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Abstract
Power consumption is widely regarded as one of the biggest challenges to reaching the next generation of high-performance
computing. One strategy for achieving an exaflop given limited power is hardware overprovisioning. In this model, the theo-
retical peak power usage of the system is greater than the maximum allowable power usage, and a central manager keeps the
aggregate power usage at the maximum by enforcing power caps on each node in the system. For this model to be effective, the
central manager must be able to make informed trade-offs between power usage and performance. With this work, we introduce
PaViz, a software framework designed to optimize the distribution of power for visualization algorithms, which have different
characteristics than simulation codes. In this study, we focus specifically on rendering. Our strategy uses a performance model,
where nodes predicted to have a small amount of work are allocated less power, and nodes predicted to have a large amount of
work are allocated more power. This approach increases the likelihood of all nodes finishing at the same time, which is optimal
for power efficiency. At best, our adaptive strategy achieves up to 33% speedup over the traditional strategy, while using the
same total power.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Software]: Concurrent Programming—Parallel Program-
ming I.3.2 [Computer Graphics]: Graphics Systems—Distributed/Network Graphics

1. Introduction

Power is a critical challenge in achieving the next generation of
high-performance computing (HPC) systems. Specifically, scaling
today’s technologies to higher concurrency may lead to excessive
power consumption costs. As a result, the entire HPC environment
— from processors to software applications to runtime systems —
is being re-evaluated for power efficiency.

For this research, an important premise is that simulations and vi-
sualization routines need to adapt to a power-limited environment,
meaning nodes will have their power usage capped. Motivation
for this premise can be found in Section 2. The main contribution
of this paper is PaViz, a power-adaptive visualization framework
that enables performance improvements when power is a scarce
resource. To understand its efficacy, we ran PaViz on a rendering
algorithm that incorporated runtime predictions based on an accu-
rate performance model. Our study focuses on rendering for two
reasons. First, rendering is a ubiquitous operation for visualization.
Second, rendering is a particularly interesting algorithm to study,
since its workloads are highly variable depending on input param-
eters. In terms of findings, we found that, in limited power budget
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environments, adapting power based on performance model pre-
dictions led to speedups of up to 33% while using the same power
overall.

The rest of this paper is organized as follows. We present an
overview of power with respect to HPC in Section 2. The related
work is detailed in Section 3. The contributions of the PaViz frame-
work and power scheduling strategies are discussed in Section 4.
Section 5 identifies the study parameters. We evaluate the benefits
of PaViz in Section 6. In Section 7, we summarize our findings and
present some ideas for future exploration in this space.

2. HPC and Power Overview

Current cluster designs assume sufficient power will be available
to simultaneously run all compute nodes at their maximum thermal
design point (TDP). Said another way, TDP is the maximum power
a given node will ever consume. As power requirements for clus-
ters move into the range of dozens of MegaWatts, the strategy of
allocating power for all nodes to run at TDP becomes untenable.
Very few applications run at TDP, and provisioning very large sys-
tems as if most did both wastes power capacity and unnecessarily
constrains the size of the cluster.

Overprovisioning [PLR∗13], short for hardware overprovision-
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ing, is one solution to improve power utilization. In such a design,
we increase the compute capacity (i.e., number of nodes) of the
system, but, in order to not exceed the system power allocation, not
every node will be able to run at TDP simultaneously. For example,
the Vulcan supercomputer at Lawrence Livermore National Labo-
ratory was allocated for 2.4 MW at TDP, but the vast majority of
applications that run on that machine did not exceed 60% of the
allocated power (1.47 MW average power consumption). Thus, the
strategy of allocating TDP to every node fails to take advantage of
nearly 1 MW of power on average. An overprovisioned approach
would use 40% more nodes, consuming all allocated power and
reducing trapped capacity [ZLPF14].

For overprovisioning to be successful, it must be complemented
with a scheme to limit nodes’ power usage, to ensure the total al-
located power is never exceeded. One way to accomplish this is
to uniformly cap the power available to each node, e.g., each node
can use only up to 60% of its TDP. The result of applying such a
power cap is that the processor operating frequency is reduced. The
effect of reduced CPU frequency is variable; programs dominated
by compute will slow down proportionally, while programs dom-
inated by memory accesses may be unaffected altogether. Despite
the slowdown in execution time for individual jobs, this strategy
would lead to better power utilization and greater overall through-
put.

