets, and utilized a multi-scale rendering architecture which enabled
hierarchical views of the data [19]. This approach enabled interactive speeds for
users exploring and querying the dataset. A second example utilized bandlimited
OLAP cubes which were based on kernel density plots [18]. This approach created
an artifact free visualization at interactive speeds. The defining characteristics
of these two techniques however, are that they are post-hoc, requiring the full
particle data set to be saved to disk, so they did not address our need for in situ
data reduction.

Another approach is to consider particle visualization as an in situ task. One
approach in this area was to use spatially organized 2D histograms for view-
ing large data set in situ [15]. This work looked at several different application
domains and was able to demonstrate that features within the data could be vi-
sualized by creating many different histograms for different regions of the data.
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This approach is similar to ours in that it creates a velocity representation.
That said, it does not describe data reduction results, or if the histograms could
be used for more than just visualization, such as post-hoc analysis. A second
approach performs two different steps in situ to first create probability distribu-
tion functions and then a second step to specially reorganize particles for faster
post-hoc access [23]. The difference between this work and our current work is
that they are still saving subsets of particles. We are utilizing all of the simu-
lation’s particles in creating our data representations, which reduces the data
that we have to save. Further, this technique currently lacks an analysis of the
errors introduced through their subsampling process on post-hoc visualization
and analysis routines.

All of these techniques are interesting reduction operators. That said, our
domain scientist collaborators are interested in binning since the code already
uses a finite element mesh internally for some calculations, and so our study
focused on tradeoffs within binning. Comparisons with other techniques is an
interesting topic for future work

3 Binning of Fusion Data

Fusion scientists for the XGC1 fusion simulation are interested in looking at
particle data coming from the simulation at a finer temporal fidelity than is
currency possible in a post-hoc workflow. In the post-hoc workflow particle data
is only saved out at each of the simulation checkpoints, which only occur between
every 100 and 1,000 time steps [8], leaving a large temporal gap. This gap reduces
the fidelity of their analysis techniques and leaves the very real possibility that
something interesting in the data will be lost due to the turbulent nature of the
data. Historically however, this temporal gap was necessary due to the shear size
of the particle data at each time step, which is up to 20 TB.

To address the issue of the large temporal gap, some sort of in situ data
reduction technique is required for this workflow due to both the size of the data
generated per time step, and the short amount of time between individual time
steps. To overcome this issue we created a workflow for the in situ application
of a data binning technique to the particle data from the simulation. This bin-
ning technique generates vectors in each of the bins that represents the speed
and direction of particles within that cell’s region. Furthermore, this technique
allows the scientists to tune the binning code for both specific accuracy and
speed requirements by modifying the size of the binning grid, and the number
of particles used to extract the vector field.

3.1 Generating the Binned Data

In creating this vector field, there are two different control points for tuning the
accuracy of the vector representation: (1) the size of the binning mesh, and (2)
the number of particles sampled from the simulation to extract the vector field.
In this paper we looked at four different mesh sizes and three different particle
sampling counts for each of the four mesh representations.
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Fig. 1. Example of the unstructured mesh
used. The unstructured mesh is a decimated
version of the simulation mesh.

Mesh Representations An un-
structured mesh representation was
used for this study. Figure 1 shows an
example of the representation. The re-
duced representations of the unstruc-
tured mesh were generated by per-
forming a quadratic clustering dec-
imation on the unstructured mesh
from the XGC1 simulation itself, and
setting the number of divisions argu-
ment for the clustering to be equal for
height and width.

The five different mesh sizes used
are shown in Table 1. In this study we
use the original mesh as our Ground
Truth Mesh comparator against the
four reduced representations. We chose these reduced mesh sizes in order to
have a spectrum of reduced mesh cell sizes which reduces the amount of work
required to generate the vector representations, saving time during the in situ
calculation.

Table 1. A Breakdown of the four reduced mesh sizes used in the study compared
to the original simulation mesh. The reduced meshes were generated using quadratic
clustering. The dimensions used by quadratic clustering are listed in the left-hand
column.

