
PERFORMANCE MODELING OF IN SITU RENDERING

by

MATTHEW CRIVELLI LARSEN

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

December 2016



DISSERTATION APPROVAL PAGE

Student: Matthew Crivelli Larsen

Title: Performance Modeling of In Situ Rendering

This dissertation has been accepted and approved in partial fulfillment of the requirements
for the Doctor of Philosophy degree in the Department of Computer and Information
Science by:

Hank Childs Chair
Advisor

Allen Malony Core Member
Boyana Norris Core Member
Eric Corwin Institutional Representative
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DISSERTATION ABSTRACT

Matthew Crivelli Larsen

Doctor of Philosophy

Department of Computer and Information Science

December 2016

Title: Performance Modeling of In Situ Rendering

With the push to exascale, in situ visualization and analysis will play an

increasingly important role in high performance computing. Tightly coupling in situ

visualization with simulations constrains resources for both, and these constraints force

a complex balance of trade-offs. A performance model that provides an a priori answer

for the cost of using an in situ approach for a given task would assist in managing the

trade-offs between simulation and visualization resources. In this work, we present

new statistical performance models, based on algorithmic complexity, that accurately

predict the run-time cost of a set of representative rendering algorithms, an essential in

situ visualization task. To train and validate the models, we create data-parallel rendering

algorithms within a light-weight in situ infrastructure, and we conduct a performance

study of an MPI+X rendering infrastructure used in situ with three HPC simulation

applications. We then explore feasibility issues using the model for selected in situ

rendering questions.

This dissertation includes previously published coauthored material.
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CHAPTER I

INTRODUCTION

Visualization on high performance computers has traditionally been accomplished

with post hoc processing. With this model, a simulation code writes its state to disk at

regular intervals (or irregular intervals), and a visualization program reads that data

from disk after the completion of the simulation. In post hoc processing, the dominant

factor in overall execution time for most common visualization operations is I/O

performance (43). Further, while I/O bandwidth is increasing on new supercomputers,

the ability to generate data is increasing much more quickly, meaning the percentage

of writable FLOPS is decreasing. As a result, post hoc processing may soon become

impractical on leading-edge supercomputers.

In situ processing is widely viewed as the best suited paradigm for upcoming

supercomputers (85; 17; 42). With the in situ paradigm, visualizations are created

while the simulation is running, making it unnecessary to store the simulation’s state

to disk and read it afterwards. The term in situ processing actually represents a family

of approaches. One approach, referred to in this dissertation as tightly-coupled, shares

compute resources between simulation and visualization. That is, when it is time to

perform visualization tasks, the simulation pauses, hands control to a visualization

routine which produces images, and then the visualization routine hands control back

to the simulation. This approach is used by both ParaView Catalyst (51) and VisIt

LibSim (136). Another common approach, referred to as loosely-coupled, uses dedicated

sets of resources for simulation and visualization routines, and data is sent between

simulation and visualization resources over the network. This approach is also referred to
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as in transit processing (99) or staging, and is the approach most frequently employed by

ADIOS (82).

The requirements for post hoc processing and in situ processing are different. For

post hoc processing, the driving requirement was interactivity for human observers. If

the user was satisfied with the delivery rate of results, then the performance requirement

was met. With in situ processing, and especially with tightly-coupled in situ processing,

the performance requirement is different. Running visualization routines with the tightly-

coupled approach means that compute resources are not being devoted to the simulation,

and so it slows down the overall simulation time.

1.1 Feasibility Question

Given a set of input parameters, how long does it take to render an image?

Rendering is often a relatively quick operation (on the order of a second), and so

this feasibility question is not all that interesting if the desired rendering task is to,

for example, render one frame every 500 cycles of the simulation. However, recent

research (64; 19; 20) has inspired a new approach, where thousands to millions of

renderings are extracted during the simulation, in order to construct an image database

that can be explored by domain scientists after the simulation has completed. These

images are often of the same geometry (such as an isosurface), but with different

rendering parameters, including camera angle and shading. When considering this

number of renderings, the feasibility question we consider becomes very important.

Compute resources are finite, and simulations operate with a fixed time budget.

With tightly-coupled in situ, the simulation cannot advance while images are rendered

and spending more time rendering limits the total number of time steps simulations

can advance to. With loosely-coupled in situ, simulation time steps are sent over the

2



network to a subset of nodes for visualization, and if rendering cannot keep up with the

influx of simulation data, then incoming time steps are lost until memory is freed after

rendering is complete. Both scenarios are problematic. On the one hand, long running

renderings prevent the simulation from advancing to completion, and on the other hand,

when simulations render sparsely in time, they potentially lose valuable information.

Simulation scientists must balance rendering time with their own goals, and this trade-off

engenders an important feasibility question: is it possible to perform X1 rendering tasks

while devoting no more than X2 time to these tasks?

Up until now, we have had no answer to this question beyond anecdotal analysis.

While the question is easily understood, it is not simple to answer. Emerging exascale

architectures, on which in situ analysis will become critical, are becoming increasingly

diverse. Current CPU architectures have two very different levels of parallelism, i.e.

threads and vector units, while current GPU architectures have tens of thousands of

threads. Additionally, there are different types of rendering algorithms each with their

own algorithmic complexities (e.g., image order, object order, and acceleration structure

traversal). Taking the cross product of architectures and algorithms into account, the

feasibility question becomes all the more difficult to answer.

1.2 Performance Modeling

A performance model that provides an a priori answer to the cost of a given task

would assist in managing the complex trade-offs between visualization and simulation

resources, and performance models for rendering algorithms would provide an answer

to the feasibility question. With time being a constrained resource at exascale, we could

evaluate if a task is even possible. Further, we could immediately identify or rule out

alternative rendering algorithms for the same task.
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Creating individual performance models for every algorithm and architecture

combination would require significant effort. To reduce the effort needed to create a

performance model, we need a straight forward methodology that can be applied to any

algorithm and architecture. Armed with a methodology, we could apply it to rendering

algorithms and answer the feasibility question. Further, a methodology for in situ

rendering would open the door to reasonably estimating the cost of other visualization

and analysis algorithms.

1.3 Hybrid Parallelism and Portable Performance

Hybrid Parallelism

Traditionally, simulation and visualization codes have used one MPI task per

core, but this approach is proving inefficient at large scale (61), since the numbers of

cores per node are dramatically increasing on supercomputing architectures. The next

Department of Energy (DOE) procurement of supercomputers will push the core count

per node even higher than it is today, making the ability to harness node-level parallelism

even more important. Additionally, there are two distinct architectures emerging for the

coming generation of supercomputers. An in situ visualization infrastructure must be

able to utilize the same architecture a simulation runs on, and for tightly-coupled in situ,

the infrastructure needs direct access to simulation memory, which exists in different

phyisical spaces between GPU and CPU architectures.

We do not currently have such an infrastructure to connect simulations, on

arbitrary architectures, to visualization in situ. However, a diverse set of supercomputing

architectures, and simulations targeting them, presents a problem for visualization.

Visualization has hundreds of algorithms, and with two or more architectures,

the community would exhaust all funding implementing each algorithm for each

4



architecture. One solution to this problem is portable performance through data-parallel

frameworks.

Portable Performance

The current set of production visualization systems (e.g., VisIt (41) and

ParaView (18)) have been retrofitted for in situ, but they still use rendering algorithms

developed for post-hoc analysis.

In current architectures, memory is already a constrained resource, and at exascale,

memory constraints will increase as architectural trends continue to reduce the memory

per core. Additionally, there is a tension between the time and frequency of visualization.

Since both memory and time will be constrained resources at exascale, algorithms

designed for post-hoc analysis may no longer be appropriate. Consequently, we need

to re-examine rendering in terms of exascale in situ; Figure 1 illustrates the unknown

subset of current algorithms that will be viable in an exascale environment.

FIGURE 1. The outer circle represents all rendering research, the middle circle
represents the portion of rendering used by visualization, and the inner circle represents
the rendering techniques that are viable at exascale. Which techniques belong in the
inner circle is still an open question.

To effectively answer the feasibility question, we must evaluate and test rendering

algorithms that are suitable for in situ. Implementing and testing all algorithms and
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architectures is time consuming, and not all implementations are publicly available (108).

Further, some algorithms have not been adapted for hybrid parallelism and modern

architectures.

To address this problem, researchers have created a number of architecturally

agnostic programming paradigms for both general purpose computing (25; 50; 59; 127)

and visualization specific applications (92; 81; 96; 100). CPU and GPU architectures

share thread-level parallelism, and abstracting away the underlying computer

architectures, by using data-parallel operations, allows a single implementation to

run efficiently on arbitrary architectures. The proposition of portable performance is

particularly attractive to visualization and analysis, which has hundreds of algorithms.

Implementing rendering algorithms using data-parallel programming models

presents us with three opportunities. First, ray tracing algorithms have been highly

optimized for specific architectures (138; 108), and they present an opportunity to

validate the promise of portable performance of algorithms implemented using data-

parallel frameworks. Second, we can begin to identify those algorithms that are suitable

at exascale by evaluating performance on different architectures. Finally, we can validate

performance models, based on algorithmic complexity, on multiple architectures using a

single implementation.

1.4 Dissertation Outline

The goal of my dissertation is to answer the feasibility question for in situ

rendering by constructing a methodology for creating performance models based

on algorithmic complexity. The performance models will be applicable to arbitrary

architectures and sub-architectures such as CPUs (e.g., Haswell and Sandy Bridge)

and GPUs (e.g., NVidia K40 and K20). Additionally, we perform a thorough study to
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validate the results of the performance models and thus the methodology used to create

them. There was a significant amount of work that needed to be performed establish a

foundation for the feasibility study. The foundational research is described in Chapters

II, III, and IV, while the feasibility research is described in Chapter V. This dissertation is

organized as follows:

– Chapters II and III: we created and implemented multiple rendering algorithms

that execute on arbitrary architectures and we validated their performance against

community standards.

– Chapter IV: we built an in situ infrastructure integrated with multiple simulations,

linking the rendering algorithms to data.

– Chapter V: we established a methodology and created performance models based

on algorithmic complexity. Finally, we conducted a thorough evaluation and show

the performance models utility by answering several in situ viability questions.

– Chapter VI: we discuss the future directions of visualization and performance

modeling.

1.5 Co-authored Material

Much of the work in this dissertation is from previously published co-authored

material. Below is a listing connecting the chapters with the publications and authors that

contributed. That said, for each of these publications, I was not only the first-author of

the paper, but also the primary contributor for implementing systems, conducting studies,

and writing manuscripts.

– Chapter II: (73) was a collaboration between Jeremy Meredith (ORNL), Paul

Navrátil (TACC), Hank Childs (UO and LBL), and myself.
7



– Chapter III: (76) was a collaboration between Stephanie Labasan (UO), Paul

Navrátil (TACC), Jeremy Meredith (ORNL), Hank Childs (UO and LBL), and

myself.

– Chapter IV: (74) was a collaboration between Eric Brugger (LLNL), Hank Childs

(UO and LBL), Jim Elliot (AWE), Kevin Griffin (LLNL and UC Davis), Cyrus

Harrison (LLNL), and myself.

– Chapter V: (75) was a collaboration between Cyrus Harrison (LLNL), James Kress

(UO and ORNL), Dave Pugmire (ORNL), Jemery Meredith (ORNL), Hank Childs

(UO and LBL), and myself (UO and LLNL).
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CHAPTER II

DATA-PARALLEL RAY TRACING

Most of the text in this chapter comes from (73), which was a collaboration

between Jeremy Meredith (ORNL), Paul Navrátil (TACC), Hank Childs (UO and LBL),

and myself. The introduction was a collaboration between Hank Childs and myself, and

the related work was primarily written by Jeremy Meredith and Paul Navrátil, although

I provided some edits. In addition, I received some guidance from Hank and Paul about

methods and algorithm development. I performed all the software development, designed

and executed the performance study, and contributed to the majority of the other sections.

In this chapter, we explore the first of two rendering algorithms within the

context of a data-parallel framework. By validating the performance of a single

implementation on multiple architectures, we can simply the generation and validation

of the performance models in Chapter V.

Ray tracing has both regular and irregular memory access patterns, and there

exist highly-optimized architecturally specific implementations for both the CPU

and GPU. Due to these properties, ray tracing is an ideal algorithm to validate the

data-parallel approach. In this chapter, we describe trends is modern supercomputing

architectures that motivate the pursuit of performance portable approaches, describe data-

parallelism and fundamental primitives, describe our ray tracing algorithm, and validate

the performance through an extensive study,

2.1 Motivation

Supercomputing system design emphasis has moved from raw performance to

performance-per-watt, and as a result, supercomputing architectures are becoming

9



increasingly varied. While the prevalent architectures all feature wide vector units and

many processing cores per chip, the specific architectures are manifold, including:

programmable graphics processors (GPUs, e.g., NVIDIA Tesla); many-core co-

processors (e.g., Intel Xeon Phi); large multi-core CPUs (e.g., IBM Power, Intel

Xeon); low-power architectures (e.g., ARM); hybrid designs (e.g., AMD APU); and

experimental designs (e.g., FPGA systems).

This diversity of hardware architectures is increasingly problematic for software

developers. Developers are typically not eager to devote time to porting their software

to each platform, and then further to optimizing their software’s performance on each

platform. One solution to this problem is Domain Specific Languages (DSLs). With

DSLs, developers write their algorithm one time, and then the burden of supporting

many architectures and achieving good performance is shifted to the developers of

the DSL. Assuming that many projects make use of a DSL, this shift of burden makes

sense, because DSL development team can do the “hard work” once and have wide

benefit. Further, DSLs offer developers the possibility of “future-proofing,” since the

DSL development team will, ideally, port efficiently to new architectures as they arise.

Of course, DSLs can only succeed if they pick abstractions that simultaneously create

enough flexibility for the software developers who use them and also map to well-

performing routines on the underlying architectures.

Guy Blelloch’s book, Vector Models for Data-Parallel Computing (28), described

a computing paradigm where a fixed set of primitives — map, scan, reduce, gather,

etc. — operated on vectors of data. The model only included primitives that could be

achieved in time proportional to the logarithm of the size of the input vectors. Blelloch’s

book argued that vector models and data parallelism were at the nexus of programming

languages, algorithms, and architecture. Twenty years later, the concept of data-parallel
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primitives has only grown in popularity. Coming back to DSLs, the NVIDIA Thrust

library is a DSL that provides programmers with a set of data-parallel primitives. Thrust

natively can generate CUDA or x86 code, and extensions for the Xeon Phi are possible.

With the rise of in situ processing, visualization and analysis routines must be

run on the same architectures as the simulation code. Further, they must fit within the

constraints of the simulation code — execution time, memory usage, network traffic,

energy expenditure — and so they must be efficient. To meet this need, a number of new

visualization libraries have emerged, including DAX (97), EAVL (90), and PISTON (80).

These libraries are striving to become hubs of software development, with large numbers

of visualization algorithms, and, at the same time, offer portable performance over

varied architectures. All three do this by exposing data-parallel primitives to software

developers and asking them to re-think algorithms in this new environment. Each of

these packages could have been an excellent foundation for a ray tracer; we chose EAVL

because we were most familiar with development within that framework.

With this chapter, we explore ray tracing within the context of a data-parallel

framework. The contributions of this chapter are:

– A description of a ray tracing algorithm, novel because it is composed entirely of

data-parallel primitives in a manner that enables portable performance on many-

core nodes;

– Analysis of how this algorithm performs over various platforms;

– A comparison of our data parallel ray tracer with leading-edge platform-specific

ray tracers, in an effort to better understand the performance gap that comes from

implementing algorithms within a data parallel framework; and

– Additional documentation that ray tracing is a viable alternative to rasterization for

scientific visualization use cases.
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2.2 Related Work

Data Parallelism and Visualization

Data parallelism has been advancing at two somewhat distinct levels. Large-scale

data parallelism, particularly in the supercomputing arena, commonly involves entire

processes executing the same program with decomposed chunks, communicating across

a distributed network as necessary through the Message Passing Interface (55; 56). For

scientific visualization, this approach has been embraced by tools such as VisIt (41)

and ParaView (24), and has seen usage ranging from tens of thousands of processing

elements for production runs (43) to hundreds of thousands of processing elements for

research experiments (62). Fine grain data parallelism has occurred at both coarse grain

(threads) and fine grain (vector processors and SIMD instructions), and current graphics

processors exhibit both of these techniques with thousands of concurrent threads.

Programming languages and APIs which expose these types fine-grain parallelism

explicitly include CUDA (105), OpenCL (68), Cilk Plus 1, and Threading Building

Blocks 2.

The parallel algorithm primitives described by Blelloch (28) have led to higher-

productivity application programming interfaces. Through compile-time expansion

of combined data-parallel patterns and user-defined function objects (functors), the

compiler can heavily optimize the resulting code, resulting in flexible programmability

and high performance across multi-core and many-core devices. One of the most

notable libraries to use this technique is Thrust (26). Domain knowledge can extend

these techniques; for example, domain specific languages like Liszt (47) for scientific

1http://www.cilkplus.org/
2http://www.threadingbuildingblocks.org/
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solvers and APIs like EAVL (90) for visualization and analysis provide one more level

of productivity beyond domain-independent collections of parallel primitives. See

Section 2.3 for more information on these primitives and their use.