The strategy of allocating power uniformly across nodes, how-
ever, is sub-optimal. This is because the runtime behaviors of
distributed applications can be highly variable across nodes. The
nodes assigned the largest amount of work become a bottleneck
and determine the overall performance of the application. On the
other hand, nodes that are assigned the smallest amount of work
finish quickly and sit idle until the other nodes have completed ex-
ecution.

A better strategy is to actively assign power to where it will do
the most good. This is the direction we pursue with this study. In an
ideal scenario, we can assign the power such that all nodes finish
executing at the same time despite varying workloads.

Overprovisioned systems lend themselves to multiple levels
of optimization. At the job scheduling level, per job power
bounds are allocated to optimize throughput and/or turn-around
time [PLS∗15]. Alternatively, there are dynamic optimizations
to individual jobs that may be realized by rebalancing power
and changing node configuration at runtime [geo16, ESC∗16,
MBL∗15]. While our work fits into this runtime level, our primary
contribution is demonstrating that additional performance may be
realized by giving the runtime system deeper knowledge of the
unique execution behaviors for visualization routines. Specifically,
we use a performance model for volume rendering to better esti-
mate the runtime behaviors, and show that we can improve perfor-
mance on less predictable workloads.

3. Related Work

In the following subsections, we survey related work.

3.1. Volume Rendering

Volume rendering is an important set of rendering algorithms that
enables visualization of an entire three dimensional scalar field, and
volume rendering is widely used because it is capable of analyz-
ing a large amount of data from many scientific disciplines. Vol-
umetric ray casting [Lev90] traces rays from the camera through
a scalar field, sampling the volume at regular intervals, and accu-
mulating color and opacity via a transfer function. This algorithm
is embarrassingly parallel and is used in community driven visu-
alization tools (e.g., VisIt [CBW∗12] and ParaView [AGL05]) and
packages from hardware vendors (e.g., Intel’s OSPRay [WJA∗17]
and NVIDIA’s IndeX [Ind]). For our study, we chose volumetric
ray casting because of its widespread use, and also because of its
existing performance model [LHK∗16].

3.2. Power

Some of the earliest solutions in addressing energy use in
HPC were CPU MISER [GFcFC07], Jitter [FKLB08], and Ada-
gio [RLdS∗09]. These approaches used dynamic voltage and fre-
quency scaling (DVFS) to make decisions between performance
and energy at varying granularities. All three approaches were
aimed at minimizing energy use with varying tolerances for in-
creases in runtime. CPU MISER made CPU frequency decisions
based on time intervals, and did not perform well when applica-
tion behavior was less predictable. Jitter used iterations to identify
the processor with the most work in order to slow down remaining
processors, and this led to sub-optimal performance on applications
where the critical path moved across processors within an iteration.
Adagio’s solution used task-based granularity to identify the criti-
cal path, thus minimizing performance degradation. For our study,
we focus on the rendering work prior to MPI (i.e., prior to com-
positing), so we make decisions at an iteration-based granularity.

Processor manufacturer technologies for enforcing power caps
(Intel’s Running Average Power Limit (RAPL) [Cor16], AMD
TDP PowerCap [Dev13], and IBM EnergyScale [IBM15]) enable
more recent efforts to focus on optimizing performance under a
power bound. Conductor [MBL∗15] used initial iterations to de-
termine an ideal schedule of per-node power caps, thread concur-
rency, and per-core operating frequency. GEOPM [geo16,ESC∗16]
is a production-grade runtime framework for optimizing perfor-
mance under resource constraints. GEOPM, Conductor, and Ada-
gio share similar goals and are collaborating to integrate technolo-
gies. GEOPM supports manual application markup as well as au-
tomated phase detection to dynamically reallocate power. Its archi-
tecture supports multiple plugins, but currently it does not support
any particular policy targeted at in situ visualization.