Number of
Cells

Percent
Reduction

45x45 2,903 98.6%

90x90 11,154 94.7%

200x200 52,707 74.9%

450x450 186,609 1.1%

U
n
st
ru

c
tu

re
d

M
e
sh

Original 209,576 0.0%

Sampling Particles Due to the size of the particle data generated by the
simulation at each time step, it was important to perform a subsample operation
on the simulation particle data to reduce the number of particles transfered
from the simulation to our binning routines. We used three different particle
counts in our tests in order to get a sampling of the spectrum in terms of vector
representation accuracy and speed. The three particle counts we used in our
subselection operation were: 3 million, 30 million, and 300 million. Each of these
values represents an order of magnitude reduction from the total particle count
at each simulation time step, which is 3.3 billion.
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The particle subsampling was performed by uniformly selecting particles from
the original XGC1 mesh. Table 2 shows a breakdown of the statistics for each of
these three particle selections.

Table 2. A breakdown of each of the different factors of merit for the three reduced
particle counts we tested. The final output of our method is the “Binned Data” and
its size is always the same, as the binning grid was fixed.

Total
Particles

Particle
Reduction
Amount

Reduced
Particle

Size (GB)

Particle
Subselection
Time (sec)

Binning Time
(sec)

Binned Data
Size (MB)

3M 1092x 0.609 15 67 89

30M 109x 2.0 25 115 89

300M 11x 18.0 40 345 89

Two of the most important values from this table is the amount of data
reduction, and the binning time. The amount of data reduction represents the
data reduction size on disk of the subsampled particles versus the size of all of
the particles on disk. The binning time is the amount of time that it took to
create our binned data representation after the data subsampling took place.
This number can be fine tuned during a simulation run to be lower or higher
based on the vector accuracy needs, and the amount of time available to perform
the binning transformation. Even when only performing a one order of magnitude
reduction on the number of particles and subselecting 300 million particles it only
took a maximum of 345 seconds to create the binned representation, which lies
within the average time per time step for XGC1 at full scale, which lies between
5 to 10 minutes [8].

4 Experimental Overview

This section presents an overview description of the in situ workflow, explains
the evaluation metrics for the vector data, and how the accuracy from those
metrics was evaluated.

4.1 Workflow Description

The workflow consists of three primary elements: (1) the simulation code; (2) a
data transfer system to move data from the simulation to the visualization nodes;
and (3) an efficient parallel visualization library. The workflow is launched as
three separate binaries, with resources for each partitioned as follows: (1) 1024
XGC1 nodes; (2) 12 Staging nodes; and (3) 32 visualization nodes. A diagram
of the workflow is shown in Figure 2. This study was conducted on the Rhea
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Fig. 2. Experimental setup and data flow between each of the three separate workflow
components.

cluster at the Oak Ridge Leadership Computing Facility. Rhea consists of 512
nodes each with 128 GB of ram and dual Xeon processors with 16 cores each.

Each of the three elements of the workflow are described below, followed by
a description of how the components of the workflow interact.

XGC1 Simulation Code The simulation code, XGC1, is a 5D gyrokinetic ion-
electron particle in cell (PIC) code used to study fusion of magnetically confined
burning plasmas. XGC1 is used in particular to study turbulence in the outer
region of the plasma called the edge. The simulation proceeds by computing
the interactions of a very large number of particles (ions and electrons) at each
simulation time step.

For this study we are interested in using the particle data from the simulation.
All of the simulation’s particles can be very large, generally ranging from 400
GB to nearly 20 TB per time step. To get good particle velocity vector fields as
the particles move around the tokamak, we were required to access the particles
at each time step of the simulation.