In terms of re-thinking visualization algorithms in terms of node-level fine-

grained data parallel primitives, the work in DAX, EAVL, and PISTON represent

the community’s latest advancements. Further, interest in ray tracing for large-scale

scientific visualization has increased recently (32; 33; 102), and its reputation as an

“embarrassingly parallel” algorithm make it a prime candidate to explore the usefulness

of data parallel primitives.

In terms of previous work, Schroeder et al. (119) explored the generation of

acceleration data structures for ray tracing two decades ago when data parallel primitives

were first a hot topic; our own work contrasts with theirs, in that we are considering the

ray tracing component (which is complementary to their acceleration data structures),

and in that we present extensive performance results on modern architectures.

BnsView (70) demonstrated a ray tracing system with portable performance over CPUs

via language-based abstractions that hide architecutural details; our work contrasts with

theirs in our usage of data-parallel primitives, and our support for additional architectures

(specifically GPUs). Finally, Northam et al. (104) demonstrated a MapReduce-based

ray tracing system for the cloud. While both systems share operators such as “map”

and “reduce,” their usage is as a mechanism for programming to a distributed-memory

(cloud) machine, while ours are aimed at achieving portable performance on vector

machines.
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SIMD Ray Tracing

During a ray tracer’s execution, sibling rays often start at similar points and

travel in similar directions (e.g., camera rays, shadow rays). This spatial coherence

can be exploited through the use of vectorized SIMD instructions to reduce the total

number of instructions required for both ray traversal and ray intersection (132). This

fine-grained parallelism has formed the fundamental building block of many modern

high-performance ray tracers (e.g., (21; 27; 109; 115; 132; 133)), including vendor-

specific implementations for multi-core and many-core architectures. We discuss

implementations from NVIDIA and Intel in greater detail below.

NVIDIA OptiX

On GPUs, NVIDIA’s OptiX Prime TMleads the way with a set of high and low

level APIs that supports a rich feature set, including scene graph management and a

variety of acceleration structures to meet the needs of static and dynamic scenes. The

newly introduced OptiX Prime in Optix V3.5 replaces the previous rtuTraversal API that

has been available in the API since version 2.1. The OptiX Prime kernels are based on

the hand-tuned kernels by Aila et al. (21; 22), and they leverage features of the recent

Kepler GPU architecture for improved per-ray performance.

In order to maximize SIMD efficiency on the GPU, intra-warp thread polling

is used to coordinate the behavior of threads, which either all traverse inner nodes of

the BVH or intersect with the triangles contained within the leaves. Using this type of

coordinated action, SIMD efficiency is increased by reducing the number of predicated

instructions, thus improving ray throughput. The OptiX code was also organized to

reduce the number of instructions generated by the compiler, and, in some cases, in-

line assembly was used. Since the OptiX kernels are not public, it is unknown if this is
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included in the release, but seems likely. Another source of inefficiency on the GPU is

dead rays within a warp. Since a warp terminates when all of the threads within it have

completed, utilization decreases as more rays terminate. Alia and Laine (21) proposed

the use of dynamically fetching work. Dynamic fetching of rays increases the SIMD

efficiency on the Kepler architecture by replacing dead rays if the number of dead rays

reaches some specified value (22), but is not beneficial on all architectures.

Intel Embree

On the CPU, Embree is a low-level API developed by Intel Labs that contains a

number of public ray tracing kernels optimized for CPUs and the Intel Xeon Phi co-

processor. These kernels leverage CPU support for the vector instruction sets SSE

and AVX, and are “hand optimized” to further improve performance (133). Using

vector instruction allows for the efficient traversal of a BVH with branching factors that

match the width of the SIMD lanes (131). The axis-aligned bounding boxes (AABBs)

of the child nodes are fetched and tested within the CPU vector units, and, using the

same technique, a group of triangles can be tested against a single ray at once. Finally,

the code is highly optimized, including usage of intrinsics, compiler hints, and goto

statements.

2.3 Overview of Data Parallelism

The data parallel primitives used in the ray tracer consist of map, gather, scatter,

reduce, and scan. In combination with user defined functors, these primitives are

combined to produce algorithms that execute on arbitrary architectures without the

knowledge of their underlying details. Though some understanding of the architectures

— such as the memory hierarchy and available resources — could be beneficial to
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performance, it is not included in the data parallel model. Memory transfers, in the

context of a GPU, are also abstracted away, freeing the user of the responsibility for

copying arrays from the host to device and vice-versa.

Map

In its simplest form, the map operation performs a single function on every element

of an array and outputs an equally sized array containing the transformed elements. In

more complex forms, map can have multiple input and output arrays, provided all arrays

have the same size.

Usage Within Ray-Tracing Algorithm: The map operation is used in many

locations in the ray tracer. Primary ray generation is a map operation, with the input

array being the index of each ray, and the functor initialized with the screen dimensions

and camera vectors. The functor then computes the ray direction and stores it in an

output array containing the X, Y, and Z components for each ray. Other usages of the

map operation include ray intersection and color accumulation functions.

Gather and Scatter

Gather and scatter copy a set of items from the input arrays to the output arrays,

potentially performing some operation on the copied value. Here, the inputs and outputs

may differ in length, as the mapping is determined by an array of indices passed by the

caller. In gather, the index array is the same length as the output arrays, and the index

specified for each output value specifies which input element to read from. In scatter, the

index array is the same length as the input arrays, and the index specified for each input

value specifies the location into which to write it. Since it is possible for scatter to write

to the same location from multiple threads, the operation can result in race conditions,
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so use of scatter generally requires more care than gather. Gather can also be faster,

particularly when going from a longer array to a shorter one.

Usage Within Ray-Tracing Algorithm: Gather is used to collect color values

from all rays contributing to the same pixel to perform anti-aliasing, and it is used to

remove dead rays and compact remaining rays into a smaller memory footprint. Scatter

is used within the ray tracer to perform ambient occlusion. Specifically, we transform

ray intersection points into directionally random rays about the hemisphere defined

by the point normal, and then scatter them into an array n times larger than the input

array (where n is the number of samples per intersect point). The ray tracer also uses

a scatter operation to expand previously compacted arrays back to their original size.

For example, the ray tracer scatters color values out to the frame buffer, so that a map

operation can accumulate their contribution to the final image.

Reduce

A reduce operation combines all input values in some way to generate a single

output value. Although user-defined functors are permitted (as long as they obey the

associative property), reduction is most commonly performed using pre-defined functors,

such as addition (to sum the values in the array) or minimum and maximum (to find

extrema within an array).

Usage Within Ray-Tracing Algorithm: The reduce operation is used within the

stream compaction step to count the number of output elements, so new arrays may be

allocated. The operation can also be used to quickly calculate the AABBs of large groups

of geometric primitives (78).
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Scan

The scan operator is similar to reduce. It make use of a binary operator, but instead

of producing in a single value like reduce, scan produces an output array of the same

length as the input array, where each element is the result of the reduction up until that

location in the array. For example, the result of scan using the addition operator is

called a prefix sum (28), where the element at position i is the result of the partial sum

of elements up to position i. (The inclusive variant includes element i in this partial

sum; exclusive does not.) A variant of scan called segmented scan performs the scan

within only partitioned sections of the array, and is useful to implement steps of complex

algorithms like parallel quicksort.

Usage Within Ray-Tracing Algorithm: In our ray tracing algorithm, scan is

only used to assist with stream compaction. However, scan is very useful, and may be

used more in the future. Methods for sorting rays into coherent frustrums for better

SIMD efficiency have already been implemented using the scan and other data parallel

primitives (54; 109; 133). Furthermore, scan can be used to build histograms, conduct

binary searches, construct k-D trees, and many more (28).

2.4 Algorithm Description

In this section, we describe our ray tracing algorithm based on the data parallel

primitives described in the previous section. We implement a modified breadth-first ray

tracer that processes rays by type within each ray generation, similar in spirit to Boulos

et al. (30) though without ray sorting. Rays are processed via a pipeline model that maps

well onto the data parallel primitive substrate. We present these pipeline stages below.

Note that we add image contributions to the framebuffer as they are generated at each
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stage using the additive formulation of the rendering equation described by Pharr et

al. (112).

Finally, note that this ray-tracing algorithm is for a single node, and it assumes

access to all mesh data. In a parallel setting, we would assume that data is decomposed

over nodes, and that the ray-tracing algorithm would be run on each node. We envision

two mechanisms for this parallelism: (i) OpenGL/rasterization-style rendering where

there are no secondary rays, and so the produced images can be used as input to a

distributed-memory compositer or (ii) extensions to this algorithm where secondary rays

are passed between nodes (i.e., as in (102)).

Initial Ray Generation

Camera rays are generated in one pass according to a given camera and lens

model and stored in a contiguous array for processing. For our experiments described

in Section 2.6, we use a pinhole camera with rays ordered by a Morton-curve traversal

of the framebuffer. Our algorithm supports both single-ray pixel sampling and four-ray

pixel super-sampling.

Traversal and Intersection

Within each generation of rays, the rays are separated by type (shadow, reflection,

ambient occlusion, etc), and each type is processed in a separate pipeline invocation. For

each invocation, the specific distribution of work across the hardware is determined by

the data parallel primitive engine. The traversal and intersection of each ray follows the

if-if algorithm described by Aila and Laine (21), with minor modifications to operate

within the data parallel primitive framework. For each ray that intersects some geometry,
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the geometry index and intersection point are stored for use in later pipeline stages. Rays

that fail to intersect any geometry are flagged to prevent further processing.

Specular Reflections

If the material of the intersected geometry contains a specular component,

our algorithm generates a reflection ray. All generated reflection rays are stored in a

contiguous array and processed together, and the current ray generation information

is pushed on a stack for use by later pipeline stages. Any resulting intersections are

processed recursively until no more specular rays are generated, either because there

are no intersections or because the remaining rays have reached the bounce limit.

Stream Compaction

After the specular reflection check above, our algorithm can perform an optional

stream compaction step to coalesce the active rays together in memory. This compaction

can improve the amount of useful work performed when there are a large number of

inactive rays that would otherwise be processed but have their results masked away.

Compaction is useful both for scenes where a large number of primary rays fail to

intersect with geometry and for long-lived, divergent secondary rays, like those used in

Monte-Carlo global illumination estimation, where the time spent compacting the arrays

is amortized over the computation savings from culling a large number of dead rays (see,

e.g., (30)).

Ambient Occlusion

For each successful intersection, our algorithm performs an ambient occlusion

pass by casting a user-defined number of random hemispheric sample rays around each
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intersection point (our experiments use a default of four samples). All sample rays

within a generation are scattered to a single contiguous array and are processed together.

While the random sample rays typically diverge from their origin, we keep the sampling

distance sufficiently short so that the limited distance that these rays travel within the

scene keep data accesses coherent around each intersection point.

Shadows

For each successful non-shadow intersection, our algorithm also tests visibility

between each intersection point and the point light sources defined in the scene. For

each visibility query that succeeds (i.e., the ray misses all potentially intervening

geometry), the algorithm performs Blinn-Phong shading (29) and adds the resulting color

contribution to the appropriate pixel in the framebuffer.

Pseudocode

2.5 Study Overview

Test configurations

Our study was designed to test the viability of a data-parallel approach for

ray tracing, and also to better understand the gaps incumbent to using this approach

compared with architecture-specific ray tracers. Our tests varied four factors:

– Data set (12 options)

– Hardware architecture (7 options)

– Ray tracing software (3 options)

– Workload (3 options)

21



1 rays←rayGenerationMap(eye) //initial rays
2 rayDepth←0
3 while rayDepth < maxDepth do
4 hits:=map¡intersect¿(rays)
5 (reflectedRays,intersects)← map<reflect>(hits)
6 rays:=reflectedRays
7 if(compactOn) compactArrays()
8 //ambient occlusion

occRays←scatter<occRayGen>(intersects,normals,numSamples)
9 hits←map<intersect>(occRays,maxDistance)

10 occlusion←gather(hits,numSamples)
11 shadowHits←=map<intersect>(intersects,lights)
12 //generate and accumulate rgb values
13 rgb←map<shader>(intersects, occlusion,shadowHits)
14 colorBuffer←map<accum>(rgb,colorBuffer)
15 rayDepth++
16 end
17 screenBuffer←gather<antiAlias>(colorBuffer)
18 Function compactArrays

19 thresh←map<thresholdDeadRays>(rays)
20 scanResult←exclusiveScan(thresh)
21 newIndexes←reverseIndex(scanResult)
22 arrays←gather(newIndexes,arrays)
Algorithm 1: Pseudocode for our ray-tracing algorithm made up of data-parallel
primitives. Parallel primitives are shown in the form : primitive<functor>(args)
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Not all combinations of options made sense, since not all ray tracing software ran

on all architectures, and since not all workloads were needed for our evaluations. As a

result, we tested 246 configurations (i.e., not 12×7×3×3 = 756).

Data set

Our pool of data sets consisted of scientific visualization data and standard ray

tracing benchmarks:

– Richtmyer-Meshkov (RM): an isosurface of density on a time-slice of a RM-

instability simulation from Lawrence Livermore National Laboratory. We

considered five different sizes:

∗ RM 3.2M: 3.2M triangles from a 41M cell regular grid (400x400x256).

∗ RM 1.7M: 1.7M triangles from a 17M cell regular grid (256x256x256).

∗ RM 970K: 970K triangles from a 8M cell regular grid (200x200x200).

∗ RM 650K: 650K triangles from a 3M cell regular grid (192x144x144).

∗ RM 350K: 350K triangles from a 2M cell regular grid (128x128x128).

– Lead Telluride: an isosurface from the charge density of a Lead Telluride (PbTe)

crystal lattice provided by Oak Ridge National Laboratory.

∗ LT 350K: 351K triangles from a 1.4M cell regular grid (113x113x133)

∗ LT 372K: 372K triangles from a 1.4M cell regular grid (113x113x133)

– Seismic: 6.2M triangles generated from SPECFEM3D representing wave

speed perturbations measured by seismograms provided by Oak Ridge National

Laboratory.

– Stanford Dragon: a 100K triangle model based on the dragon from the Stanford

Computer Graphics Laboratory.
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– Conference Room: a 331K triangle model of a conference room at Lawrence

Berkeley National Laboratory created by Anat Grynberg and Greg Ward.

– Dabrovic Sponza: a 66K triangle model of the interior of a building, created by

Marko Dabrovic.

– Happy Buddha: a 1.2M triangle model from the Stanford Computer Graphics

Laboratory.

Figure 2 shows renderings of the Richtmyer-Meshkov data sets.

FIGURE 2. Ray tracings of the Richtmyer-Meshkov isosurfaces used in this study,
using the RM 3.2M version of the data. The left image represents the results of basic
intersection tests (i.e., WORKLOAD1 from Section ) and the right image contains the
pictures produced from the shaded pictures (i.e., WORKLOAD2).

Hardware architecture

We ran on seven hardware architectures: four GPU, two CPU, and a coprocessor.

Of the GPUs, two were from NVIDIA’s Kepler line, one from the Fermi line, and one

from the Maxwell line. The hardware architectures were:

– GPU1: A desktop computer with a GeForce GTX Titan Black, running 2,688

CUDA cores at 837MHz, 6GB of video memory, and a memory bandwidth of

288.4 GB/s.
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– GPU2: The Texas Advanced Computing Center’s (TACC) Maverick machine

using its Tesla K40M, running 2,880 CUDA cores at 745 MHz, 12GB of video

memory, and a memory bandwidth of 288.4 GB/s.

– GPU3: A desktop computer with a GeForce GTX 750Ti, running 640 CUDA

cores at 1020 MHz, 2 GB of video memory, and a memory bandwidth of 86.4

GB/s.

– GPU4: A laptop computer with a GeForce GT 620M, running 96 CUDA cores at

625 MHz, 1 GB of video memory, and a memory bandwidth of 28.8 GB/s.

– CPU1: A desktop computer with Intel’s i7 quad-core architecture (model 4770K),

running at 3.5 GHz and with 32GB of memory.

– CPU2: The TACC Maverick machine with a Intel Xeon E5 CPU (model E5-2680

V2), containing ten cores running at 2.7GHz and with a total of 256GB of memory.

– MIC: An Intel Xeon Phi Coprocessor 3120 containing 57 cores running at 1.1GHz

with 6GB of memory.

Ray tracing software

We considered three different implementations of ray tracing software:

– An EAVL-based implementation of the ray tracer described in Section 2.4.

– NVIDIA’s OptiX Prime (see Section 2.2).

– Intel’s Embree (see Section 2.2).

We now describe, for each package, the options for kernel and Bounding Volume

Hierarchy (BVH), the quality of which greatly affects the number of triangle intersection

tests.