Neither Conductor nor GEOPM can use application inputs to
optimize performance. To the best of our knowledge, PaViz is the
first runtime system to use visualization workloads, which behave
differently than typical benchmarks than those used by Conductor
and GEOPM. Specifically, we use rendering workload parameters
— number of active pixels, camera position, image resolution —
to predict execution time and optimize performance under a power
bound.
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3.3. Scientific Visualization and Power

Due to the I/O bandwidth limitations at exascale, visualization is
moving away from a traditional post-processing method to in situ.
In the post-processing method, the simulation writes out data to
disk at regular time steps. Once the simulation has completed, the
data is read back from disk for post-processing analysis and visual-
ization using tools, such as VisIt [CBW∗12] or ParaView [AGL05].
As simulations increase in complexity, the amount of data they can
write out increases exponentially, making it unsustainable to write
out data with high temporal frequency. The critical challenge is sav-
ing enough data from the simulation without impacting fidelity or
losing notable areas of interest.

In the in situ model, visualization and analysis occur alongside
the simulation to mitigate the impacts of reduced I/O bandwidth.
The data from the simulation is analyzed and visualized and the re-
sulting images are written to disk, vastly reducing the total amount
of data written to disk. Since power is a critical challenge to reach-
ing the next generation of computing, research efforts have been
dedicated to understanding the power profiles of this new analysis
strategy, particularly with respect to how data is moved through the
storage hierarchy [AcFW∗15,RPL∗16]. These works compared the
power profiles of each pipeline, concluding that in situ drastically
reduces energy usage by reducing the total runtime to complete the
simulation and analysis.

Labasan et al. [LLC15] provided an initial exploration of the var-
ious factors that may impact power and performance trade-offs for
an isosurfacing algorithm implemented in two frameworks. This
work studied the performance impacts of various parameters as the
CPU operating frequency was gradually reduced. Similarly, work
by Gamell et al. [G∗13] also looked at the power-performance
trade-offs of various parameters at scale.

4. Our Approach for Adaptive Power Scheduling

In an overprovisioned environment, the total power allocated to the
machine is not enough to run all nodes at peak power simultane-
ously. The default strategy for handling this reduction in power is
to uniformly assigned reduced power — if the total power is 50%
of peak, then each node would be capped at 50% of its maximum
power. The performance effects of this power cap will vary from
node to node. In cases where the node was approaching maximum
power, the slowdown would be greater, while in cases where the
node was already using less than the power cap, there would be no
effect in runtime. Therefore, since the rendering task is only as fast
as the slowest processor, the choice of uniform reduction is poor. A
better choice is to adapt the power assigned to each node based on
how much work it has to do — nodes with lots of work get higher
power caps and nodes with less work get lower power caps. In an
ideal scenario, each node would complete rendering at the same
time.

Adaptively assigning power is a non-trivial task. At its essence, it
involves assessing how much work each processor needs to do. For
our approach, we incorporate an existing rendering performance
model [LHK∗16]. When the performance model predicts a high
rendering time, we assign more power, and when it predicts low

Parameter Description
n Number of MPI tasks
pownode_min Minimum node power needed to exe-

cute job
powavail Available power to allocate
reni Predicted render time for task i
renmin Global minimum predicted render time

among all n tasks
renmean Global mean predicted render time

among all n tasks
renmed Global median predicted render time

among all n tasks
renmax Global maximum predicted render time

among all n tasks

Table 1: Power scheduling strategy parameters.

rendering time, we assign less. In terms of specifics, we consider a
family of strategies, detailed in the next subsection.

For volume rendering, the performance model predicts the ren-
dering time by considering the camera configuration and data set
size. The model is based on the observation that there are two dis-
tinct types of operations in volumetric ray casting, each with a cost
determined by the hardware architectural factors. Operations that
are associated with entering a new cell (e.g., loading nodal scalar
values) occur with a frequency influenced by the size of the data
set and the distance between samples relative to cell size, and op-
erations that are associated with each sample (e.g., interpolating
scalars and compositing colors) occur with a frequency influenced
by the total data set spatial extents and sample distance. The com-
bination of these operations represent the total amount of work
per ray, and with an estimate of the number of rays that intersect
the volume using camera parameters, a total amount of work for
the entire image can be predicted. Architectural costs for each of
the two operations were calculated using multiple linear regres-
sion data gathered on the architecture on which the model was
used [LHK∗16]. In all, given a camera position, data set size, and
sampling parameters, the time to render on a node could be pre-
dicted with high accuracy.

4.1. Power Scheduling Strategies

In this section, we describe the power scheduling strategies used
in this study. For this exploratory work, we implemented a handful
of simple strategies, and evaluate their ability to improve perfor-
mance.

