
Eurographics Symposium on Parallel Graphics and Visualization (2015)
C. Dachsbacher, P. Navrátil (Editors)

Volume Rendering Via Data-Parallel Primitives

M. Larsen†1, S. Labasan1, P. Navrátil2, J.S. Meredith3, and H. Childs1,4

1University of Oregon, 2Texas Advanced Computing Center, The University of Texas
3Oak Ridge National Laboratory, 4Lawrence Berkeley National Laboratory

Abstract

Supercomputing designs have recently evolved to include architectures beyond the standard CPU. In response, vi-
sualization software must be developed in a manner that obviates the need for porting all visualization algorithms
to all architectures. Recent research results indicate that building visualization software on a foundation of data-
parallel primitives can meet this goal, providing portability over many architectures, and doing it in a performant
way. With this work, we introduce an unstructured data volume rendering algorithm which is composed entirely of
data-parallel primitives. We compare the algorithm to community standards, and show that the performance we
achieve is similar. That is, although our algorithm is hardware-agnostic, we demonstrate that our performance
on GPUs is comparable to code that was written for and optimized for the GPU, and our performance on CPUs
is comparable to code written for and optimized for the CPU. The main contribution of this work is in realizing
the benefits of data-parallel primitives — portable performance, longevity, and programmability — for volume
rendering. A secondary contribution is in providing further evidence of the merits of the data-parallel primitives
approach itself.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming I.3.3 [Computer Graphics]: Picture/Image Generation—Display algo-
rithms

1. Introduction

In preparation for exascale computing, the emphasis on su-
percomputing system design has moved from raw perfor-
mance to performance-per-watt. In response, supercomput-
ing architectures are becoming increasing complex: nodes
on leading-edge supercomputers now feature wide vector
units and many processing cores per chip. However, the spe-
cific form of these nodes are varied, including programmable
graphics processors (GPUs, e.g., NVIDIA Tesla), many-core
co-processors (e.g., Intel Xeon Phi), and large multi-core
CPUs (e.g., IBM Power, Intel Xeon). Further, future su-
percomputing designs may include low-power architectures
(e.g., ARM), hybrid designs (e.g., AMD APU), or experi-
mental designs (e.g., FPGA systems).

This variety in hardware architecture is problematic for
software developers, as developers do not want to implement

† mlarsen@cs.oregon.edu

distinct solutions for each architecture. This issue is partic-
ularly problematic in the context of visualization software,
for two reasons. One, visualization software often requires
large code bases, with several community standards contain-
ing over a million lines of code. Two, visualization software
employs many different algorithms; as a result, optimizing
performance for one platform requires optimizing each of
its algorithms, and not just one “key loop" as is often the
case for simulation codes.

Ideally, software developers could write a single imple-
mentation that would simultaneously be insulated from ar-
chitectural specifics and also obtain excellent performance
across all desired architectures. This goal is one of the
main drivers behind the recent push for domain-specific
languages (DSLs) in high-performance computing. In the
case of visualization software, three significant efforts —
Dax [MAGM11], EAVL [MAPS12], and PISTON [LSA12]
— all realized this goal by building a DSL-like infrastruc-
ture on top of data-parallel primitives. The three efforts have
now merged into a single one, called VTK-m, with a goal

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

of providing the same functionality as VTK [SML96], yet
with portable performance across multi-core and many-core
architectures.

While data-parallel primitives have shown significant
promise to date, the downside of the approach is that our
community’s existing algorithms cannot be simply “ported"
into this new framework. In many cases, the algorithms need
to be “re-thought" so that they can be composed entirely of
data-parallel operations. While some algorithms map natu-
rally, others are more difficult, since isolating out the inter-
dependence of operations — needed so each core on a many-
core node can do its own work without interacting with the
other cores — is not always trivial.

With this work, we introduce a volume rendering algo-
rithm that is composed entirely of data-parallel primitives.
The algorithm is within the ray-casting family, and oper-
ates on unstructured mesh data. Further, although the perfor-
mance study we show focuses on the shared-memory paral-
lelism available on a single node, the algorithm melds natu-
rally into an existing distributed-memory algorithm as well.

The contributions of this work are:

• Description of a new volume rendering algorithm com-
posed of data-parallel primitives;
• Evaluation of the algorithm on CPU and GPU architec-

tures;
• Exploration of the variation in performance character-

istics across architectures, which informs how effective
data-parallel primitives are at hiding architectural details;
and
• Comparison to community standard volume renderers

which do not make use of data-parallel primitives.

The paper is organized as follows: Section 2 surveys re-
lated work, Section 3 gives a brief overview of data-parallel
primitives, Section 4 describes our algorithm, Section 5 out-
lines our study, and Section 6 explores the resulting perfor-
mance.