EAVL: The EAVL-based ray tracer uses a split BVH (126), adapted from Alia

and Laine’s publicly available implementation (21). BVH construction uses a split alpha
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of 1e−6 and a maximum leaf size of eight triangles. BVH construction is performed

in serial on the CPU and construction time is not measured. Also, padding was not

used in the final flat array representation of the BVH and is a possible area for future

improvement.

Embree: Embree offers a wide variety of kernels for intersection. We tested three

different Embree configurations and found that, on the CPU1 architecture, the most

performant choice was a branching factor of four, performing four triangle intersections

at once, and using Embree’s high-quality BVH (i.e., “SBVH”). While Embree provides

kernels for both single ray and packet-based traversal, single ray traversal was used to

match the algorithm employed by OptiX Prime and the EAVL based ray tracer. We re-

used this Embree configuration for the CPU2 architecture for consistency, although we

note that a different configuration could have led to increased performance. Finally,

we used the gcc compiler, not Intel’s ICC compiler, which advertises 10% to 20%

improvements in performance. (The EAVL code also was run with gcc and also could

have benefited.)

OptiX Prime: We used the default OptiX Prime configuration. (OptiX Prime does

not have many configuration options, compared to Embree.) OptiX Prime’s acceleration

structure is the TRBVH (67).

Workload

We considered three workloads:

– WORKLOAD1: Tracing rays with no shading.

– WORKLOAD2: Tracing rays with shading.

– WORKLOAD3: Tracing rays with all features enabled.
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WORKLOAD1 corresponds to conventional ray tracing performance studies,

where evaluation is based on how many millions of rays can be traced in one second.

For this workload, the work for each ray is simply to calculate the index of the nearest

intersected triangle and distance to the intersection point.

WORKLOAD2 corresponds to a scientific visualization use case, which is

focused on meeting interactivity goals — a fixed frame rate with basic shading —

for end users. For WORKLOAD2, the work for each ray is to calculate the index

of the nearest intersected triangle, to calculate the exact intersection point and its

barycentric coordinates, to interpolate the normal at the intersection using the barycentric

coordinates, and then to calculate the shading (ambient, diffusion, specular) using the

normal and the triangle’s material properties, which are fetched from an array. Shading

includes light attenuation factors and additional color using interpolated scalars that are

indexed into a color map.

WORKLOAD3 also corresponds to a scientific visualization use case, but includes

all features of the EAVL based implementation. The workload adds ambient occlusion

with four samples per pixel, shadows, anti-aliasing, and stream compaction on top of the

second workload.

Testing Procedure

When comparing ray tracing software, we used a shared software infrastructure

for all tests, regardless of ray the tracing software package being tested. This software

infrastructure was responsible for generating rays and interpreting results. The individual

ray tracing software packages were only responsible for calculating intersections. We felt

it was appropriate to use uniform infrastructure to surround the intersection calculation,

since intersection calculation is understood to be the dominant term in ray tracing.
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For each scene, we chose three or four camera positions, picking positions from the

front of a data set, from the back, and zoomed in. For each of these camera positions, we

performed one-hundred fifty renderings (all producing identical pictures). The first fifty

rounds were warm-ups, and the latter one hundred rounds were used for measurement.

All tests were conducted at 1080P resolution (1920x1080). For GPU tests, data

was transferred to the device once and output was retrieved only after all rounds were

completed. Rays were sorted into Morton order to increase SIMD efficiency. On the

CPU, transfer was a non-issue and the rays were left unsorted.

Measurements

For WORKLOAD1, we measured the number of primary ray intersections that

were performed in one second. This number ranged from the low millions on CPUs to

hundreds of millions on GPUs. For WORKLOAD2 and WORKLOAD3, we measured

the time to render an image, although this time does not include readback from the

device or display to a monitor. For all workloads, the numbers reported are the average

over each camera position and over the hundred rounds for each of these positions. No

initialization time, such as BVH construction, is included in the averages.

2.6 Results

The first subsection describes the performance we observed for scientific

visualization workloads using our data parallel ray tracer, and the second subsection

compares performance with leading edge ray tracers.
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TABLE 1. This table shows the frames per second for the EAVL-based ray tracer to do a
rendering workload with shading, i.e., the performance expected when approximating
traditional rasterization. The rows correspond to hardware configurations (see
Section 2.5) and the columns correspond to data sets.

GPU1 GPU2 GPU3 GPU4 CPU1 CPU2
RM 3.2M 59.1 38.9 21.8 3.7 2.0 5.5
RM 1.7M 62.3 40.9 22.8 3.9 2.1 5.9
RM 970K 68.0 44.0 24.0 4.3 2.2 6.2
RM 650K 73.5 47.9 25.6 4.7 2.5 6.7
RM 350K 79.5 52.2 27.1 5.3 2.4 6.6
LT 350K 66.5 43.4 21.6 4.3 2.1 5.8
LT 372K 57.8 38.1 21.9 3.8 2.1 5.7

Seismic 51.3 34.4 20.3 3.3 2.0 5.7
Dragon 86.1 55.3 28.1 5.2 2.4 6.8

Conference 76.9 48.6 25.7 5.3 2.0 5.7
Sponza 69.7 46.2 24.7 24.9 1.9 5.4
Buddha 77.1 50.1 26.9 5.0 2.5 6.8

Performance of the Data-Parallel Approach

Table 1 shows the frames per second achieved with the EAVL-based ray tracer

while rendering with shading (i.e., WORKLOAD2), while Tables 2 shows the rates

achieved with full lighting effects (i.e., WORKLOAD3). WORKLOAD2 provides

images that are substantially similar to the OpenGL/rasterization-based images produced

by GPUs for most scientific visualization use cases, while WORKLOAD3 reflects

rendering effects that benefit high-quality visualizations.

The Intel i7 architecture (CPU1) had a poor frame rate, ranging from 1.9 to 2.5

frames per second (FPS), as did the GT 620M (GPU4), which ranged from 3.3 to 5.3

FPS. However, these architecture are not representative of those found on modern

supercomputers, because they lack sufficient computational power. The remaining

architectures (GPU1, GPU2, GPU3, and CPU2) fared quite well, with the Xeon (CPU2)
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TABLE 2. This table shows the frames per second for the EAVL-based ray tracer to do
WORKLOAD3, i.e., all features of the EAVL-based ray tracer.

CPU2 (Intel Xeon) GPU1 (Titan Black)
RM 3.2M 1.7 10.3
RM 1.7M 1.8 9.7
RM 970K 1.9 10.6
RM 650K 2.3 14.6
RM 350K 2.3 15.6
LT 350K 1.7 9.0
LT 372K 1.7 8.5

Seismic 1.6 9.6
Dragon 2.3 16.1

Conference 2.0 12.4
Sponza 1.8 9.6
Buddha 2.3 16.3

having a minimum of 5.4 FPS, and the GPUs all exceeding 20 FPS. Further, the Xeon

rendered above 5 FPS, but would be over 10 FPS at 1024x1024.

In all, we conclude that ray tracing is a viable alternative to OpenGL/rasterization

in a high-performance computing context, since compositing often limits parallel

rendering’s performance to similar overall frame rates. Further, the data parallel

approach itself is shown to be viable for this task, which is important because scientific

visualization programs need to run on many architectures, and our data parallel approach

can provide portable performance.

Comparisons with Leading Ray Tracers

We compare separately with OptiX Prime and Embree using WORKLOAD1.
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OptiX Prime

Table 3 compares the performance between our data parallel ray tracer and OptiX

Prime. OptiX Prime is clearly superior on the Kepler architectures (GPU1 and GPU2),

and calculates between two and four times as many rays per second as our data parallel

ray tracer. Optimization specifically for GPU1 and GPU2 provide an additional 25%

performance increase over other GPUs 3. On the Fermi and Maxwell architectures

(GPU3 and GPU4), our data parallel ray tracer fares better, and outperforms OptiX Prime

occasionally. While OptiX Prime’s performance on the Keplers is extremely impressive,

we note that the frames per second achieved on these data sets by our ray tracer exceeded

20 FPS.

Saying it another way, Optix Prime’s large number of triangle intersection tests

can either enable direct lighting (i.e., the basic OpenGL lighting model) at frame rates

well within the constraints traditionally imposed by distributed-memory compositing,

or, alternatively, they can lead to significant additional lighting effects (e.g., ambient

occlusion, area light sources for soft shadows, etc.) or different rendering paradigms

(e.g., Monte Carlo techniques). While direct lighting is typically the goal for scientific

visualization use cases, the latter approaches can both lead to insight and improve

aesthetics. Finally, we believe that the performance gap can be attributed to the use of

the GPU texture units in addition to methods used to maximize SIMD efficiency with

GPUs.

Embree

Table 4 compares Embree and our data parallel ray tracer, and shows that Embree

was approximately twice as fast in all configurations. We attribute the performance gap,

3NVIDIA OptiX ray tracing engine: https://developer.nvidia.com/optix
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in part, to Embree’s use of architecture specific SIMD vector instructions which the

EAVL OpenMP back-end is unable to capitalize on. In a similar vein to the observations

made in the previous subsection, the frame rates we observed on CPU2 were at the

interactivity threshold for scientific visualization use cases. That said, these results

are closer to the threshold, and additional performance could be useful. Fortunately,

architectural trends are pushing towards more and more compute power per node,

meaning that advances in hardware should naturally push the frame rates even higher.

Emerging Architecture: MIC

Finally, we measured performance on the Intel Xeon Phi. Unlike the rest of our

tests, these experiments used the Intel compiler, a requirement for MIC usage. Our usage

was as a native application running directly on the Xeon Phi (i.e., not from a host running

the main program offloading compute-intensive routines to the Phi).

Table 5 shows the performance for WORKLOAD1. Our first set of runs used

EAVL’s OpenMP back-end, which is primarily intended for multi-core CPUs. This led

to disappointing results, with rates that were not only far below CPU2, but also were

below the rates of CPU1. However, this was likely because the Phi’s vector unit was

not being utilized. We then ran a second set of experiments with a prototype version of

EAVL using a back-end based on Intel’s ISPC (113), an open-source compiler that is

capable of utilizing the Phi’s vector unit. The resulting runs were dramatically better,

with speedups ranging from 5X to 9X over OpenMP, and outperforming CPU2 in all

cases. This experience supported one of the premises of this paper: by focusing on

developing a data-parallel algorithm, we were able to achieve encouraging performance

numbers via an improved back-end provided by the domain-specific language, rather

than providing separate implementations of the algorithm.
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We note that Embree can run on the MIC. We will compare Embree and our

EAVL-based ray tracer in future work.

2.7 Summary

We described an algorithm for ray tracing built on data parallel primitives and

performed a series of experiments that demonstrated that this ray tracer can be used in

the place of OpenGL/rasterization for scientific visualization use cases. We believe this

algorithm to be novel, as it is the first algorithm constructed entirely from data parallel

primitives, although we recognize that the spirit of the algorithm is similar to preceding,

non-hardware-agnostic approaches. Further, we believe this result is impactful, because

scientific visualization software developers are striving to build large, community

projects that run on many, many architectures. New, portably performant algorithms

such as our own help bolster this effort.

We also compared our ray tracer to leading edge ray tracers, to better understand

the performance gap incumbent to a hardware-agnostic approach. Although the

performance gap was significant (ranging from 1.6X to 2.6X for likely HPC architectures

on scientific data sets), it was small enough to provide encouragement that the

data parallel approach — and its benefits in portable performance, longevity, and

programmability — are a good direction.
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TABLE 3. These tables show the number of rays per second (in millions) for the EAVL-
based ray tracer and NVIDIA’s OptiX Prime. The top and bottom tables correspond to
Kepler and Fermi GPUs, respectively. The rows correspond to data sets and the columns
correspond to hardware configurations. This only measures intersection time (a common
ray tracing benchmark) and there was no shading for WORKLOAD1.

GPU1 (Titan Black) GPU2 (Tesla K40)
EAVL OptiX EAVL OptiX

Prime Prime
RM 3.2M 189.1 333.1 124.8 264.5
RM 1.7M 203.2 319.9 136.6 266.8
RM 970K 228.5 437.1 152.8 347.1
RM 650K 262.9 538.4 172.9 420.4
RM 350K 300.7 564.4 197.5 436.5
LT 350K 230.1 431.4 150.8 357.6
LT 372K 187.3 394.9 124.7 322.4

Seismic 160.3 340.1 106.3 267.8
Dragon 344.9 667.5 224.1 533.9

Conference 299.4 673.8 197.1 524.8
Sponza 272.0 499.4 180.0 394.4
Buddha 282.0 608.7 185.5 477.3

GPU3 (GTX 750Ti) GPU4 (GT 620M)
EAVL OptiX EAVL OptiX

Prime Prime
RM 3.2M 86.4 96.8 11.6 10.0
RM 1.7M 94.4 110.9 12.7 11.1
RM 970K 103.9 123.5 14.4 15.2
RM 650K 119.5 151.9 16.7 17.9
RM 350K 134.5 155.0 20.4 20.8
LT 350K 103.3 119.3 15.0 16.4
LT 372K 88.5 111.3 12.2 14.0

Seismic 77.9 111.6 9.7 n/a
Dragon 144.7 197.7 20.2 27.3

Conference 127.4 180.4 21.9 29.2
Sponza 116.9 134.2 19.3 21.3
Buddha 130.9 176.0 18.1 22.8
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TABLE 4. This table shows the number of rays per second (in millions) for the EAVL-
based ray tracer and Intel’s Embree product. The rows correspond to data sets and the
columns correspond to hardware configurations (see Section 2.5). This only measures
intersection time (a common ray tracing benchmark) and there was no shading for these
workloads.

CPU1 (Intel i7) CPU2 (Intel Xeon)
EAVL Embree EAVL Embree

RM 3.2M 9.1 21.4 28.3 48.4
RM 1.7M 9.5 21.8 27.0 52.4
RM 970K 10.3 24.4 29.3 59.1
RM 650K 13.0 28.8 35.6 65.9
RM 350K 11.9 27.7 33.3 64.8
LT 350K 9.7 20.1 27.7 51.9
LT 372K 9.4 21.2 26.1 56.5

Seismic 9.4 18.1 25.2 43.2
Dragon 13.3 30.9 37.2 67.8

Conference 9.7 33.9 28.3 70.4
Sponza 8.0 17.2 24.0 50.5
Buddha 13.7 37.7 37.3 73.9

TABLE 5. Millions of ray intersections per second for WORKLOAD1 on the Intel Xeon
Phi. While initial results using the OpenMP back-end were disappointing, incorporating
an ISPC-based back-end into EAVL significantly improved performance and eliminated
the need to modify our data-parallel primitives-based ray intersection algorithm.

OpenMP OpenMP/ISPC
RM 3.2M 5.77 30.5
RM 1.7M 6.2 35.5
RM 970K 6.4 38.6
RM 650K 7.3 38.3
RM 350K 6.8 43.7
LT 350K 6.3 36.2
LT 372K 6.0 34.4

Seismic 6.2 25.4
Dragon 7.5 56.3

Conference 6.3 43.7
Sponza 5.6 50.8
Buddha 7.6 41.0
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CHAPTER III

DATA-PARALLEL VOLUME RENDERING

Most of the text in this chapter comes from (77), which was a collaboration

between Stephanie Labasan (UO), Paul Navrátil (TACC), Jeremy Meredith (ORNL),

Hank Childs (UO and LBL), and myself. The introduction was a collaboration between

Hank Childs and myself, and the related work was primarily written by Jeremy Meredith

and Paul Navrátil, although I provided some edits. The algorithm was developed by

myself with ideas contributed by Hank Childs and Jeremy Meredith. The figures were

created by Stephanie Labasan. I performed all the software development, designed and

executed the performance study, and contributed to the majority of the other sections.

In the previous chapter, we explored ray tracing, a surface rendering algorithm,

within a data-parallel framework. In this chapter, we explore volume rendering, another

important rendering algorithm, by implementing an novel algorithm using a data-parallel

framework. This chapter further validates the data-parallel approach and its results will

be useful for developing performance models on heterogeneous architectures.

We start by motivating the work described in this chapter, then we cover volume

rendering and data-parallelism related work. Next, we describe our algorithm and

perform a study to validate the performance against community standards. Finally, we

discuss and summarize the results.

3.1 Motivation

Power constraints are forcing supercomputing architects to shift their focus from

FLOPs to FLOPs-per-watt. In response, these architects are choosing nodes consisting

of many cores per chip and wide vector units, since massive numbers of cores operating
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at relatively low clock speeds offer the best combination of performance for price and

energy. However, there are many hardware architectures to choose from, both those

available right now, and possibilities for the future. The top machines in the world

currently are composed of technologies like programmable graphics processors (GPUs,

e.g., NVIDIA Tesla), many-core co-processors (e.g., Intel Xeon Phi), and large multi-

core CPUs (e.g., IBM Power, Intel Xeon). Further, future supercomputing designs may

include low-power architectures (e.g., ARM), hybrid designs (e.g., AMD APU), or

experimental designs (e.g., FPGA systems).

Ideally, software developers could write a single implementation that would

simultaneously be insulated from architectural specifics and also obtain excellent

performance across all desired architectures. This goal is one of the main drivers behind

the recent push for domain-specific languages (DSLs) in high-performance computing.