Each scheduling strategy produces a scalar factor, which we use
to assign a portion of the “available power" (denoted as powavail)
to each node. This guarantees that the allocated job power budget is
not exceeded as per-node power assignments are being made. The
powavail is calculated by taking the difference between the speci-
fied power budget and the minimum power required to execute the
job reliably (i.e., the minimum power needed to operate all nodes
sufficiently).

4.1.1. Min Scheduling Strategy

This strategy uses the difference from the minimum estimated ren-
der time to determine the power allocation. For each predicted ren-
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dering runtime, the node power cap is determined as follows:

pownode_min +
|renmin− reni|

∑
n−1
i=0 |renmin− reni|

∗ powavail

We speculate that this strategy will produce the best speedups of
all the strategies described in this section. Nodes that are furthest
away from the minimum (i.e., highest render time, most work to
be done) will be allocated a high amount of power, and this should
produce the highest speedups in a balanced and imbalanced work-
load configuration, since the rendering task is only as fast as the
slowest processor.

4.1.2. Normalized Scheduling Strategy

This strategy calculates node power assignments by the value of the
predicted render time:

pownode_min +
reni

∑
n−1
i=0 reni

∗ powavail

This strategy behaves similarly to Min, since power assignments
correlate with the render times. It assigns less aggressive power
caps, since the computation does not take into account the global
minimum of the predicted render times.

4.1.3. Mean Scheduling Strategy

This strategy uses the distance from the average estimated render
time to assign power allocations.

pownode_min +
|renmean− reni|

∑
n−1
i=0 |renmean− reni|

∗ powavail

The intuition is that this strategy has no impact on performance
when the rendering workload is evenly balanced. If the rendering
workload is imbalanced, the Mean strategy may provide some ben-
efits, but we speculate it will not produce as aggressive of a power
schedule as the Min strategy, since the mean falls between all esti-
mates.

4.1.4. Median Scheduling Strategy

This strategy uses the distance from the median estimated render
time in making its power decision.

pownode_min +
|renmed− reni|

∑
n−1
i=0 |renmed− reni|

∗ powavail

We speculate that the Median strategy will perform similarly to the
Mean strategy, since the median and mean will not differ signif-
icantly in our rendering configurations. We envision cases where
the median is better for assigning more aggressive power caps than
the mean, producing better speedups than the Mean strategy.

4.1.5. Max Scheduling Strategy

This scheduling strategy uses the difference from the maximum es-
timated render time to determine the power allocation. For each
predicted rendering runtime, the node power cap is determined as
follows:

pownode_min +
|renmax− reni|

∑
n−1
i=0 |renmax− reni|

∗ powavail

Intuitively, this scheduling strategy will perform the worst of all im-
plemented strategies as it rebalances power in a sub-optimal man-
ner. It allocates higher power to nodes with only a small amount of
work to complete (i.e., fast render time), and low power to nodes
with long render times, only increasing the overall runtime.

5. Study Overview

The following section provides an overview of the methodology.

5.1. Software Infrastructure

For our software infrastructure, we used Strawman [LBC∗15],
an open-source in situ framework containing three physics proxy
applications. Of these three proxy applications, we used Clover-
leaf3D [MBG∗13, clo17], a hydrodynamics mini-app on a three-
dimensional structured grid. Strawman also includes a rendering
infrastructure, which combines node-level rendering using VTK-
m [M∗16], configured with Intel’s Thread Building Blocks [Rei07],
and distributed memory image compositing using IceT [MKPH11].
For our study, we integrated PaViz into Strawman and added in-
frastructure to calculate per node rendering estimates based on the
performance model.

5.2. Hardware Architecture

We ran tests on Catalyst, an Intel Ivy Bridge cluster at Lawrence
Livermore National Laboratory. Each node contains two hyper-
threaded Intel Xeon E5-2695 v2 CPUs containing 12 physical
cores. The processor operates at a base frequency of 2.4 GHz, and
has a maximum TurboBoost frequency of 3.2 GHz. Each node con-
tains 128 GB of memory. Access to socket-level power capping
and monitoring is done through model-specific registers (MSRs),
specifically through the msr-safe kernel driver [msr16]. Using In-
tel’s Running Average Power Limit (RAPL) technology [Cor16],
we can power cap each processor in the node between 115W (i.e.,
thermal design power (TDP)) and 64W, and the processor will ad-
just the CPU operating frequency to guarantee the specified power
cap.