ADIOS Data Staging The Adaptable I/O System (ADIOS) [9], is a compo-
nentization of the I/O layer that is accessible via a posix-style interface. ADIOS
enables a loosely coupled paradigm for a clean interface and separation from
XGC1 that provides ease of use, and fault tolerance. The ability to control the
concurrency of the visualization tasks independent of the concurrency of XGC1
is important for ensuring good scalability on the visualization nodes

The particle subsampling operation occurred on the simulation side, with
particles being uniformly subselected from the simulation’s total particles be-
fore they were sent over the network with ADIOS. In our study we were only
interested in examining ions from the simulation, so only they were selected and
transmitted.
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Visualization Library We designed our visualization routines based on an
emerging community standard, VTK-m [14], which is a project building upon
the success of three existing visualization frameworks, Dax [13], PISTON [10],
and EAVL [12]. The VTK-m framework is targeted to emerging computational
systems where parallelism and the use of accelerators are dramatically increasing,
and memory per core is decreasing.

The vector field output from this portion of the workflow is written to disk
for post hoc analysis. It is important to note that this step is a major data
reduction. By performing the vector computation in situ, we are reducing the
amount of data written to disk by between 5,494 and 11,926 times, see Table 2.

4.2 Evaluating Accuracy

Edge

Core-Edge
Interface

Core

Fig. 3. The three test re-
gions projected onto a slice
of the XGC1 tokamak.

We ran four different categories of tests to evaluate
the accuracy of the particle vector representation.
The four test types we ran were: (1) Poincaré con-
tours, (2) Poincaré centers of mass, (3) streamlines,
and (4) pathlines. Due to the turbulent nature of the
XGC1 code, we further broke each of these tests down
into three different regions, based on the turbulence
in the code. The three regions we used are shown in
Figure 3, and are (1) the core of the tokamak, (2) the
core-edge interface, and (3) the edge of the tokamak.
The core region is generally less turbulent than the
core-edge interface, which is generally less turbulent
than the edge. This breakdown allowed us to quan-
tify what error we were getting in each of these three
regions, which may be important if we are going to
do an analysis that specifically cares about a given
region of the plasma. Each of these tests was con-
ducted on each of the different mesh sizes, with four
different particle counts each.

We compared the results from each of the tests
against what the test produced when performed on Ground Truth data. We
defined ground truth data to be the vector field that was created when all of the
particles from the simulation were used to construct the vector field using the
original unstructured XGC1 mesh. We take this vector representation to be the
best possible representation when using a vector representation. An overview of
each of these test types is given below.

Poincaré Tests We conducted the Poincaré tests based on the guidance of our
fusion partners, as the motion of particles is something that they often study, so
it has to be accurate. The Poincaré test on XGC1 data is particularly informative
about the accuracy of a reduction method, because Poincaré plots can be used
to track the magnetic field lines within the tokamak. The field lines are the
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magnetic surfaces that particles generally follow around the toroidal shape of
the tokamak. Therefore, if a reduced data set has a similar Poincaré outline and
center of mass, the reduction method was successful at preserving the magnetic
surfaces.

To conduct this test we advected 50 particles from random locations in the
core, 25 particles from random locations in the core-edge interface, and 25 parti-
cles from random locations on the edge. We then collected the puncture locations
for each test and created a contour line that connected all of the punctures to
form a closed shape. Using these contours then we were able to calculate the
area in the contour as well as the center of each contour.

For each test we compared the contour and contour center we got from the
reduced vector representation against that of the ground truth representation.
This comparison gave the difference in the area of the contour and difference
in location of the centers of the contours. We then used this value as the error
associated with that test.

Streamline/Pathline Tests The second series of tests we conducted were
streamlines and pathlines. The streamline and pathline tests also utilized the
three different test regions that the Poincaré tests used, giving three different
errors for each individual test.

The streamline tests advected particles a random distance around the toka-
mak, returning the end position of each streamline. The end positions obtained
from the ground truth data sets were compared against the reduced represen-
tations, giving a difference in end point location as our error metric. For this
test we advected 2,000 particles from random locations in the core, 1,000 parti-
cles from random locations in the core-edge interface, and 1,000 particles from
random locations on the edge.

The pathline tests worked the same as the streamline tests, except particles
were advected over time. For this test we advected 200 particles from random
locations in the core, 100 particles from random locations in the core-edge in-
terface, and 100 particles from random locations on the edge.

5 Results

The results are organized into three subsections. Section 5.1 does an initial sum-
mary and general discussion of results. Section 5.2 examines the Poincaré test
results in detail, and Section 5.3 examines the streamline and pathline results in
detail.