In the case of visualization software, three significant efforts — Dax (97), EAVL (91),

and PISTON (80) — all realized this goal by building a DSL-like infrastructure on top

of data-parallel primitives. The three efforts have now merged into a single one, called

VTK-m, with a goal of providing the same functionality as VTK (120), yet with portable

performance across multi-core and many-core architectures.

While data-parallel primitives have shown significant promise to date, the

downside of the approach is that our community’s existing algorithms cannot be simply

“ported” into this new framework. In many cases, the algorithms need to be “re-thought”

so that they can be composed entirely of data-parallel operations. While some algorithms

map naturally, others are more difficult, since isolating out the interdependence of

operations — needed so each core on a many-core node can do its own work without

interacting with the other cores — is not always trivial.
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With this work, we introduce a volume rendering algorithm that is composed

entirely of data-parallel primitives. The algorithm is within the ray-casting family, and

operates on unstructured mesh data. Further, although the performance study we show

focuses on the shared-memory parallelism available on a single node, the algorithm

melds naturally into an existing distributed-memory algorithm as well.

The contributions of this work are:

– Description of a new volume rendering algorithm composed of data-parallel

primitives;

– Evaluation of the algorithm on CPU and GPU architectures;

– Exploration of the variation in performance characteristics across architectures,

which informs how effective data-parallel primitives are at hiding architectural

details; and

– Comparison to community standard volume renderers which do not make use of

data-parallel primitives.

The chapter is organized as follows: Section 3.2 surveys related work, Section 3.3

describes our algorithm, Section 3.4 outlines our study, and Section 3.5 explores the

resulting performance.

3.2 Related Work

For an overview of data-parallel primitives, we refer the reader to Section 2.2.

Volume Rendering

Volume rendering (79; 49) uses a combination of color and transparency to allow

users to see the entirety of a three-dimensional volume. The technique starts with a
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“transfer function,” which specifies a mapping of opacity and color for each value in a

scalar field. This transfer function is then applied to the entire volume. The resulting

images show the color/opacity information, integrated in depth.

Unstructured Volume Rendering

Unstructured grid volume rendering algorithms were surveyed excellently by Silva

et al (124).

Here, we focus on three arcs of research that were used for comparators in our

study:

– One of the first algorithms for volume rendering unstructured meshes, was

the “projected tetrahedra” method (123). This method was extended to GPUs

in 2002 (139). An important advancement to the algorithm came with HAVS

(Hardware Assisted Visibility Sorting) (36), which is used as a comparator in this

study. HAVS improved the visibility ordering of projected tetrahedra by using the

k-buffer, which allowed for compositing of out-of-order pixel fragments.

– Bunyk et al. (35) developed a ray-caster for unstructured data. Their algorithm was

implemented in VTK and is still commonly used today.

– Z-Sweep (52) is an algorithm that advances a plane through the volume in depth.

Childs et al. (40) developed a parallel algorithm which can be thought of as a

descendent of Z-Sweep. The algorithm is based on sampling, and requires a large

buffer to hold all the samples. This buffer was divided over many compute nodes,

making computation and memory usage tractable. The implementation of Childs’

algorithm is available in VisIt (39).

While our closest relative with respect to volume rendering is likely the distributed-

memory algorithm by Childs (40), the closest relative with respect to our research is
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that which explores volume rendering and shared-memory parallelism. Of these works,

the focus is typically on a specific architecture, which contrasts with our hardware-

agnostic approach. For example, on the GPU side, there have been many GPU-specific

unstructured grid volume rendering algorithms (124). On the CPU side, there are fewer

shared-memory parallel works. Notable examples include the hybrid-parallel work by

Howison et al. (60; 62) and the CPU and Xeon Phi work by Knoll et al.(69). Expanding

the scope beyond volume rendering, Larsen et al. (73) also considered data-parallel

primitives and portable performance, but did it with ray-tracing. While the findings

of that paper had similarities in theme, it was looking at a fundamentally different

algorithm.

Finally, we note that MapReduce (with Map and Reduce being two of the data-

parallel primitives) has been investigated in conjunction with volume rendering (128).

Our focus is on using these primitives to get excellent single node performance, as

opposed to cloud-based usage. Further, we considered a wider range of primitives.

3.3 Algorithm

For an overview of the data-parallel primitives discussed in this chapter, please

refer to Section 2.3.

Algorithm Description

At a high-level, the algorithm is sampling-based, meaning the goal is to populate a

buffer of W ×H× S samples, assuming W and H are the width and height of the image

and S is the number of samples in depth. Of course, this buffer size could be very large:

for a 1024×1024 image with 1000 samples in depth, the buffer would be approximately

4GB.
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To reduce memory requirements, the algorithm can break up the sampling work

into passes, evaluating sections of the buffer each pass. When it does this, the algorithm

defines the portion of the buffer to operate on at the beginning of the pass. In our

implementation, we break up the buffer by depth: when doing multiple passes, we have

the first pass evaluate the front portion of the buffer, the second pass evaluate the portion

behind it, and so on. This particular strategy enables early ray termination, since we can

evaluate which pixels have become opaque at the end of each pass.

Each pass consists of four phases: Pass Selection, Screen Space Transformation,

Sampling, and Compositing. When running with two passes, the four phases are

executed in sequence (focusing on extracting the close half of the samples) and then

executed a second time, again in sequence (focusing on the far half of the samples).

The algorithm also depends on an initialization step. The initialization step and the

four phases are described in the following subsections.

Initialization Step

Unlike the four phases, this initialization is executed just a single time, before the

passes begin. The goal of this step is to calculate the minimum and maximum depth of

each tetrahedron. It does this by applying the camera transform to each tetrahedron, and

storing the smallest and largest depths in respective arrays. This is accomplished with a

Map primitive.

Pass Selection

The job of this phase is to identify which cells can possibly contribute a sample. If

there are N cells, then the first step of this phase is to construct a Boolean array of size

N. An element of the array should contain “true” if the corresponding cell can possibly
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contribute, and “false” otherwise. This is determined by consulting the minimum and

maximum depth arrays calculated in the initialization step. This step can again be

accomplished with a Map operation.

The second step of this phase is to create an array of just the tetrahedrons that can

contribute samples during this pass. This is accomplished by successive use of four data-

parallel primitives. First, a Reduce primitive counts the number of active tetrahedrons,

i.e., tetrahedrons that have “true” in the Boolean array. Second, an Exclusive Scan

primitive calculates the index that each of the active tetrahedrons will be copied into.

Third, a Reverse Index primitive uses the result of the Exclusive Scan in order to do the

final primitive, a Gather. This Gather collects the indices of the active tetrahedrons into

the output array from this phase. If m is the number of active tetrahedrons for a given

pass, then the result of this second step is an array of size m.

Screen Space Transformation

This phase uses a Map primitive to transform the active tetrahedrons into screen

space using the camera transform. The result of this phase is an array of m tetrahedrons.

Sampling

This phase again uses a Map primitive. The functor for this primitive does the

sampling, and outputs the sample values into the buffer. The sampling operation uses the

screen-space vertices of each cell to calculate the axis-aligned bounding box (AABB).

Using the AABB, the sampler considers every possible pixel and depth that the cell could

contribute to, and extracts barycentric coordinates by solving a system of parametric

equations defined by the vertices of the tetrahedron.
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Finally, a pointer to an array containing the opacity for each pixel is also an input

to this phase. With this information, the sampling functor can decide to abort sampling,

in a vein similar to early ray termination.

Compositing

This final phase again uses a Map primitive, iterating over groups of samples. This

phase again has access to the pixel information. The functor uses the samples and pixel

information to composite the color for that pixel, at least with the samples seen so far.

Data-Parallel Primitives Pseudocode

The pseudocode is specified in Algorithm 2.

3.4 Study Overview

Software Implementation

We implemented our algorithm in EAVL. In this environment, algorithm

developers compose a series of data-parallel primitives, augmenting each primitive

with functors that perform specialized operations. During compilation, EAVL applies

an optimized implementation of each primitive in OpenMP or CUDA as appropriate.

In terms of memory layout, we organized our data structures into structs-of-arrays,

following acknowledged best practices for both CPU (enabling vectorization) (113) and

GPU (creating coalesced memory accesses)(38).

EAVL’s usage of the memory hierarchy varies by platform. On the CPU side, its

usage is conventional: registers, cache, and memory. On the GPU side, however, the

memory usage varies based on context. Specifically, while EAVL’s built-in operations,

such as scan and reduce, make use of the GPU’s shared memory, this memory is not
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1 /*Input*/
2 array: float tetCoords[N*12]
3 /*Output*/
4 array: byte pixels[w∗h]
5 /*Local Arrays*/
6 array: byte passRanges[N*2] //min pass, max pass
7 array: bool passFlags[N]
8 array: int currentTets[M]
9 array: int indxScan[M]

10 array: int gatherIndxs[M]
11 array: float screenSpaceTets[M*12]
12 array: float samples[(w∗h) / numPasses]

13 //Initialization
14 passRanges← map¡FindPasses¿(tetCoords)
15 for pass = 0 < numPasses do
16 //Pass Selection
17 flags← map<Thresh>(passRanges, pass)
18 m← reduce<Add>(flags)
19 indxScan←scan<Exclusive>(flags)
20 gatherIndxs←reverseIndex<>(indxScan,flags)
21 currentTets←gather<>(tetIndxs,gatherIndxs)
22 //Screen Space Transformation
23 screenSpaceTets←map<ScreenSpace>(currentTets,tets)
24 //Sampling
25 samples←map<Sampler>(screenSpaceTets,pixels)
26 //Compositing
27 pixels←map<Composite>(samples,pixels)
28 end
Algorithm 2: Pseudocode for our data-parallel primitives-based algorithm. Data-
parallel primitives are shown in the form: primitive<functor>(args). N is the total
number of tetrahedrons. M is the maximum number of tetrahedrons in a single pass,
and m is the actual number of tetrahedrons in the current pass. w and h are the width
and height of the image, respectively.

44



FIGURE 3. Volume renderings produced in this study. The two images on the left are of
density from a cosmology simulation. The two images on the right are of temperature
from a thermal hydraulics simulation. For each pair of images, the larger one is zoomed
in (meaning the data set fills the screen) and the smaller one is zoomed out (meaning the
data set is surrounded by white space, which is the default view for many visualization
tools).

exposed to algorithm developers. As a result, algorithms frequently use global memory.

This was the case for almost all of our algorithms, with the one exception being our color

look-ups, which used texture memory.

Configurations

Our study consisted of two rounds and 56 total tests. Each test was of a volume

rendering that created a 1024× 1024 image. Sampling-based volume rendering

algorithms used 1000 samples in depth, and the near and far clipping planes were made

as close as possible without clipping away data.

Round 1: Evaluation of Data-Parallel Primitives

This round was designed to better understand the basic performance of our volume

renderer. It varied three factors:

– Hardware architecture (CPU and GPU): 2 options

– Data set: 4 options

– Camera position (zoomed in and zoomed out): 2 options
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We tested on the cross product of these options: 2×4×2 = 16.

Finally, we also tested multiple transfer functions, but their variation did not

significantly impact results; we present results from just a single transfer function from

our pool.

Round 2: Comparison With Community Software

This round compared our algorithm to existing standards for unstructured data,

specifically the HAVS volume renderer (36) on the GPU, the integration-based ray-

caster derived from Bunyk et al. (35) on the CPU, and the sampling-based ray-caster

in VisIt (40) on the CPU.

In this round, we ran 24 tests, coming from the cross product of three community

standards, four data sets, and two camera positions. Further, to adapt to limitations in

the community standards, we changed the CPU platforms we used. As a result, we ran

additional CPU tests with our algorithm, for a total of 16 additional tests. (The 8 GPU

tests from Round 1 could be re-used in this Round.)

Testing Options

Hardware Architectures

We used the following architectures:

– CPU1: NERSC’s Edison machine, where each node contains two Intel “Ivy

Bridge” processors, and each processor contains 12 cores, running at 2.4 GHz.

Each node contains 64 GB of memory.

– CPU2: the same configuration as CPU1, but using only one of the 24 cores.

– CPU3: An Intel i7 4770K with 4 hyper-threaded cores (8 virtual cores total)

running at 3.5GHz, and with 32 GB of memory.
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– GPU1: An NVIDIA GTX Titan Black (Kepler architecture) with 2,880 CUDA

cores running at 889 MHz, and with 6 GB of memory.

Data Sets and Camera Positions

Our study examined the following four data sets:

– Enzo-1M: a cosmology data set from the Enzo (107) simulation code. This data

set was natively on a rectilinear grid, which we then decomposed into tetrahedrons.

The total number of tetrahedrons was 1.31 million.

– Enzo-10M: a 10.5 million tetrahedron version of Enzo-1M.

– Nek5000: a 50 million tetrahedron unstructured mesh from a Nek5000 (53)

thermal hydraulics simulation. Nek5000’s native mesh is unstructured, but

composed of hexahedrons; we divided these hexahedrons into tetrahedrons for

our study.

– Enzo-80M: an 83.9 million tetrahedron version of Enzo-1M.

Figure 3 shows volume renderings for these data sets, including the zoomed in and

close up camera positions.

Performance Measurements

We used the following techniques for performance measurement:

– With our algorithm on CPU1, we enabled PAPI (16) performance counters to

measure the total instructions executed and total cycles during each phase of the

algorithm. Specifically, we capture PAPI_TOT_INS and PAPI_TOT_CYC and

use these results to derive instructions executed per cycle.
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– With our algorithm on GPU1, the nvprof profiler (106) was used to measure total

instructions issued, instructions executed, total cycles, registers per thread, and

achieved occupancy.

– For each of the community standards, we used that software’s built-in timing

infrastructure.

3.5 Results

The results are organized following the two rounds of our study: the first

subsection details the performance of our algorithm over multiple architectures, and

the second subsection compares our performance to community standards.

Performance Analysis of Algorithm

CPU Performance

Figure 4 shows the runtime per test by phase. Although our approach requires

the evaluation of up to one billion samples (over one million pixels with one thousand

samples for each pixel), the algorithm can render an image in approximately one second

for small data. As the data size grows, the overall time also goes up, but not in proportion

to the data size. This is because the amount of work is proportional to the number of

samples, as well as the number of cells. For small data sets, i.e., Enzo-1M, the extraction

of the samples dominates the overhead for handling each cell. As the data gets larger,

though, the handling for each cell dominates. For Enzo-80M, the sampling time is nearly

the same for both camera positions. This is because the number of samples extracted has

nearly doubled, so the majority of the time is being spent iterating over tetrahedrons, as

opposed to identifying values at sample locations.
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GPU Performance

We present the data in two ways. Figure 5 shows the runtime per test by phase, and

Table 6 summarizes kernel register usage and achieved occupancy.

While the dominant factor for CPU performance is sampling time, the dominant

factor for GPU performance is compositing time. Even though the compositing kernel

uses a lower number of registers per thread and has a higher achieved occupancy, data

access patterns and the small number of operations needed to perform compositing make

this step a bottleneck.

TABLE 6. Elapsed time, registers per thread, and achieved occupancy for a close up
view of the Enzo-10M data set with four passes on GPU1. The statistics for pass
selection were omitted since they were difficult to extract; this phase makes use of
multiple data-parallel primitives, which in turn each use multiple CUDA kernels.

Kernel Time Registers Occupancy
Screen Space 0.008s 70 38%
Sampling 0.202s 57 47%
Compositing 0.416s 37 68%

Assessing Performance Portability

The main draw of the data-parallel primitive approach is portable performance.

Since we have analyzed the performance on both a CPU and a GPU, we can investigate

whether we are achieving this goal. Table 7 shows measurements on the CPU and GPU

for the Enzo-10M data set with a close up view, using four passes.

The achieved performance on the architectures at different phases has some

interesting results. The instructions per cycle (IPC) indicates how data-intensive the

computation is. If a core cannot issue any instructions because it is waiting on data

to return from cache or memory, then the IPC will drop. Alternatively, if there are
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TABLE 7. Measurements of CPU and GPU performance, by phase for a close up view of
the Enzo-10M data set with four passes. The measurements are of time (in seconds) and
of instructions executed per cycle (denoted IPC) per core.

Phases
GPU CPU

Time IPC Time IPC
Pass Selection 0.018 1.628 0.514 0.268
Screen Space 0.008 1.704 0.047 0.682
Sampling 0.202 2.477 1.495 1.125
Compositing 0.416 0.131 0.249 1.071

significant computations per load, then the IPC will be high, since the data loads are

amortized.

Intuitively, pass selection should have a low IPC value, since it involves iterating

through an array of data and performing few computations on them, and the CPU indeed

has a low IPC value for this phase. But the GPU has a high IPC value. This is because

the data-parallel operations map to built-in constructs on the GPU that are specifically

optimized to perform this job, i.e., coalescing memory accesses of large arrays quickly.

The screen space and sampling phases both have high IPC values. This matches

our intuition that these phases are compute-bound, and that data movement is not the

determining factor in performance. Further the elapsed time is consistent: the GPU has

significantly more FLOPs, and so the GPU is much faster.