5.3. Study Parameters

We varied the following parameters as part of this study:

• Rendering Workload (4 options)
• MPI Task Concurrency (2 options)
• Power Scheduling Strategy (5 options)
• Job Power Budget (12 options)

We ran the cross product of the study parameters for a total of
480 tests. We detail each of the parameters listed above in the fol-
lowing subsections.

5.3.1. Rendering Workload

We selected four representative configurations varying in the size
of the data set, image resolution, and camera position. These con-
figurations spanned commonly used values for each parameter, and
yet each configuration differed in terms of the amount of work per
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Rendering Workloads A and C
(camera positioned inside the data
set)

Rendering Workload B (camera po-
sitioned near the data set)

Rendering Workload D (camera po-
sitioned far from the data set)

Figure 1: Rendered images of the data set from the three camera positions used in this study — inside, near, and far. The renderings show a
pressure wave expanding from the corner of the data set where the initial energy was deposited.

Wkld Data Set Image Res Cam Pos IFact
A 2403 28802 inside 1.57
B 4703 10802 near 1.16
C 1283 19202 inside 1.58
D 3203 20482 far 1.12

Table 2: Selected rendering workloads for this study. The config-
urations use 1000 samples per ray and render 100 images per cy-
cle. IFact is a quantitative representation of the work imbalance,
derived by taking the maximum estimated render time over the av-
erage of all estimates.

task. The configurations used in this study are enumerated in Ta-
ble 2. Images of the data from the three camera positions used —
inside the data set, near the data set, and far away from the data set
— are shown in Figure 1.

5.3.2. MPI Task Concurrency

We varied the number of MPI tasks to explore the effects of concur-
rency on the number of active pixels per task. For the architecture
previously described in Section 5.2, the number of MPI tasks used
were 8 and 64, mapping one task to each node. On this hardware
architecture, there are 24 cores per node, so our experiments used
a total of 192 and 1,472 cores, for 8 and 64 nodes, respectively. We
ran this as a weak scaling study, i.e., the data set size per task was
held constant with each level of concurrency.

5.3.3. Power Scheduling Strategy

We explore the performance improvements of the five power
scheduling strategies defined in Section 4.1 to rebalance power
based on need. Some strategies are more aggressive in terms of
assigning socket power caps, while others are less aggressive, but
risk leaving further performance to be reclaimed. In addition to ex-
ploring the benefit of rebalancing power based on a performance
model, we wanted to explore the benefits of using different power
scheduling strategies.

5.3.4. Job Power Budget

We vary the power budget by assuming a uniform node power cap
(ranging from 230W down to 128W per node, 115W to 64W per
processor). In this study, we only consider the power consumption
of the socket domain. For example, assume there are eight nodes in
the job. The range of job power budgets ranges from 1840W (per
node power cap of 230W) down to 1024W (per node power cap of
128W). By enforcing lower node power caps, we arbitrarily limit
the job power budget, and can compare the performance of PaViz to
a uniform power distribution under a power-limited environment.

5.4. Efficacy Metrics

We define two efficacy metrics quantifying the benefits of adap-
tively rebalancing power based on a performance model. We ex-
plain these metrics in more detail in the following subsections.

5.4.1. Speedup Over Uniform Power Caps

The speedup metric compares the runtime of PaViz to a uniform
power distribution computed by job_power_budget

nnodes . This scenario is
currently implemented in practice. With PaViz, each node may be
running at a different power cap, but the aggregate sum of the power
caps is less than or equal to the job power budget. A speedup greater
than 1 indicates better performance with PaViz in adapting power
caps relative to the predicted render time. A speedup less than 1
indicates degraded performance with PaViz, and a speedup equal
to 1 indicates no change in performance.

To see the impacts of RAPL’s power capping mechanism, the
workload must be long enough to overcome the delay between
when the new power cap is set and when the processor recognizes
(and begins operating at) the new cap. Rendering a single image can
be a very quick operation, less than a fraction of a second. However,
it is not uncommon to create several images per time step, and on
the extreme side, image-based in situ [AJO∗14], where hundreds of
images are rendered per time step. This use case increases overall
render time and amortizes out the RAPL delay.
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5.4.2. Unused Job Power

The second metric compares the job power allocated by PaViz to
the original power budget. PaViz rebalances power based on a pre-
dicted rendering estimate generated by a performance model, such
that the original power budget is not exceeded. The percentage of
unused job power is computed by taking the difference between
the job power budget and the job power allocated by PaViz divided
by the job power budget. We observed the best performance when
the entire job power budget is allocated by PaViz, particularly in
a power-constrained environment, where some nodes may not be
able to execute at TDP.