5.1 Test Result Summary

Many different tests were run and analyzed with this work in order to find an
optimal configuration for XGC1. In order to make this evaluation intuitive, we
created a lookup table that can be used in selecting a binning configuration
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based on the amount of error that is acceptable in each of the three regions of
the tokamak.

Table 3 is our lookup table and shows the errors of all four of our tests to-
gether, presented as percent errors. This table is showing the average percentage
error from each of our test configurations compared against Ground Truth. The
table is colored according to the percent error, where the darkest blues represent
low errors.

One of the most notable observations is the occasional large variation in the
performance of the tests from the core to the core-edge interface to the edge of
the plasma. This is an interesting feature of this reduced data representation,
and can actually be exploited in certain circumstances depending on the location
and type of the post-hoc visualization operation we want to run on the reduced
data. For example, it is possible to use a 1092x reduction in particles on the
90x90 mesh, and maintain an error on the edge of the plasma for a Poincaré
analysis under 2%.

Table 3. Percentage errors in the core, interface and edge regions, for each of the four
evaluation metrics used. These percentages represent the average error for each test
for each mesh size and particle count compared against the Ground Truth data. The
color scale highlights the areas where good test configurations are found.

Core Interface Edge Core Interface Edge Core Interface Edge Core Interface edge

1092x 3231.60% 11.80% 3.47% 1.30% 1.01% 1.00% 4.08% 4.23% 15.09% 5.82% 13.50% 59.18%

109x 60.20% 7.70% 3.04% 1.06% 0.89% 1.22% 3.75% 3.31% 17.66% 7.47% 12.41% 38.07%

11x 2132.95% 11.09% 3.09% 1.19% 1.00% 1.02% 3.85% 3.17% 20.27% 9.84% 5.72% 48.63%

All Par. 10066.79% 8.58% 2.51% 1.38% 0.94% 0.87% 4.18% 3.18% 12.93% 10.48% 14.19% 60.32%

1092x 81.10% 4.10% 1.88% 0.89% 0.57% 1.03% 1.88% 2.66% 14.38% 8.22% 12.28% 36.90%

109x 30.61% 2.17% 2.02% 0.61% 0.59% 0.99% 1.44% 1.54% 6.18% 2.44% 4.47% 18.88%

11x 26.14% 2.47% 1.67% 0.55% 0.41% 1.08% 1.52% 1.90% 3.48% 4.50% 3.41% 16.43%

All Par. 41.26% 2.80% 2.07% 0.63% 0.57% 1.01% 0.98% 1.32% 3.29% 1.79% 3.14% 28.10%

1092x 1591.39% 11.54% 6.47% 3.13% 2.25% 3.86% 19.96% 29.19% 50.08% 50.09% 79.29% 120.35%

109x 4.78% 1.39% 1.17% 0.45% 0.32% 0.67% 1.05% 0.96% 5.85% 13.29% 18.73% 9.17%

11x 2.52% 1.06% 1.06% 0.35% 0.37% 0.66% 0.50% 0.60% 1.81% 1.05% 1.44% 3.73%

All Par. 3.49% 0.75% 1.63% 0.44% 0.29% 0.72% 0.35% 0.34% 1.95% 0.60% 0.72% 2.31%

1092x 2572.48% 33.95% 3044.93% 5.93% 2.40% 15.25% 166.58% 169.19% 167.28% 117.68% 164.07% 142.75%

109x 126.75% 1.98% 1.29% 2.73% 2.55% 2.39% 4.10% 2.03% 13.81% 19.93% 27.30% 19.18%

11x 2.71% 1.08% 0.95% 0.40% 0.35% 0.73% 0.98% 0.46% 3.07% 1.86% 1.85% 9.56%

All Par. 2.37% 0.87% 0.65% 0.27% 0.29% 0.52% 0.11% 0.10% 3.07% 0.26% 0.40% 7.14%
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5.2 Poincaré Test Results

Two separate features were tacked in the Poincaré tests:

– Difference in area of the ground truth data versus the binned representations.
– Differences in the centers of mass of the two representations.