The compositing phase is the most noteworthy. Where the GPU benefited from

built-in support for coalesced memory accesses in the pass selection phase, it is not

receiving that benefit here. Our implementation organizes the data so that the samples

for a given ray are spread out over memory. We suspect this choice of data organization

is leading to poor performance, since each thread within a warp on the GPU competes

with the others to get the data they need. As a result, the IPC on the GPU is very low, and

the phase is 50% slower on the GPU than it is on the CPU.
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Summarizing, our tests show the CPU behaving as expected, and the GPU doing

well on compute-based activities. However, the data-intensive activities can be well

accelerated (pass selection) or not (compositing) based on the specifics of the usage.

So we see the evidence that portable performance from data-parallel primitives is mostly

effective, but there are still pitfalls.

Scalability

Table 8 shows the scalability of the algorithm on CPU1. While total time (i.e.,

the number of threads multiplied by the wall clock time) increases by 50% from 1 to 24

threads (the number of CPU cores on the node), the algorithm appears to scale generally

well overall.

TABLE 8. Times, in seconds, of a strong scaling study. The experiments were run on
CPU1, using the Enzo-10M data set with the close up view and one pass. The times
are reported as “total time”, meaning the raw time to render the image multiplied by the
number of threads. With this measurement, perfect scaling gives a fixed total time over
all threads, while poor scaling leads to increases.

Threads 1 2 4 8 16 24
Raw Time 43.9 24.2 12.9 7.1 3.8 2.5
Total Time 43.9 48.4 51.7 57.0 60.2 60.7

Comparisons With Community Software

HAVS

First, we reiterate that HAVS is a projected tetrahedron algorithm and ours is a ray-

casting algorithm. As a result, the pictures produced will be different (but similar), and

the fundamental performance bottlenecks will be different.
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HAVS first sorts geometry, and then rasterizes that geometry to the screen.

The VTK implementation of HAVS does the sorting step on the CPU, and then

transfers the sorted geometry to the GPU for rendering. We felt comparing against this

implementation would be improperly handicapping HAVS. Instead, we evaluated a

parallel radix sort on GPU1, measuring the sorting time for different data sizes. The

data presented here for HAVS is then the time for our radix sort and the rendering time

in HAVS. Explicitly, the CPU sorting time in HAVS has been replaced in these results by

our GPU radix sort times.

Figure 6 shows the results from our study. Our algorithm is mostly slower than

HAVS when zoomed in (because so many samples need to be evaluated), but faster than

HAVS when zoomed out (because there are fewer samples evaluated). We note that the

HAVS running times were highly correlated to data size, and that our algorithm did not

slow down as quickly as HAVS when data size increased. That said, HAVS was able to

complete on all data sets, because it did not need additional memory to store samples.

Unstructured Ray-Caster

Our next comparison was on the CPU to the unstructured ray-caster implemented

in VTK in the style outlined by Bunyk et al. (35). We intended to run this study

on Edison, but their implementation exhibited poor scaling properties, and we felt

the comparison was unfair. So we switched to the CPU3 architecture, where their

implementation performed better.

This algorithm has a pre-processing step to trace face connectivity. This step is

implemented in serial and took over 50 minutes in the case of the Enzo-80M data set.

The timings for this pre-processing step are omitted in our results.
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Figure 7 shows the results from our study. As a trend, we were faster on larger

data sets, and results were mixed on smaller data sets. Overall, we concluded that our

algorithm performs comparably to the integration-based ray-caster.

VisIt

VisIt’s volume rendering algorithm is also sampling-based, although it extracts

samples by “rasterizing” geometry, i.e., by transforming cells into image space, then

slicing them by planes that are aligned with columns of pixels, and then extracting lines

along those planes in depth (40). The VisIt volume renderer is designed for distributed-

memory parallelism; after sampling, it redistributes the samples to do compositing. That

said, it is not threaded or ported to the GPU. As a result, we performed this comparison

using the CPU2 hardware configuration, namely NERSC’s Edison machine, but limited

to one core. Explicitly, we ran VisIt in serial, and we ran our algorithm using only one

core, meaning both implementations had access to the same hardware. The results of

these runs are in Table 9.

The VisIt algorithm and our algorithm are the most closely related of the three we

studied, and performance between the two is similar. One difference is that VisIt uses

a three-dimensional rasterization algorithm and our algorithm considers the samples

within the tetrahedron’s bounding box and does an inside-outside test. VisIt’s approach is

beneficial with large cells (i.e., Enzo-1M), since it is amortizing its calculations. But our

approach is faster with small cells (i.e., Enzo-80M), since the overhead VisIt pays per

cell is no longer amortized away. Another difference is that our algorithm ran with only

a single pass, meaning that no early ray termination was used. VisIt did use an early ray

termination criteria, leading to lower compositing times.
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TABLE 9. Time to volume render a single frame, in seconds. SW indicates the software
used, either VisIt, or our data-parallel primitives algorithm (DPP-VR). SS denotes the
screen space transformation time (expensive since it is done repeatedly in a multi-pass
setting), S denotes the sampling time, C denotes the compositing time, and TOT denotes
the total time to make the image.

Data & View SW SS S C TOT
E-1M/Far VisIt 0.47 12.9 2.34 15.7
E-1M/Far DPP-VR 0.17 8.4 2.60 11.5

E-1M/Close VisIt 0.47 23.5 5.35 29.4
E-1M/Close DPP-VR 0.13 24.9 5.88 31.1
E-10M/Far VisIt 3.94 48.3 0.81 53.0
E-10M/Far DPP-VR 1.41 13.4 2.60 19.2

E-10M/Close VisIt 4.03 51.8 1.74 57.5
E-10M/Close DPP-VR 1.06 35.3 5.88 43.9
N-50M/Far VisIt 24.7 355.5 0.58 391
N-50M/Far DPP-VR 6.93 24.3 2.92 42.8

N-50M/Close VisIt 24.8 395 1.02 421
N-50M/Close DPP-VR 4.93 49.7 5.88 68.7

E-80M/Far VisIt 33.6 351 0.31 385
E-80M/Far DPP-VR 11.4 27.6 2.60 55.7

E-80M/Close VisIt 33.6 361 0.62 396
E-80M/Close DPP-VR 8.62 55.9 5.88 84.1

On the whole, however, this comparison shows that the data-parallel approach

leads to better performance to an algorithm that was optimized for one platform (in this

case, the CPU).

3.6 Summary

We presented a new algorithm for unstructured volume rendering that was

composed entirely of data-parallel primitives. The algorithm performed comparably

to community standards on the GPU and CPU. Moreover, because the algorithm used

data-parallel primitives, the real advantages are benefits in portable performance,

longevity, and programmability. Each new algorithm re-thought in terms of data-parallel
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primitives, including this one, enables the advancement of data-parallel primitive-based

infrastructures that can run on multiple architectures. Finally, we investigated whether

the promise of portable performance is being achieved, and found that it mostly was,

although some data-intensive patterns can lead the GPU to perform poorly relative to its

potential.
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FIGURE 4. Running times for our algorithm. Enzo-1M is top left, Enzo-10M is top
right, Nek5000 is bottom left, and Enzo-80M is bottom right. These tests were run on
CPU1 and renderings from both camera angles were made. Within a figure, the number
of passes increases from left to right.
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FIGURE 5. Running times for our algorithm. From left to right and top to bottom,
Enzo-1M, Enzo-10M, and Nek5000. These tests were run on GPU1 and renderings
from both camera angles were made. Within a figure, the number of passes increases
from left to right. The Enzo-80M run failed, since it was too large for the GPU’s 6
GB memory. Further, the Nek5000 test only has results for 6 passes and above; fewer
numbers of passes again ran into the GPU’s memory limit.

57



0.0

0.5

1.0

Enz
o−

1M

Enz
o−

10
M

ne
k5

00
0

Enz
o−

80
M

Dataset

R
un

tim
e 

(s
)

0.0

0.5

1.0

1.5

 E
nz

o−
1M

 E
nz

o−
10

M

 n
ek

50
00

 E
nz

o−
80

M

Dataset
R

un
tim

e 
(s

)

0.0
0.5
1.0
1.5

 Enz
o−

1M

 Enz
o−

10
M

 ne
k5

00
0

 Enz
o−

80
M

Dataset

R
un

tim
e 

(s
)

DPP−VR    HAVS
FIGURE 6. Comparing the running times for our algorithm and HAVS on GPU1 for
multiple data sets. The left figure is for a zoomed out view, and the right figure is for a
close up view.
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is for a close up view.
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CHAPTER IV

IN SITU VISUALIZATION AND ANALYSIS INFRASTRUCTURE

Most of the text in this chapter comes from (74), which was a collaboration

between Eric Brugger (LLNL), Hank Childs (UO and LBL), Jim Elliot (AWE), Kevin

Griffin (LLNL and UCD), Cyrus Harrison (LLNL), and myself. The requirements

section was written by Cyrus Harrison and Eric Brugger. Two of the three integrations

were coded by Eric Brugger and Cyrus Harrison and one by myself. The introduction

was a collaboration between Hank Childs and myself. Kevin Griffin assisted with

data processing scripts. The majority of the infrastructure, including algorithms were

implemented by me, and I was the primary contributor to the writing of the paper overall.

In the previous two chapters, we validated the performance of rendering algorithms

within a data-parallel framework, and by doing so, we can generate a single performance

model for each algorithm that can be applied to multiple architectures. In this chapter,

we describe a in situ visualization framework that connects mesh data from several

physics simulations to our rendering algorithms. We begin by introducing the problems

and background that motivate the creation of a light-weight in situ visualization frame

work. Next we describe the system components and requirements, and we discuss our

integration experiences.

4.1 Motivation

Like many other institutions, Lawrence Livermore National Laboratory (LLNL)

and the Atomic Weapons Establishment (AWE) are moving towards in situ processing

to handle the growing divide between computational power and I/O capabilities on

modern supercomputers. At these laboratories, the simulation codes are often very
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complex — meaning multi-physics codes incorporating many libraries — and diverse

— e.g., multiple programming languages, data models, etc. In this chapter, we describe

our experiences designing, implementing, and evaluating a system to respond to these

simulation code teams’ requirements. We call this system Strawman. We consider

Strawman to be a mini-app, i.e., it is designed to be lightweight and allow us to perform

research.

LLNL and AWE are home to more than fifty different simulation code groups.

While our requirements are not distilled from conversations with all of these groups,

they do represent commonalities from conversations across many of them. Further, in

this paper, we present results from integrating Strawman with three prominent proxy

simulations: LLNL’s Lulesh (7; 65) and Kripke (71; 10) and AWE’s CloverLeaf3D (88;

4). Our experiences have led us to believe the system has promising elements for meeting

their needs.

The remainder of the chapter describes Strawman and our experiences with it.

Section 4.2 describes technologies that we used within Strawman, and Section 4.3

describes the requirements and design of Strawman. Then, in Section 4.4, we describe

the results of integrating Strawman into the three proxy simulations.

4.2 Background

Both Paraview Catalyst (51; 84) and VisIt’s LibSim (136) provide full-featured

tightly-coupled in situ visualization and analysis solutions for simulations running on

current HPC platforms. As they are both fully featured and have complex designs, they

are not well suited for quick evaluation of new technologies. With Strawman, we have

developed a small system that enabled us to explore solutions that may help us evolve the

state of the art in tightly-coupled in situ processing for batch use cases on modern and
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future HPC architectures. We hope to test if solutions are viable enough to be considered

for use in larger production systems. To build Strawman, we heavily leveraged three

libraries: Conduit, EAVL, and IceT. This section provides background information on

these libraries and why they were selected.

Conduit

Conduit (5) is an open source development effort from LLNL that provides an

interface for in-core description of scientific data that can be used across C++, C, Python,

and Fortran. It is used for data coupling between packages in-core, serialization, and I/O

tasks.

Conduit provides a hierarchical object model similar to JSON (9), but differs from

JSON and other message exchange formats such as BSON (2), Protocol Buffers (13), and

Apache Thrift (1) in a few fundamental ways:

– Bit-width Style Leaf Types: To describe scientific data in-core, you must capture

the specific details about your data in memory, such as the bits used for numeric

primitives, offsets, endianness, etc. To address this Conduit provides bit-width

specified scalar and array leaf types. Arrays can be contiguous or strided. The

bit-width descriptions follow the style of NumPy (134). Leaf types are always

concretely specified in Conduit, however the API also allows you to use native

types. For example in C++, when using native double data, Conduit will map this

to the concrete bit-width type for the current platform, usually Conduit’s float64

type.

– Separation of Description from Data: To describe existing in-core data, you

cannot use a solution that embeds a description mechanism into the data. Because

of this, Conduit separates description metadata from data and does not impose a
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packed data representation. This design supports zero-copy and allows a Conduit

to bring context to chunks of data allocated in different regions of memory.

– Runtime Focus: Many existing message exchange formats utilize code generation

to implement an object model. Conduit provides a runtime API for describing and

accessing data and introspection features that allow you to query and discover the

structure of described data. Conduit does not use compile time code generation.

This avoids complex build system requirements and makes it easer for components

across the simulation ecosystem to share data. This design does have runtime

costs and shifts some errors to runtime. These tradeoffs are similar to properties

of weakly typed languages like Python. The runtime costs are acceptable for

simulation applications where descriptions of the data will be small compared to

the large arrays that hold the simulation state.

These features make Conduit a suitable multi-language solution for passing mesh

data and commands from a simulation to a visualization pipeline.

Node Level Parallelism

For Strawman, we chose to use EAVL for node level parallelism. For building an

in situ visualization application, EAVL is an ideal building block for hybrid parallelism,

since it decouples architecturally specific node level parallelism and distributed-memory

parallelism. EAVL’s data model, as described in (93), is expected to consume 70 to 75

percent less memory because of its use of an underlying array class that can do in-place

memory writes. The flexibility of the data model also opens up more memory layouts

for zero-copy. Further, EAVL has a rendering infrastructure that includes OpenGL, ray

tracing, and volume rendering options (77). These features make EAVL a natural choice
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for rendering the subset of a distributed mesh on each MPI task in a distributed-memory

simulation.

IceT

Producing a coherent image from a distributed render requires parallel

compositing. IceT (95; 98) provides a scalable solution for compositing using MPI on

distributed-memory parallel systems. It implements a sort-last compositing with a suite

of efficient parallel partitioning and reduction strategies (94). We selected IceT as our

compositing solution for this effort since it has been used at large scales for years in

production visualization tools including Paraview, VisIt, and their in situ offerings.

4.3 System Overview

This section provides details on the requirements and design of Strawman.

System Requirements

To guide the development of our mini-app, we selected a set of important batch

in situ visualization and analysis requirements extracted from our interactions and

experiences with simulation code teams. Here are our 11 requirements broken out into

three broader categories:

– Support a diverse set of simulations on many-core architectures.

∗ R1: Support execution on many-core architectures.

∗ R2: Support usage within a batch environment (i.e., no simulation user

involvement once the simulation has begun running).
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∗ R3: Support the four most common languages used by simulation code

teams: C, C++, Python, and Fortran.

∗ R4: Support for multiple data models, including uniform, rectilinear, and

unstructured grids.

– Provide a streamlined interface to improve usability.

∗ R5: Provide straight forward data ownership semantics between simulation

routines and visualization and analysis routines

∗ R6: Provide a low-barrier to entry with respect to developer time for

integration.

∗ R7: Ease-of-use in terms of directing visualization and analysis actions to

occur during runtime.

∗ R8: Ease-of-use in terms of consuming visualization results, including

delivery mechanisms both for images on a file system and for streaming to

a web browser.

– Minimize the resource impacts on host simulations.

∗ R9: Synchronous in situ processing, meaning that visualization and analysis

routines can directly access the memory of a simulation code.

∗ R10: Efficient execution times that do not significantly slow down overall

simulation time.

∗ R11: Minimal memory usage, including zero-copy usage when bringing data

from simulation routines to visualization and analysis routines.

In the following sections, we describe how Strawman’s design and our integration

experiences with three proxy simulations demonstrate how Strawman addresses these

requirements.
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FIGURE 8. A diagram of the Strawman system architecture.

System Design

Figure 8 shows how Strawman interfaces with a simulation and uses Conduit,

EAVL, and IceT to produce in situ visualizations. Starting from the top, simulation

mesh data and the desired in situ actions are described using Conduit and passed into

the Strawman API. (Details about the API and how Conduit is used are described in

the Strawman Interface subsection.) The visualization actions are then realized in a

simple in situ pipeline that leverages EAVL for rendering and IceT for compositing. This

process is described in the Strawman Pipeline subsection. Finally, the results are saved to
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image files on disk or streamed to a web browser via a WebSocket as detailed in the last

subsection.

Strawman Interface

The Strawman API consists of only a few function calls. The complexity of

describing options, mesh data, and actions is handled by dynamic and hierarchal features

of Conduit’s Node class. Conduit supports all of the languages in R3, so the function

calls in Strawman can easily be exposed in these languages.

Strawman is first initialized with a small set of parameters: a MPI communicator

for the parallel case and optional settings for WebSocket streaming.