6. Results

We organized our study into four phases. We first look at a base
case, which uses eight nodes and a single power scheduling strategy
detailed in Section 4.1. Subsequent sections evaluate the benefits of
PaViz when varying the power scheduling strategy, workload con-
figuration, and concurrency under different power budgets. These
factors were previously described in Section 5.3. In each phase, we
vary the job power budget, and analyzed its impact.

6.1. Phase 1: Base Case

In this phase, we compare the speedups of the Min scheduling strat-
egy under various job power budgets. The x-axis has been reversed,
such that the job power budgets are decreasing, as would be the
case with a power-constrained environment. The results are for an
imbalanced rendering workload configuration (labeled as “A" and
defined in Table 2) and are shown in Figure 2.

The performance degradation is minimal for job power budgets
between 1800W and 1600W. This is because the allocated power
exceeds the observed (i.e., actual) power consumption of the ap-
plication. The dotted line, which represents the unused job power,
shows the same execution time can be achieved by using up to
12%− 20% less than the allocated job power budget. If the job
power budget is extremely constrained to 1024W, we similarly see
no benefit as there is a small amount of job power available to real-
locate between the nodes.

In this configuration, PaViz produces up to 10% speedup over
the current practice for job power budgets between 1400W and
1100W. For these speedups, PaViz reallocates all of the job power
budget, such that there is 0% unused job power. At a job power
budget of 1500W, PaViz achieves about 4% speedup in this config-
uration by using 3% less than the job power budget. If we assume
the job power budget is the actual power consumption of the job,
then PaViz can also save energy by having a faster runtime than the
current practice. For example, with a job power budget of 1360W,
PaViz produces a speedup of 10% by using the entire power budget
(i.e., 0% unused power). This produces an energy savings of about
9% as compared to the current practice.

6.2. Phase 2: Vary Scheduling Strategy

In this phase, we compare the speedups and unused job power of the
five power scheduling strategies (see Figure 3). The Min strategy
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Figure 2: Speedups and allocated power for Rendering Workload
A using the Min power scheduling strategy. The solid line shows
the resulting speedups as compared to uniform power caps (right
y-axis). The black dotted line identifies where the speedup is 1, in-
dicating no change in performance. The dotted line shows the per-
centage of unused job power budget that resulted in a particular
speedup (left y-axis). A percentage of 0% means that the entire job
power budget was reallocated across the nodes.

performed the best of all strategies in this configuration, since it
assigns the highest power limit to those nodes with high estimated
render times and vice versa.

On the other hand, the Max strategy performed the worst of all
strategies. This strategy assigns high power caps to those nodes
with low predicted render times, while assigning low power caps to
those with high predicted render times. With this strategy, perfor-
mance degrades significantly since the node with the most work to
do (e.g., the bottleneck node) will execute at a lower power cap.

The Normalized strategy has a similar behavior to the Min strat-
egy. This is because power caps are scaled directly by the estimated
render time, which will assign high power caps to high render times
and low power caps to low render times. For this configuration, the
Normalized strategy does not achieve as high a speedup as the Min
strategy because it is unaware of the fastest render time, and will
assign a less aggressive power cap.

The Mean strategy performs as well as the current practice for
this configuration with the camera positioned inside the data set.
With an imbalanced workload, some nodes will be higher than the
mean and others will be lower than the mean, and will average out
to the same performance as running all nodes at the same power
cap.

The Median strategy degrades performance slightly. Depending
on the distribution of estimated render times, the median may cause
the non-ideal assignment of power caps to predicted render times.
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Figure 3: Comparing speedups and unused job power budget for
Rendering Workload A across all five power scheduling strategies.