The test results from the Poincaré test for the difference in areas of the ground
truth and reduced representations are presented in Figure 4. This figure presents
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the results for each of the four unstructured reduced mesh representations and
each of the different particle counts as boxplots in a single figure.
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Fig. 4. Boxplots of the difference in areas of contours generated from Poincaré method
on the ground truth and reduced representation data for the unstructured mesh.

The first thing to note in this figure is that some of the tests performed
very well while some did not. Consider the 45x45 mesh for example. In this
series of tests, the core of the plasma across all of our tests had a high median
and variation in error, including the test that used the reduced 45x45 vector
mesh created by averaging all particles from the simulation. From these large
variations in error, we were able to figure out that the 45x45 mesh representation
created too large of a decimation in the core of the plasma to create good vector
averages from the particles. The core-edge interface and the edge however did
perform well for all of those tests.

Moving on to the 90x90 and 200x200 mesh tests, the variation in error drops
significantly, with the average core error dropping below 3% in the test case
with the 200x200 mesh and 300 million particles. In the 450x450 test case the
3 million particle test jumps out, with all of the core, core-edge interface, and
edge region errors jumping dramatically. This jump is due to the mesh being too
refined for the number of particles that were used to generate it. In that case,
it takes more than 3 million particles to create an accurate representation of
the motion of the plasma. Thus, it is important to tune the number of particles
to be a high enough ratio to adequately cover the number of bins in the mesh
representation.



12 J. Kress, J. Choi, et al.

Similar results and trends were observed in the Poincaré test on the unstruc-
tured meshes for the difference in centers of mass of the ground truth and reduced
representations. The main difference is that in almost all tests, the centers of the
contours change very little, with the majority of the average errors being under
1%, see Table 3. The two main outlier cases are the 200x200 and 450x450 meshes
with 3 million particles. These tests again show that an insufficient number of
particles was used per cell to capture particle movement.

5.3 Streamline/Pathline Test Results

The test results from the streamline tests on the unstructured mesh are presented
in Figure 5. This figure shows that there are a lot more outlier cases when evalu-
ating the difference between the ground truth and reduced data representations.
This is especially true for the 45x45 mesh case on both the core-edge interface
and edge regions of the plasma. However, once the mesh resolution is increased,
this trend decreases, and the average error of the test cases drops.
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Fig. 5. Boxplots of the difference in end position of the streamlines generated from the
ground truth and reduced representation data for the unstructured mesh.

One trend that persists from the Poincaré analysis are the cases where too
few particles were used in the 3 million particle case for both the 200x200
and 450x450 meshes. Once the particle count was increased however, the er-
rors dropped significantly, with errors under 1% in both the core and core-edge
interface regions using 30 and 300 million particles with the 200x200 mesh.
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The test results from the pathline tests on the unstructured mesh show the
same general trends, with the largest difference being on the edge of the plasma,
see Table 3. This result, though, is not surprising due to the very turbulent
nature of the edge of the plasma in the XGC1 code, meaning that particles are
bound to act erratically in that region.

6 Conclusions and Future Work

With this paper we have shown that large scale particle data can be binned in
situ at every simulation time step in order to increase the temporal fidelity of the
output particle data, while also reducing the amount of data transmitted over
the network and subsequently saved to disk. We have further demonstrated that
with domain specific knowledge it is possible to create multiple different configu-
rations for the binning operation that enable it to be tuned for both accuracy of
representation and the shortest time-to-solution. Our binning approach is capa-
ble of reducing the size of the particle data every time step from 489 GB down to
81 MB as a final output. Furthermore, we have shown through multiple post-hoc
analysis operations that it is possible to generate reduced representations with
known errors under 1% for certain regions of the plasma.

In future we would like to apply our binning technique to XGC1 at even larger
simulation scales, and then expand to other particle codes to see if the technique
remains valid and predictable. Further, while this application paper focused on
in depth evaluation of our collaborators’ preferred reduction technique, we think
an expanded study that compared between more reduction operators would be
very interesting.
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