Second, mesh data structures are described using Conduit Node instances

following a set of mesh description conventions. For Strawman, we are not creating a

new mesh data model. Instead we provide a set of conventions to describe mesh data

using Conduit that can be easily used with a wide set of existing concrete data models.

The conventions we developed to describe meshes for our interface were informed by

a survey of several mesh-related APIs, including: ADIOS (83), Damaris (48), EAVL,

MFEM (12), Silo (14), VTK(121), and Xdmf(15) to support R4. The simulation owns

the Conduit Nodes describing mesh data and the Nodes hold information on if the data

is externally owned (zero-copied) or allocated by Conduit. These ownership semantics

support R5. After description, the mesh data is published to Strawman via Publish.

In cases where simulation mesh data structures are not reallocated and match EAVL’s

data model, the mesh data only needs to be published once during a simulation run,

supporting R11.

Next, the set of desired in situ actions are specified using Conduit Node instances

and passed to Strawman via Execute. The simplicity of the actions interface supports R7.
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These actions are then translated into a simple pipeline and executed as described in the

next subsection.

In Situ Pipeline

The in situ pipeline converts the mesh data described using Conduit and passed

via Publish into concrete EAVL data sets and then uses the action descriptions passed

via Execute to construct a simple rendering pipeline. The pipeline uses EAVL’s filters

and rendering infrastructure, including surface, volume, and ray-casting rendering

techniques, to render the subsets of the data owned by each MPI task. As discussed

in Section 4.2, algorithms in EAVL are designed to run on many-core architectures,

supporting R1 and EAVL’s data model has zero-copy features supporting R9 and R11.

We made enhancements to EAVL to support rendering in a distributed-memory parallel

setting. For example, we added visibility ordering calculations to support volume

rendering image compositing and data extent reductions in order to apply consistent

color tables across MPI tasks. IceT is then used to composite these renders using MPI to

create a final image.

Presentation of Results

To satisfy R8, Strawman saves rendered images to PNG files, and includes a

lightweight embedded web server (3) that can be used to optionally stream results over a

WebSocket. To allow a simulation user to view the rendered images via a web browser,

it also provides a WebSocket client that displays images as they are streamed from the

WebSocket connection.
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4.4 Results

To test in situ integration with a range of simulations and mesh types, we selected

three proxies for larger production multi-physics simulations: LULESH, Kripke, and

CloverLeaf3D. LULESH is written in C++ and uses a Lagrangian approach on a 3D

unstructured hex mesh to simulate shock hydrodynamics. Kripke is written in C++

and uses a deterministic discrete ordinates solver on a 3D uniform mesh to simulate

particle transport. CloverLeaf3D is written in Fortran and solves the compressible Euler

equations on a 3D rectilinear mesh to simulate hydrodynamics. Figure 9 shows images

produced from the integrations with each of the simulations.

Integration Experiences

To evaluate the barrier of entry R6 and ease-of-use R7 requirements, we present

the lines of code required to integrate Strawman into each of these proxy simulations to

produce the simplest and most common visualization result, a Pseudocolor rendering.

As outlined in Section 4.3, integrating Strawman into a simulation can be

broken down into three steps: describing simulation mesh data, describing the set of

in situ actions for Strawman to perform, and calling the Strawman API to Publish

the mesh data and Execute the specified actions. To demonstrate these three steps,
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we show code fragments for each step from our LULESH Strawman integration.

Listing 4.1 Describing the simulation data.

conduit::Node data;

data["state/time"].set_external(&time);

data["state/cycle"].set_external(&cycle);

data["state/domain"] = my_mpi_rank;

data["coords/type"] = "explicit";

data["coords/x"].set_external(x);

data["coords/y"].set_external(y);

data["coords/z"].set_external(z);

data["topology/type"] = "unstructured";

data["topology/coordset"] = "coords";

data["topology/elements/shape"] = "hexs";

data["topology/elements/connectivity"].set_external(nodelist);

data["fields/e/association"] = "element";

data["fields/e/type"] = "scalar";

data["fields/e/values"].set_external(e);

Listing 4.2 Describing the actions to perform.

conduit::Node actions;

conduit::Node &add = actions.append();

add["action"] = "AddPlot";

add["var"] = "p";

conduit::Node &draw = actions.append();

draw["action"] = "DrawPlots";

conduit::Node &save = actions.append();
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char output_filename[30];

sprintf(output_filename,"image%04d",cycle);

save["action"] = "SaveImage";

save["fileName"] = output_filename;

save["format"] = "png";

save["width"] = 1024;

save["height"] = 1024;

Listing 4.3 Calling the Strawman API to publish data and execute the specified actions.

Strawman strawman;

Node options;

options["mpi_comm"] = mpi_comm_handle(MPI_COMM_WORLD);

strawman.Open(options);

strawman.Publish(data);

strawman.Execute(actions);

strawman.Close();

In the case of LULESH, the simulation data model exactly matches EAVL’s data

model and all the data can be passed zero-copy to Strawman. Because of this, LULESH

requires the least amount of Strawman integration code. In the case of Kripke, it was

necessary to copy the field data since the array ordering did not match EAVL’s data

model. In the case of CloverLeaf3D, it was necessary to copy the coordinate and field

data to remove the embedded ghost zones, which Strawman currently does not support.

The difference in lines of code required between the proxy simulations is due entirely to

code related to modifying the simulation data to match EAVL’s data model.
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TABLE 10. Lines of code needed to instrument the three selected proxy apps to produce
a PNG file with a Pseudocolor rendering of a scalar variable.

LULESH Kripke CloverLeaf3D
Data Description 15 loc 21 loc 39 loc
Action Descriptions 14 loc 14 loc 14 loc
Strawman API Calls 7 loc 7 loc 9 loc

TABLE 11. Simulation burden from visualization for large runs using 4096 cores on
256 nodes of LLNL’s Cab machine using various renderers. Times are listed in average
seconds per cycle for both the visualization and simulation. All images were generated at
a resolution of 10242.

Vis Sim
CloverLeaf3D 4B Cells (Ray Tracing) 1.68s 5.77s
Kripke 4B Cells (OSMesa) 3.80s 16.55s
LULESH 8B Cells (Vol. Ren.) 30.85s 12.62s

Looking at the complexity of listings 4.2 and 4.3 we assert it is straight forward to

instruct Strawman on the actions to perform. Listing 4.1 demonstrates the most complex

step, describing simulation mesh data. This resembles conventional transformations

simulation developers are already familiar with from supporting post processed

visualization and analysis tools.

Based on the lines of code to instrument the three simulation codes and the

complexity of the code fragments we believe we have satisfied R6 and R7.

Performance

To evaluate the performance of our infrastructure, we ran Strawman with batch

jobs using all three proxy simulations on 4096 cores with mesh sizes ranging between

4 billion and 8 billion cells, satisfying R2. Table 11 shows the average time per cycle

of both visualization and simulation. We will explore the performance characteristics in

more depth in future work to understand how Strawman addresses R10.
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FIGURE 9. Images produced using Strawman from the three integrations. From left to
right and from top to bottom, a volume rendered image from CloverLeaf3D, a ray traced
image from Kripke, and a rasterized image (OSMesa) from LULESH.

4.5 Summary

We described our mini-app for in situ, Strawman, which enabled us to explore a

system meeting our stakeholders requirements: modern architectures, streamlined user

interface, and minimal burden on the simulation. The results were promising, especially

in terms of streamlined user interface, although we believe more effort is needed to

reduce the time to carry out visualization operations.
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CHAPTER V

IN SITU PERFORMANCE MODELING

Most of the work in this chapter comes from (75), which was a collaboration

between Cyrus Harrison (LLNL), James Kress (UO and ORNL), Dave Pugmire (ORNL),

Jemery Meredith (ORNL), Hank Childs (UO and LBL), and myself (UO and LLNL).

The introduction was a collaboration between Hank Childs and myself. The related work

section was written by Jeremy Meredith and myself. The methodology, performance

models, study overview and model evaluation sections were written by me, with edits

from the other authors. The majority of the software infrastructure and algorithms were

written by me, with build system and porting assisted by James Kress, Dave Pugmire

and Cyrus Harrison. The final two sections were a collaboration between myself and the

other authors.

The previous chapters introduced the problem and built the foundation for

the work in this chapter. Chapters II and Chapter III showed that we are able to

construct rendering algorithms using a data-parallel framework that are competitive

with community standards, validating the data-parallel approach. With a single

implementation, we can build a performance model that applies to both the CPU and

GPU architectures. In Chapter IV, we constructed an in situ infrastructure that connects

the data from three simulations to the data-parallel framework. In this chapter, we

describe our performance model creation methodology and performance models for

ray tracing, rasterization, and volume rendering. Finally, we conduct an extensive

performance study, create a mapping between simulation parameters and model inputs,

and answer several important in situ viability questions.
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5.1 Introduction

In Chapter I, we introduced the motivation and importance of answering the in

situ rendering feasibility question: is it possible to perform X1 visualization tasks while

devoting no more than X2 time to these tasks? We approached the issue of rendering

feasibility through performance modeling. We started by implementing three rendering

algorithms: rasterization, ray-tracing, and volume rendering. We implemented them in

the VTK-m framework (101), which allows a single implementation to run efficiently

over multiple architectures. Further, a data-parallel implementation allows us to study

the same performance model across architectures. We then ran 1,350 experiments to

collect performance data, varying over rendering algorithm, architecture (CPU and

GPU), concurrency, simulation code, and data size. Next we established performance

models for each rendering technique using linear regression and evaluated these models

using standard regression metrics and k-fold cross validation. We expanded our study

to a leading-edge supercomputer (ORNL’s Titan) and predicted performance at large

scale. Once the performance models were validated, we used them to answer rendering

feasibility questions. We believe the result is a novel study, both in our application of

performance modeling to visualization and in the results we obtain informing important

in situ feasibility questions.

This chapter is organized as follows:

– Section 5.2 surveys related work.

– Section 5.3 describes our methodology for establishing performance models.

– Section 5.4 gives an overview of our study: rendering configurations tested,

software used, and measurements taken.

– Section 5.5 defines a performance model for single node rendering.

74



– Section 5.6 extends the single node model to cover parallel rendering.

– Section 5.7 describes our evaluation using a leading-edge supercomputer.

– Section 5.8 describes how to map a given rendering configuration to our

performance model’s input variables.

– Section 5.9 explores rendering feasibility questions using our performance model.

5.2 Related Work

Rendering

There are three major types of parallel rendering (45): sort-first, sort-middle, and

sort-last. Sort-first rendering parallelizes over pixels within an image, and distributes

geometry so that every processor has the data necessary to generate its portion of the

image. Sort-middle rendering follows a similar approach, but transforms the geometry

into screen space before distributing. Sort-last rendering parallelizes over data, having

each processor create a sub-image that contains a rendering of its own data, and

then compositing the sub-images together, i.e., using depth information and parallel

communication to create the final image.

Parallel rendering on supercomputers is typically done with the sort-last

approach (57). With this approach, there are two distinct phases: local rendering and

compositing. Local rendering requires no parallel coordination, while compositing

typically does not begin until all MPI tasks have finished their local rendering.

Each of our rendering algorithms were implemented in VTK-m (101). VTK-m

makes use of data parallel primitives, an abstraction that enables algorithms to be written

one time, but used on multiple architectures (CPU and GPU).
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We derived our ray-tracer from the implementation in EAVL (91). An evaluation

of the EAVL ray-tracer (73) found that it generally performed within a factor of two of

Intel’s Embree (138) and NVIDIA’s OptiX (108).

Our volume renderer was developed for this study and was designed to work with

structured grids. Previous studies of data parallel primitives-based volume renderers (77;

122) have found that the data parallel primitive approach is competitive with hardware-

specific versions.

Our rasterizer was also developed for this project using VTK-m. Based on

recent successes with rendering and portable performance, we felt that having a single

implementation over multiple architectures was better than using architecture-specific

rasterizers, such as implementations of the OpenGL(8) standard. Examples include CPU

implementations (e.g., Mesa (11) and OpenSWR (6)) and GPU implementations from

hardware vendors. We note that our rasterizer is not the first CUDA-based software

rasterizer on a GPU (72) (with CUDA being a back-end option for our data parallel

primitives).

Although we implemented our own renderers, our study incorporated an existing

parallel image compositor, IceT (98). IceT has been shown to be scalable up to tens of

thousands of MPI tasks, and contains implementations of many compositing algorithms,

including direct send (103), binary swap (86), and Radix-k (111; 110), and we chose to

use Radix-k.

Several previous studies have looked at rendering performance at massive

scale (98; 86; 111; 61). Our study differs from these previous works in that we are

considering multiple rendering methods and that we have developed a performance

model that allows us to answer feasibility questions.
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Performance Modeling

Simulators take a fine-grain approach to performance modeling, by attempting to

model the behavior of underlying features of the target system, from the microprocessor

instruction level to the network messaging level. Examples include SST, ROSS, and

GEMS (117; 63; 37; 89). At the other end of the spectrum, analytical approaches are

methods for generating symbolic equations describing an algorithm or program which

can quickly generate performance predictions for known input parameters. Examples of

analytical models and tools include BSP, LogP, and Aspen (130; 46; 125).

Performance models can use data from either known hardware parameters

(e.g., peak floating point or messaging rates) or from empirical measurements such as

performance counters and execution time. When the latter are combined with analytical

performance models, the derived models are termed “semi-empirical” (58). Our

approach falls into this category, generating an a priori analytical performance model

based on known attributes of a specific algorithm and fitting with observed data.

Performance Modeling and Visualization

There are relatively few rendering works that incorporate performance models.

Cohen et al. (44) used an architecture-specific constant to evaluate a cost model,

maximizing performance by switching between polygon and point rendering based on an

evaluation. Similarly, Tack et al. (129) used a fine-grain performance model to estimates

run-time cost per triangle, based on the steps within a software-based rasterization

pipeline, on resource constrained mobile devices. Their system ran a set of tests to

estimate constants in their model, then adjusted rendering for the given device. While

these studies share the elements of performance modeling and rendering, their goals and

rendering tasks differ from our own.
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Bowman et al. (31), described a performance model for a visualization pipeline,

and included rendering in their model. They modeled rendering by multiplying the

number of triangles to render by a constant, which was determined from the average

time to render different amounts of triangles using a GPU rasterization pipeline. Finally,

Rizzi et al. (116) described a distributed GPU ray casting performance model for volume

rendering by enumerating each component, including network bandwidth and GPU

transfer times, and their goal was to help to provide guidance in the design of future

machines. While both were successfully able to model their use cases, our study is

different in that we are focused on in situ rendering, which allows us to go beyond their

studies in significant ways: by considering multiple rendering techniques, by evaluating

varied rendering configurations, by establishing statistical bases for our models, by

considering multiple parallel architectures, and by exploring the feasibility regions

implied by our models.

5.3 Methodology

In this section, we introduce the methodology we used to develop the performance

models for the three rendering techniques (ray-tracing, rasterization, and volume

rendering).

Our goal is to create linear models that relate key variables about data and

rendering configurations to the run-time performance of each renderer. We created

general linear models based on the nature of the algorithms used in each renderer.

To allow our general linear models to be used for estimates on specific hardware

architectures, we ran a study using a range of representative configurations and fit model

coefficients to this data using multiple linear regression. We then used several methods to

evaluate our models.
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Model Input Variables

The first modeling step was to select the key input variables of the rendering

process. Several factors influence the run-time of rendering, but at a high level, the two

essential variables are the number of objects (e.g., cells or triangles) and the number

of pixels rendered. For each of the renderers we studied, we started with initial linear

models that relate these two variables to the algorithmic complexity of their rendering

pipelines.

These models captured the run-times of the different pipeline stages for each type

of renderer. While rendering algorithms are generally characterized by the iteration target

of their outer loop — object-order algorithms (e.g., rasterization) loop over objects, and

image-order algorithms (e.g., ray casting) loop over pixels — this basic characterization

overlooks the fact that rendering implementations may actually use pipelines with

multiple steps that mix object-order and image-order algorithms. For example, ray-

tracing is an image-order algorithm that uses an acceleration structure constructed with

an object-order algorithm.

Directly using all of the individual pipeline steps as components in our models

could create too many degrees of freedom. To avoid this, we grouped related pipeline

steps into higher-level stages and related these stages to the input variables to create the

components of our models. For example, our ray-tracing performance models considers

the acceleration structure build stage as a single model component, although it actually

consists of five smaller steps.

To capture architecture-specific details, we added experimentally-obtained

coefficients for each of our linear model components.

We also selected variables that are quantitative proxies to important user settings

(e.g. data set size, output image sizes, etc.), which influence rendering performance.
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These variables include the number of objects in view of the camera, the actual

amount of pixels that need to be rendered for the view, and view specific counters for

rasterization and volume rendering. The values for these proxies are not known exactly

a priori, but can be estimated from a user’s specific rendering settings. When we fit

coefficients to capture architecture-specific details, we used measured data points for

these variables to create more accurate models.