6.3. Phase 3: Vary Workload Configuration

We vary the workload configuration to demonstrate how render-
ing parameters may impact the potential for performance improve-
ments. With the camera positioned inside the data set (Rendering
Workloads A and C), there is greater work imbalance (i.e., wider
distribution of predicted render times) between the nodes because
some nodes will have no geometry in the field of view of their cam-
eras, and thus will perform no rendering. Moving the camera posi-
tion far away from the data set, such as in Rendering Workloads B
and D, creates a more even distribution of predicted render times,
and this balance limits the ability of PaViz to achieve significant
speedups.

Figure 4 shows the speedups and unused job power for the re-
maining workload configurations — B, C, and D. Rendering Work-
load C has a maximum speedup of 10% that is comparable to Ren-
dering Workload A, which was previously shown in Figure 3. This
is because there is significant imbalance when the camera is posi-
tioned inside the data set, providing more benefit from adaptively
rebalancing power. However, we note that Rendering Workload A
provides speedups with the Min and Normalized strategies over
more job power budgets than Rendering Workload C. The range
of raw render estimates is far greater in Rendering Workload A
(0.3 sec to 1.4 sec) than Rendering Workload C (0.15 sec to 0.64
sec) due to the data set size per node. The increased distance be-
tween the minimum and maximum predicted runtime gives Ren-
dering Workload A more opportunity for benefits with PaViz.

We achieve little to no speedup on Rendering Workloads B and
D because the render estimates are balanced when the camera is
positioned further away from the data set, which matched our ini-
tial intuition. For these configurations, the render estimates ranged
from 0.10 sec to 0.14 sec for workload B, and 0.12 sec to 0.16 sec

for workload D, which did not provide much room for adapting
power (in several cases, all nodes were assigned the same uniform
power cap). The Min strategy results in a 4% speedup on Rendering
Workload D, but we attribute this to performance variability when
the processor is under a power cap.

6.4. Phase 4: Vary Concurrency

In this phase, we increase the node concurrency from 8 nodes to
64 nodes to understand the potential benefits at scale. The initial
intuition was that a higher concurrency would lead to better perfor-
mance since there would be a larger work imbalance per node and
a larger job power budget that can be reallocated between nodes.
Figure 5 shows the speedups and unused job power for all render-
ing configurations enumerated in Table 2 using 64 nodes. We weak
scale the data size to maintain the same work per node.

For these configurations, PaViz achieves up to 33% speedup over
uniform distribution of power. At 64 nodes, we see the render pre-
dictions change in two ways. First, the range of predictions be-
tween the minimum and maximum render value is much smaller.
Secondly, a larger percentage of nodes have very little, or even no,
geometry to render. In the imbalanced configurations A and C, the
scheduling strategies in PaViz assign these nodes low power caps,
enabling nodes with lots of work to operate at a high power cap. We
suspect that imbalanced workloads at even higher concurrencies
will achieve even greater speedups. In the balanced configurations
B and D, the performance estimates were extremely fast (less than
0.08 sec), the range of estimates was much closer to one another
that they were with eight nodes (ranging from 0.06 sec to 0.07 sec),
and the scheduling policies assigned uniform power caps across all
nodes.

7. Conclusion and Future Work

With this work, we considered parallel rendering in the context of
overprovisioned supercomputers. Like other HPC research on over-
provisioning, we set per-node power caps in an effort to allocate
power to the nodes that needed it most. However, since visualiza-
tion workloads are highly variable, they required a new approach
for deciding how to assign power caps. We accomplished this by in-
corporating prediction, and considered five strategies that make use
of per-node workload estimates. The resulting study demonstrated
that our approach is beneficial, with results as much as 33% faster
than a uniform distribution strategy while using the same power.
In terms of future work, we would like to explore how PaViz can
be adapted to additional predictive models for visualization algo-
rithms.
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Figure 4: Comparing speedups and unused job power for Rendering Workloads B, C, and D at 8 node concurrency using all five power
scheduling strategies. The solid lines show the resulting speedups as compared to uniform power caps (right y-axis). The black dotted line
identifies where the speedup is 1, indicating no change in performance. The dotted lines show the percentage of unused job power that
resulted in a particular speedup (left y-axis).
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Figure 5: Comparing speedups and unused job power for all rendering workloads at 64 node concurrency using the five power scheduling
strategies. The solid lines show the resulting speedups as compared to uniform power caps (right y-axis). The black dotted line identifies
where the speedup is 1, indicating no change in performance. The dotted lines show the percentage of unused job power that resulted in a
particular speedup (left y-axis).
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