In summary, the input variables we used for our models are:

– General Input Variables

∗ Objects (O): the number of cells or triangles to render

∗ Active Pixels (AP): the number of pixels that are updated as a result of

rendering

∗ ci: empirical constants to capture architecture-specific details

– View-Specific Variables for Rasterization

∗ Visible Objects (VO): the number of cells or triangles to render visible to the

camera

∗ Pixels Per Triangle (PPT ): the average number of pixels considered per

triangle

– View-Specific Variables for Volume Rendering

∗ Samples Per Ray (SPR): the average number of samples along a ray that are

inside the data set

∗ Cells Spanned (CS): the maximum number of cells that a ray can span
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Study Parameters

To obtain data to fit model coefficients and evaluate our models, we conducted a

study to gather run-time performance data for each renderer. We tested our models using

a range of configurations that represent in situ use cases.

We selected configurations exploring parameters that, from a user’s perspective,

influence the number of objects and pixels relevant to rendering. These parameters

include the type of simulation data, simulation data set size, desired image resolution,

and the total number of MPI tasks.

We used multiple physics simulation applications to explore performance with

structured and unstructured meshes. We also adjusted the size of the simulations (i.e. the

total number of cells in the discretization) to vary the number of objects rendered. We

varied the the total number of MPI tasks to change the number of active pixels on each

task and to test distributed-memory image compositing run-times.

Model Fitting and Evaluation

We used multiple linear regression to fit coefficients that allow us to use our

models to estimate rendering run-times for a specific architecture. We used the R

programming environment (114) and many of its packages (137; 23; 135; 87; 118) to

compute and evaluate the regressions and to create plots.

To evaluate our models, we examined the metrics of multiple R-squared, residual

standard deviation, the values of our model coefficients, and the average relative error.

Multiple R-squared effectively reports percentage of the variance of the run-time that is

captured by a model. The residual standard deviation is an indicator of how well a model

fits the data, where a value of zero means the model perfectly fits the data. For rendering

algorithms, no input variables should have a negative linear relationship to run-time, and
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so the presence of regression coefficients less than zero typically indicates that a model is

not valid or some feature of the hardware architecture is compensating.

To further evaluate our models, we used correlation analysis and k-fold cross

validation. Correlation analysis gave us a basic view of how the input variables are

related to the measured run-times. This helped us check our linear modeling assumptions

and quickly screen for potential implementation issues. K-fold cross validation

systematically fits model coefficients to subsets of the available data and tests how

well these fitted models represent the remaining data. We used k-fold cross validation

to check that we were not overfitting our models to data and as another measure of the

variance of our models.

5.4 Study Overview

Software Implementation

We implemented our rendering algorithms using VTK-m (101), which allows a

single implementation to execute on multiple architectures. Currently, VTK-m supports

two back-ends: TBB and CUDA. VTK-m algorithms are composed of a series of data-

parallel primitives such as map, scan (also known as prefix sum), and reduce. Each

back-end implements supported data-parallel primitives that are optimized for the

architecture, which enables portable performance of algorithms with different back-ends.

The majority of the rendering algorithm implementations use a map operation to loop

over pixels (e.g., volume rendering and ray tracing) or objects (e.g., rasterization).

For the in situ infrastructure, we used Strawman (74), a lightweight in situ

framework that includes integrations with three physics simulation codes. Strawman

uses a modular infrastructure that allowed us to implement a visualization pipeline using
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the VTK-m rendering infrastructure. For the sort-last rendering, IceT (98) was used to

composite the images generated by each task.

Study Options

Our study was designed to test and validate the performance models under a wide

variety of rendering conditions. In order to examine a representative space of rendering

configurations, we varied the following factors:

– Architecture (2 options)

– Rendering Algorithm (3 options)

– Simulation Code (3 options)

– MPI Tasks (up to 7 options, depending on architecture)

– Image Resolution (many options)

– Data Size (many options)

We discuss each of the factors in the following subsections.

Architectures

Our study was performed on LLNL’s Surface cluster. Each node contains two Intel

Xeon E5-2670 (Sandy Bridge) and two NVIDIA K40m GPUs. We used the following

configurations:

– CPU1: 1 MPI task per node

∗ Simulation code: 16 OpenMP threads

∗ Strawman: 16 TBB threads

– GPU1: 2 MPI tasks per node

∗ Simulation code: 8 OpenMP threads per task
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∗ Strawman: 1 K40m per task

Rendering Algorithms

For the study, we implemented the following algorithms using VTK-m:

– Ray Tracing: a ray tracer that only casts primary rays and generates images similar

to rasterization.

– Structured Volume Rendering: a ray caster for regular grids.

– Rasterization: an implementation based on sampling using barycentric coordinates.

Simulation Codes

Our study used the three physics simulation codes included with Strawman. Each

of these codes are “proxy apps,” meaning they are lightweight and meant to be accessible

for computer science research, and figure 10 shows images from each of the simulations.

The codes are:

– Lulesh: a Lagrangian shock hydrodynamics simulation on a 3D unstructured mesh

– Kripke: a deterministic neutron transport solver on a 3D structured mesh

– Cloverleaf3D: an Euler hydrodynamics simulation on a 3D structured mesh

MPI Tasks

We varied the number of MPI tasks to study the effects of active pixels per task as

concurrency increased. The number of MPI tasks for each architecture were:

– CPU1: 1, 2, 4, 8, 16, and 32 tasks

– GPU1: 1, 2, 4, 8, 16, 32, and 64 tasks
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FIGURE 10. Images from each of the simulation codes. From left to right, a rasterized
image from Cloverleaf3D, a volume rendering from Kripke, and a ray-traced image from
Lulesh.

Image Resolution

There are many possible choices for image resolution, and we wanted our models

to predict values for the widest range of possible combinations that are appropriate

for tightly-coupled in situ. For each test, we used stratified sampling, similar to Latin

hypercube sampling, to choose image resolutions between 5122 and 28802, which is

equal to the total number of pixels in a standard 4K image (3840× 2160). The data sets

were cubic, so we chose to use square images to minimize the amount of unused pixels.

Data Set Size

As with image resolution, there are many possible choices of data set size, and

using stratified sampling, we chose data set sizes ranging from 1283 to 3203 cells per

node. We consider these sizes to be representative of the per node cell count of a large

multi-physics simulation. The problem size per task was weakly scaled, so that the total

number of cells over all processors increased proportionally to the number of MPI tasks.

For the rasterizer and ray tracer, we used an external faces operation to generate triangles

on each MPI task, and all tasks were assigned equal amounts of geometry. We used

external faces to control the amount of geometry, but we believe it is representative of
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other visualization operations such as slicing and contouring, which takes O(N3) cells

and creates O(N2) geometry.

Tests and Measurements

For the study, we ran the cross product of the study variables with 25 combinations

on data set size and image resolution, and while not all combinations made sense (e.g.,

structured volume renderer with an unstructured data set), we ran 1350 total tests. Each

test consisted of running the simulation code for 10 cycles, and we generated an image

for each cycle. Once all of the data were gathered, we discarded the first data point

because it proved to be unreliable. We gather data for each frame and for each rank.

Since rendering is only as fast as the slowest MPI task, we only considered the slowest

MPI task from each of the 1350 tests. Further, for this slowest MPI task, we took its

average time over the last nine cycles.

Finally, although we wanted to study rendering with GPUs, the simulation

codes we studied only ran on CPUs. Our solution was to run the simulation code on

the CPU, and then transfer its data to the GPU. Our measurements in this case only

reflect the rendering times (i.e., after the data was transferred), which we feel would

be representative of scenarios where simulations run directly on the GPU. While we did

not consider it in our study, we feel that data transfer time could be added to our models

without much effort.

5.5 Single Node Performance Model

This first subsection defines the models we used for each rendering type, while the

second subsection describes our results evaluating our models’ accuracy.
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FIGURE 11. The 3-fold cross-validation error plots for all six models. Renderers
are paired in columns, while architectures go along rows (GPU1 on top, CPU1 on
bottom). For each fold, the models are trained with a partial set of the data, then the
models predict the total render time with the remaining data points. Error percentage
is calculated as 100 × (timetotal − timepredicted)/timetotal . A value of zero represents a
perfect prediction. Each test is colored by the number of objects it renders (i.e., triangles
for rasterization and ray-tracing and cells for volume rendering).

Model Definition

We describe our performance models for each of the three rendering techniques.

Each of the three models use input variables that describe the rendering task to predict

the corresponding execution time. The models described in this section are the final

models we developed for each rendering technique, realized after exploring many

alternative options. They represent the best fit to the data from our experiments,

evaluated using methodology discussed in Section 5.3.

The models describe only the time to do local rendering (i.e., a single MPI

task rendering its own data); this model is extended in Section 5.6 to include parallel

rendering. When running in parallel (i.e., more than one MPI task), each node has its
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own value for each of the input variables. For this phase of our model, we are only

concerned with the process of making a sub-image (which is embarrassingly parallel)

and not with the compositing (which does require parallel communication). So our

model can predict the individual execution times for each of the MPI tasks, given each

of their individual input variables.

Ray-Tracing

Our performance model for ray-tracing execution time (T ) is:

TRT = (c0 ∗O+ c1)+(c2 ∗ (AP∗ log2(O))+ c3 ∗AP+ c4) (5.1)

The intuition behind this model is that ray-tracing consists of three parts: building the

acceleration structure (c0 ∗O), tracing the rays (c1 ∗ (AP ∗ log2(O))), and shading the

intersection points (c2 ∗ AP). We timed each of these three phases separately, which

enabled us to solve for constants ci for each of the three separate linear regression

models. Finally, we separated the term first term (i.e.,c0 ∗O+ c1), from the rest of the

terms. This allows us to consider cases where the BVH acceleration structure is built

once, and then multiple renderings use that BVH afterwards.

There are multiple ways to implement ray-tracing, and our model matches our

particular implementation. Specifically, our acceleration structure is a variant of a

Linear Bounding Volume Hierarchy (LBVH) (66), which has a build-time complexity

of O(n). Tracing rays is a function of the number of pixels (AP), and traversal through

the acceleration structure, which is a binary tree, is a function of the number of objects

(i.e., log2(O)). It is worth noting that the shape of the binary tree and average traversal

depth is related to the spatial distribution of the objects and camera position. Finally, the

shading term is a function of the number of pixels.
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Rasterization

Our performance model for rasterization execution time is:

TRAST = c0 ∗O+ c1 ∗ (VO∗PPT )+ c2 (5.2)

The intuition behind this model is that rasterization consists of two parts: culling

objects that are not visible (c0 ∗O), and then rasterizing the visible objects (c1 ∗ (VO ∗

PPT )).

Volume Rendering

Our performance model for structured volume rendering is:

TV R = c0 ∗ (AP∗CS)+ c1 ∗ (AP∗SPR)+ c2 (5.3)

The four main tasks in volume rendering are locating cells that contain sample

points, loading scalar values into memory, interpolating scalars, and compositing colors.

Our implementation consists of a single component that samples by casting rays into

the volume, but the four tasks fall into two distinct groupings: cell frequency (AP ∗CS)

calculations and sample frequency (AP ∗ SPR) calculations. The performance model

groups the calculations into terms of the same frequency.

Cell frequency calculations involve locating scalar values for a cell and loading

them into memory. The total amount of cell locations is the number of active pixels

(AP) multiplied by the number of cells that span the ray’s path (CS) (i.e., (AP ∗CS)).

Additionally, our implementation calculates interpolation constants that are re-used when

sampling the same cell multiple times.
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TABLE 12. R2 values for our performance models. R2 captures the percentage of
variance in run-time captured by the model and is an indicator of model fit.

R2

Renderer CPU1 GPU1
Ray Tracing 0.9695 0.9728

Volume 0.9981 0.9978
Rasterization 0.6677 0.9425

TABLE 13. Model accuracy summary from the result of the 3-fold cross validation
analysis for our six models (three rendering techniques times two architectures). For each
fold, two thirds of the data is used to train the model and the remaining one third is used
to test the prediction. Each percentage represents the number of predicted values, from
all folds, that are within the corresponding error percentage.

CPU1
Renderer 50% 25% 10% 5% Average %

Ray Tracing 100.0 93.3 65.6 35.6 9.6
Volume 100.0 95.4 81.3 63.0 6.3

Rasterization 96.0 70.2 35.8 18.4 19.1
GPU1

Renderer 50% 25% 10% 5% Average %
Ray Tracing 100.0 100.0 94.8 71.7 3.8

Volume 97.8 92.8 64.7 46.0 10.0
Rasterization 99.8 90.2 53.2 26.8 11.5

Sample frequency calculations consist of interpolation and compositing. This

happens exactly AP ∗ SPR times, which is equal to the total number of samples for the

render.

Model Evaluation

Table 12 shows the R2 values for the six architecture-rendering pairings. In our

case, five of the six models had values over 0.94, which indicates a good fit.

Our 3-fold cross-validation study involved creating a model using a subset of the

data, and then evaluating the model with the remainder of the data to prevent overfitting.

The results of this study are plotted in Figure 11, which shows the error for each test, and
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is summarized in Table 13, which shows model accuracy over all tests. The model errors

in Figure 11 shows that we are increasingly accurate as render time goes up. These errors

are also seen in Table 13, which shows the average error percentage for our models were

at worst 19.1% incorrect on average, and at best 3.8% incorrect on average. In terms of

model accuracy, Table 13 shows that all six models were predictive within 50% error at

a very high rate — the worst model was still able to predict within 50% error for 96% of

the time, and for three of the models, we were within 50% error all of the time.

The model that had the poorest fit was CPU1+rasterization. This reflects the high

variability in observed run-time in its tests. Our reported values were an average of nine

cycles; for every one of our CPU1+rasterization experiments, at least one of the nine

tests was more than 10% above or below the test average. In total, 24% of the predictions

fell within the measured variation in the run-time. We believe that the higher variation

was due to our implementation which used hardware specific features, but in the future,

we would like verify if the performance of OpenSWR has the same characteristics as our

implementation. That said, despite this low R2 score, 70% of the predictions were within

25% of the measured values and 96% were within 50%.

The x-axis for Figure 11 is predicted render time, and it is clearly visible that our

tests skew toward shorter run times. This does not represent bias in our tests, but rather

the effects of increased concurrency, which then reduces the number of active pixels per

MPI task. For all models, it is these lower render times that contribute the majority of

the error occurs, where both timer resolution and memory hierarchy factors more heavily

influence execution time.

One clear example of the influence of the memory hierarchy is the volume

rendering model for GPU1. As render times approach zero, our model consistently over-

estimates the cost in a small part of the distribution. The majority of the data points have
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more active pixels when sampling the volume saturates GPU memory throughput, and

the model coefficients reflect the majority of the data points. With a small number of

active pixels, GPU threads do not have to wait long for memory requests to be satisfied.

The effects of the memory hierarchy on both the CPU and GPU are complex and occur at

too fine-grain a level to be useful to our models.

Memory Usage

In addition to timing rendering, we captured memory usage information during

our experiments. Our data set dimensions and image sizes for individual tests were

essentially random, so we could not directly compare memory usage statistics. On the

whole, rasterization used the least amount of memory, and ray tracing used the most

since it uses an acceleration structure. On average, rendering increased the simulation

memory overhead by less than 1%, and peaked at 5% when image size was large and

data set size was small.

5.6 Multi-Node Performance Model

In a distributed memory setting, there are two factors that contribute to the overall

rendering time: single node rendering time and image compositing time. The first

factor is the maximum run-time out of the set of all MPI tasks, and we can predict the

bottleneck task using the performance models from section 5.5. The second factor is the

performance of compositing in which the images produced by each task are merged into

a final image based on depth (e.g., rasterization and ray-tracing) or visibility ordering

(volumes). In equation form, our total rendering model is:

Ttotal = maxtasks(TLR)+TCOMP (5.4)
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where TLR is the time for local rendering, i.e. TRT , TV R, or TRAST based on the rendering

technique used. Further, although it is not the primary focus of this paper, we need

a basic model for image compositing (TCOMP) to answer questions about distributed

rendering performance. Establishing TCOMP is the focus of the remainder of this section.

Observations

Figure 12 shows a histogram of compositing performance in our study as a

function of MPI Rank and Pixels. The dominant trend in the histogram is that more

pixels lead to slower times. The secondary trend is counterintuitive, which is that

more tasks make compositing faster. This is because increasing MPI tasks causes the

simulation domain to be divided up among more tasks, reducing the number of active

pixels. This trend is likely to reverse as MPI tasks increase further, since the active

pixels will decrease less quickly, but the amount of communication will increase.

Unfortunately, our experimental study was limited in scope with respect to MPI tasks,

and we were not able to capture these effects from our corpus of 1,350 experiments. A

more thorough performance analysis at massive scales can be found in (98) and (110).

Model Definition

Our performance model for compositing is:

TCOMP = c0 ∗avetasks(AP)+ c1 ∗Pixels+ c2 (5.5)

where Pixels is the (full) image resolution.

Image compositing proceeds in a hierarchy of rounds exchanging pixel

information, and the main factors are the number of pixels in the image and the number
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FIGURE 12. Histogram of image compositing time.

of MPI tasks. Our model uses image resolution for the number of pixels, and average

number of active pixels captures the amount of work performed, since the active pixels is

related to the number of cores and pixels that can contribute to the final image. As noted

in Section 5.6, large numbers of MPI tasks will slow down compositing. We did not

include that term in our model, since our regression analysis latched onto the decrease

in execution time as MPI tasks went up (because of the decrease in active pixels) —

adding that input variable using our corpus led to a model where increasing MPI tasks

led to faster and faster compositing times. Again, while we believe we have the correct

corpus for our single-node performance model, we understand our corpus is too limited

for performance modeling of compositing.
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Model Evaluation

The performance of our model is summarized in Figure 13, which shows the

results of the cross-validation analysis, and table 14, which shows the percentage of

predictions that fall within percentiles. The performance model underestimates the cost

of compositing images of low resolution, but the model is fairly accurate for higher

resolutions to provide a reasonable estimate (within the range of concurrencies we

consider).
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TABLE 14. Model accuracy summary from the result of the 3-fold cross validation
analysis for our compositing model. For each fold, two thirds of the data is used
to train the model and the remaining one third is used to test the prediction. Each
percentage represents the number of predicted values, from all folds, that are within
the corresponding error percentage.

50% 25% 10% 5% Average %
Compositing 88.4 68.3 28.3 15.0 29.3

5.7 Evaluation on Leading-Edge Supercomputer

To further validate our models, we tested on a leading edge supercomputer,

ORNL’s Titan machine. Each node contains a 16-core AMD processor with 32 GB of

memory, and we used the following configuration:

– GPU2: 1 MPI task per node

∗ Simulation Code: 16 OpenMP threads

∗ Strawman: 1 K20 GPU per task

The architecture-specific coefficients (ci) changed on this machine, so we ran a small

number of experiments to calibrate.

We used Cloverleaf3D as the simulation code, and ran between 20 and 31

experiments for each renderer, using the same methods as described in Section 5.4.

Next, we performed a large-scale run, using 1024 nodes of GPU2 for each renderer with

an image resolution of 20482 and over 16 billion total elements, and tested the models

predictions against the measured run-time.

Table 15 shows the results of the runs including actual render time, predicted

render time, percentage error, and number of samples used to train the model for each

renderer. For ray-tracing and rasterization, our render time predictions were within 6%

and 18% of the actual runtime, which was in line with our expectations. The prediction
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TABLE 15. We trained our models using a minimal number of data points using
Cloverleaf3D and between 1 and 32 MPI tasks on Titan. We used the same sampling
strategy as the first phase of our study. We then increased the number of MPI tasks to
1024 with 16 billion total cells at an image resolution of 20482, and tested the run-time
against the model predictions.

Rendering Actual Predicted Difference Sample
Technique Time Time Points

Ray-Tracing 0.0165s 0.0176s -6.0% 31
Volume Render 0.00638s 0.0136s -78.6% 30
Rasterization 0.00275s 0.00224s 18.5% 20

for volume rendering was 78% away from the actual run-time, and this matched the error

we saw in the upper-right of figure 11 as the renderer time approached zero.

As discussed in Section 5.6, our compositing model is not appropriate at the scale

of 1024 MPI tasks, so we do not present it here.

5.8 Mapping Rendering Configurations to Model Inputs

Visualization experts and domain scientists likely think of rendering configurations

in terms of our study options from Section 5.4 (i.e., architecture, rendering technique,

number of MPI tasks, image resolution, and data set), and it is doubtful that they would

immediately think of their rendering problem in terms of our variable inputs (i.e., O, AP,

VO, PPT , SPR, CS, and ci). To bridge this gap, a mapping from rendering configurations

to variable inputs is needed. In general, an exact mapping can be difficult to generate,

especially because some variable inputs can be data-specific. For example, the number

of triangles in an isosurface is not known until you apply an isosurfacing algorithm. That

said, it is typically easy to provide upper bounds for the terms, which in turn can be fed

into our model, even for arbitrary rendering configurations. Further, since all coefficients

ci are positive, as the upper bound becomes larger and larger, then our prediction will get
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larger and larger. This is a desirable property, since it means that overestimates lead to

conservative results.

For our study, we use the following mappings:

– Objects (O): varies based on rendering type

∗ For rasterization and ray-tracing and a data set of size N3, this is 12×N2,

since we are taking external faces (each of the six exterior faces of the

domain has N2 quadrilaterals, which is two triangles).

∗ For volume rendering, this is N3.

– Active Pixels (AP): 55%× 1
#MPITasks1/3 ×Pixels

Our camera positions filled about 60% of pixels by default. Each time the number

of blocks went up by N3, the number of active pixels for a rank dropped to be

approximately 1
Nth as much. So, with 8 blocks, each MPI task would have about

30% of all available pixels as active.

– Visible Objects (VO): min(AP, O)

If there are fewer triangles than active pixels, then all triangles are visible.

Otherwise, the number of visible objects is approximately the same as the number

of active pixels.

– Pixels Per Triangle (PPT): AP×4

For our external faces, active pixels on average have two overlapping triangles

(front face and back face). Further, an additional two triangles (the triangles that

“complete the quadrilateral” with the original two triangles) will still consider

these pixels, but will fail their inside-out tests.

– Samples Per Ray (SPR): 373× 1
#MPITasks1/3

Like Active Pixels, we found the baseline value for a single core, and then

considered behavior as the number of MPI tasks increased.
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– Cells Spanned (CS): N (from an N3 mesh)

The maximum value is the number of cells that span the diagonal of the data set

and the minimum is zero. We found N to be a good estimate.

Again, the mappings above were appropriate for our study (and we validated them

by checking against experimental results), but would have to be re-thought for camera

configurations other than those inspired by the Cinema specification. The purpose for

showing them was (1) to provide background for our next section exploring rendering

feasibility questions and (2) to demonstrate an example mapping for those considering

other rendering configurations.

Validation of Mapping

To validate our mapping procedure, we considered six rendering configurations.

For each configuration, we applied our mapping to obtain variable inputs, and then used

our performance model. For those same six rendering configurations, we also retrieved

the observed variable inputs from the experiments and used those variable inputs to

predict execution time with the performance model. Finally, we also compared with the

observed execution time for each rendering configuration. The results of this validation

are in Table 16. It shows that our mapping does a reasonable job of predicting variable

inputs (for our randomly selected test cases), and also that our conservative estimates do

lead to slower prediction times in some cases.

5.9 In Situ Viability

In this section, we use our performance models to ask rendering feasibility

questions. We utilize the experimentally-determined coefficients from Sections 5.5

and 5.6 in our model, and list those coefficients in Table 17. We also make use of the
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TABLE 16. This table contains five groupings of information that collectively provide
evidence that our mapping from rendering configuration to variable inputs is valid. The
first grouping describes six randomly chosen test configurations from the study, one
for each of our performance models. The middle three groupings show the values for
variable inputs in our performance models for the three renderers. The final grouping
shows the execution time from a prediction using our mapping (labeled Mapping), from a
prediction using our observed variable inputs from an experiment (labeled Experiment),
and the actual execution time from the tests (labeled Actual).

Test # Arch. Rendering Mesh Image MPI
Technique Size Size Tasks

0 CPU Volume Rendering 2063 23752 4
1 CPU Ray-Tracing 2243 15982 32
2 CPU Rasterization 1853 17122 8
3 GPU Volume Rendering 2263 23222 2
4 GPU Ray-Tracing 1553 16882 64
5 GPU Rasterization 1773 28382 16

Active Samples Cells
Test (Description) Type Pixels Per Ray Spanned

0 (CPU / Vol.Ren.) Predicted 1.96M 235 206
0 (CPU / Vol.Ren.) Observed 1.84M 217 206
3 (GPU / Vol.Ren.) Predicted 2.35M 296 262
3 (GPU / Vol.Ren.) Observed 2.24M 281 262

Test (Description) Type Objects Active Pixels
1 (CPU / Ray-Tracing) Predicted 442K 339K
1 (CPU / Ray-Tracing) Observed 602K 338K
4 (GPU / Ray-Tracing) Predicted 228K 232K
4 (GPU / Ray-Tracing) Observed 288K 232K

Visible Pixels Per
Test (Description) Type Objects Objects Triangle

2 (CPU / Rasterization) Predicted 406K 406K 7.94
2 (CPU / Rasterization) Observed 410K 408K 7.1
5 (GPU / Rasterization) Predicted 371K 371K 18.9
5 (GPU / Rasterization) Observed 376K 375K 18.0

Test # Mapping Experiment Actual
0 2.47s 2.075s 2.02s
1 0.14s 0.10s 0.08s
2 0.009s 0.006s 0.006s
3 0.97s 0.88s 0.89s
4 0.07s 0.05s 0.05s
5 0.14s 0.13s 0.13s
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TABLE 17. Experimentally-determined coefficients for our models.

Technique Arch c0 c1 c2 c3 c4
Ray-tracing CPU1 5.39e-8 1.13e-2 1.84e-9 3.46e-8 1.28e-2
Ray-tracing GPU1 1.32e-8 3.81e-3 3.63e-10 2.13e-9 3.54e-3

Rasterization CPU1 1.29e-8 1.97e-9 1.75e-2 – –
Rasterization GPU1 2.10e-9 3.73e-10 1.36e-3 – –

Volume CPU1 3.68e-10 4.46e-9 9.35e-2 – –
Volume GPU1 1.43e-10 1.07e-9 9.35e-3 – –

Compositing – 1.89-e8 4.73e-5 -3.25e-2 – –

mapping from Section 5.8 so that we can pose our questions in terms of rendering

configurations (as opposed to our performance model’s input variables).

We focus on two specific rendering feasibility questions here, to establish the

benefit of our performance model and also to provide a demonstration of its use.

However, we note that our model can be used to answer many more types of questions.

Maximizing Images Rendered in a Fixed Time Allotment

As mentioned in the introduction, a new image-based paradigm is emerging for

in situ processing (64; 19; 20). The researchers behind these works are advocating for

extracting thousands to millions of images, the rendering of which could significantly

impact the overall execution time of a simulation code in a tightly-coupled setting. While

we could explore many issues in this context, we consider the following: what is the

tradeoff between image size and the total number of images produced? While we cannot

know whether a domain scientist prefer to produce many small images or few large ones,

we can enable that scientist to make an informed decision.

We approached our example problem as follows: We assumed a fixed configuration

for data and number of MPI tasks, since these factors would typically be fixed when

running tightly-coupled in situ. For our example, we assumed 32 MPI tasks, each with

a data set that is 2003. We also assumed a budget of sixty seconds from the simulation
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analysis could allow a domain scientist to make informed tradeoffs between quality
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code to perform our visualizations. We then considered all six performance models (two

architectures times three rendering techniques) and ran our performance model with

images sizes varying from 10242 to 40962, in steps of 128 in both dimensions. For each

image size, we got a predicted rendering time, which we could then use to calculate the

number of frames per minute. For example, if a single rendering takes 0.2s, then we

could do 300 renderings in one minute. The results are listed in Figure 14.
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Which is Better?: Ray-Tracing and Rasterization

While rasterization has traditionally been the dominant paradigm in scientific

visualization for rendering surface data, researchers have recently been considering if

ray-tracing may be superior (34). The intuition for ray-tracing is that it can perform

well with large data sets, since its work is proportional to the number of pixels. On the

downside, ray-tracing works best when accelerated by efficient spatial search structures

(like the LBVH), and these structures take time to build. However, in repeated rendering

use cases (like the ones described in the above Sub-Section, the build time is amortized,

since it only needs to be done before the first render.
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With our performance model, we can consider the ray-tracing versus rasterization

question. We supposed an example setting where there were 32 MPI tasks and we

wanted to perform 100 renderings. We then varied the image size from 3842 to 40962

in steps of 128 in both dimensions and considered data sizes from 1003 to 5003 in steps

of 253 in all three dimensions. For each of the results 510 configurations, we ran our

performance model for both rendering types and considered the ratio between their

predicted execution times. Figure 15 plots the results. As suspected, ray-tracing does

have a significant advantage when there is a lot of geometry and few pixels. In the most

extreme case — 3842 images and 5003 data — ray-tracing could produce 16 images

for every one rasterization. However, rasterization gained regular advantages when

images went above 10242, and was a consistent winner by 19202. That said, its biggest

advantages, when image size was large and geometry was small, was nowhere near as

lopsided as ray-tracing’s: the top advantage for rasterization over all configurations we

considered was to render three images for every two ray-tracings.

5.10 Summary

We established performance models for three rendering methods in order to

explore feasibility questions with in situ rendering. These feasibility questions will be

increasingly important as in situ processing becomes more and more common, leading

simulation codes and visualization programs to compete for resources. Our models

were validated through statistical analyses and shown to have good fit overall. This in

turn allowed us to explore a sampling of interesting feasibility questions, which in turn

demonstrates the utility of our models. In terms of future work, we would like to explore

additional rendering considerations, including the impact of camera angle, varying

geometry per MPI task, and compositing at higher scales.
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CHAPTER VI

FUTURE DIRECTIONS

In the previous chapter, we demonstrated the effectiveness of our methodology

for creating performance models and showed their usefulness by using the models to

answer important in situ rendering viability questions. In this chapter, we discuss the

future directions that can build on this research.

6.1 Modeling Other Algorithms

Within visualization, rendering is a small but important subset of all visualization

algorithms. Our models are useful we considering image-based in situ, but there are use

cases where image-based in situ may not be the most appropriate option for analysis of a

simulation. Consequently, we need to apply performance modeling to other visualization

algorithms to help manage the complex constraints between simulation and visualization

in the broader context of all the possible in situ use cases. This is a challenging task

because there are hundreds of visualization algorithms. Some visualization algorithms

will be low hanging fruit, but there are others that will be more difficult since they may

have inputs that are hard to estimate.

Streamlines are an example of an important algorithm that will pose a challenge to

model. The process of creating streamlines involves placing particles throughout a vector

field, and then advecting the particles to create a path. Depending on the characteristics

of the vector field, a particle might terminate immediately or might spin around in a

vortex until the maximum amount of advection steps is completed. In a distributed

memory setting, the vector field could force particles toward a single domain, creating

a large work imbalance. Consequently, estimating the amount of work in a domain at any
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given time is problematic, and this will make creating a performance model challenging

without an analysis of the vector field.

Other algorithms should be straight-forward. For example, slicing extracts a 2-D

plane from a 3-D data set, and creating a slicing performance model is likely as simple

as estimating the amount of cells intersected by the plane. Further, while modeling the

performance of streamlines is challenging and slicing should be easy, other visualization

algorithms will fall within the spectrum defined by the two extremes.

6.2 Data Gathering Infrastructure

In order to facilitate performance model creation for other visualization algorithms,

we would greatly benefit from a generic data gathering infrastructure. Having such

an infrastructure would reduce the effort needed to instrument code and to capture the

timing data that is required to generate the models. There are hundreds of visualization

algorithms and lowering the barrier-to-entry for model creation will encourage others

to apply our methodology. Our methodology starts the simplest possible model and

then decomposes each algorithmic input until it accurately predicts the run-time of a

particular algorithms. If we create hierarchical annotations for timings gathered within an

algorithm, we could automate model creation.

The models in this dissertation were developed off-line. We ran tests to gather

data, created the models, and then used the models to answer questions. With automated

model creation, we could process data as it is generated and develop models in an on-

line fashion. Models would be refined as more data is generated, with model accuracy

increasing as the corpus grows.

Another approach would be to use a database of information to create models

tightly fitted to the run-time parameters of a simulation. Using a previously created
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performance model, we could query this database on-the-fly for similar configurations,

and we could create a tightly fitting model that would more accurately predict the run-

time of the algorithms. At first, the database would be sparse, seeded with a small

amount test data. As simulations run, visualization algorithms would deposit small

amounts of information every time they run, thus populating the database and increasing

model accuracy. Further, we would gain valuable information about what algorithms

are used most frequently, which would allow the visualization community to focus their

effort where it is needed most.

6.3 Adaptive Infrastructure

Once the visualization community has created models for algorithms, we need

to pass model estimates upstream directly to the simulation or to an adaptive in situ

infrastructure layer that manages run-time constraints. Such an infrastructure would

be responsive to the needs of the simulation and coordinate visualization according to the

current simulation state. In this dissertation, we considered the amount of time it takes

to render, but run-time is just one of the constraints. The adaptive layer would receive

process constraints with memory consumption, power usage, and run-time.

Adaptive infrastructures would require inputs from both the simulation and

visualization, and would require a descriptive API to communicate simulation needs

and constraints. Above the layer, simulations would register constraints about how much

memory is currently available, how much time it is willing to dedicate to visualization,

the maximum amount of power it can consume, and what types of data features are

interesting to domain scientists. Below the layer, the visualization algorithms need

to be able to provide estimates, such as the ones described in this dissertation, on all

constraints based on the current state of the simulation such as mesh size and output type.
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Finally, the adaptive layer would choose visualization algorithms based on the input from

the simulation. While there is much research and development needed as we approach

exascale, this dissertation lays down some of the foundation so we can begin to tackle the

complex issues that arise from an environment of constraints.
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