2. Related Work

2.1. Data-Parallel Primitives

The inspiration for much work on data-parallel primitives
comes from Blelloch [Ble90]. In his work, Blelloch consid-
ered a model where primitives could carry out operations on
vectors of size N in time proportional to O(log2(N)) in the
worst case. Libraries such as NVIDIA’s Thrust [BH11] fol-
low from this idea, and provide a set of efficient primitives.
Further, code written to the Thrust interface can be compiled
to work with a variety of architectures, including NVIDIA
GPUs and x86 architectures.

In an effort to provide portable performance over var-
ied supercomputing architectures, multiple visualization in-
frastructures were developed that embraced the data-parallel
primitives concept:

• Dax [MAGM11], which focused most heavily on the exe-
cution model portion of the problem,

• EAVL [MAPS12], which focused most heavily on the
data model portion of the problem, and

• PISTON [LSA12], which focused most heavily on devel-
oping algorithms.

As mentioned in the introduction, these efforts are now
merging into a single product (VTK-m). But the combined
product is still short on algorithms — while the foundations
have been explored, many specific algorithms are still miss-
ing. Our study helps with this problem by contributing an
important visualization algorithm.

2.2. Volume Rendering

Volume rendering [Lev88, DCH88] uses a combination of
color and transparency to allow users to see the entirety
of a three-dimensional volume. The technique starts with
a “transfer function," which specifies a mapping of opacity
and color for each value in a scalar field. This transfer func-
tion is then applied to the entire volume. The resulting im-
ages show the color/opacity information, integrated in depth.

2.2.1. Unstructured Volume Rendering

Unstructured grid volume rendering algorithms were sur-
veyed excellently by Silva [SCCB05].

Here, we focus on three arcs of research that were used
for comparators in our study:

• One of the first algorithms for volume rendering
unstructured meshes, was the “projected tetrahedra"
method [ST90]. This method was extended to GPUs in
2002 [WMFC02]. An important advancement to the al-
gorithm came with HAVS (Hardware Assisted Visibility
Sorting) [CICS05], which is used as a comparator in this
study. HAVS improved the visibility ordering of projected
tetrahedra by using the k-buffer, which allowed for com-
positing of out-of-order pixel fragments.

• Bunyk et al. [BKS97] developed a ray-caster for unstruc-
tured data. Their algorithm was implemented in VTK and
is still commonly used today.

• Z-Sweep [FMS00] is an algorithm that advances a plane
through the volume in depth. Childs et al. [CDM06] de-
veloped a parallel algorithm which can be thought of
as a descendent of Z-Sweep. The algorithm is based
on sampling, and requires a large buffer to hold all the
samples. This buffer was divided over many compute
nodes, making computation and memory usage tractable.
The implementation of Childs’ algorithm is available in
VisIt [CBW∗12].

While our closest relative with respect to volume
rendering is likely the distributed-memory algorithm by
Childs [CDM06], the closest relative with respect to our re-
search is that which explores volume rendering and shared-

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

memory parallelism. Of these works, the focus is typi-
cally on a specific architecture, which contrasts with our
hardware-agnostic approach. For example, on the GPU side,
there have been many GPU-specific unstructured grid vol-
ume rendering algorithms [SCCB05]. On the CPU side,
there are fewer shared-memory parallel works. Notable ex-
amples include the hybrid-parallel work by Howison et
al. [HBC10, HBC12] and the CPU and Xeon Phi work by
Knoll et al. [KWN∗14]. Expanding the scope beyond vol-
ume rendering, Larsen et al. [LMNC15] also considered
data-parallel primitives and portable performance, but did it
with ray-tracing. While the findings of that paper had simi-
larities in theme, it was looking at a fundamentally different
algorithm.

Finally, we note that MapReduce (with Map and Reduce
being two of the data-parallel primitives) has been investi-
gated in conjunction with volume rendering [SCMO10]. Our
focus is on using these primitives to get excellent single node
performance, as opposed to cloud-based usage. Further, we
considered a wider range of primitives.

3. Data-Parallel Primitives

Within the data-parallel paradigm, primitives such as map,
reduce, gather, and scatter form the basis from which al-
gorithms can be constructed. Dax, EAVL and PISTON im-
plemented a programming model based on a functor-plus-
operator approach. A functor is a user-provided struct which
defines a function and local data which the data-parallel
primitive operator applies in some fashion to the input ar-
rays. Using this approach, libraries abstract away the details
such as memory allocation and thread management, leaving
the user the task of re-imagining an algorithm using the data-
parallel primitives.

Map is the computational work-horse of the data-parallel
primitives. Conceptually, Map is the body of a for loop,
where each iteration of the loop can be executed indepen-
dently. Without any dependencies on previous executions,
each iteration is arbitrarily executed in parallel. A Map op-
erates on any number of input arrays and output arrays, but
all must be of the same size.

Gather and Scatter copy items in parallel from the in-
put arrays to the output arrays, where the input arrays are of
length n and the output arrays are of length m. In Gather, the
user specifies a set of indices x of length m, where out[i] =
input[xi] for each i in m, and in Scatter, the user specifies a
set of indices x of length n, where out[xi] = input[i] for each
i in n.

Gather is generally preferred when n > m (i.e., the out-
put arrays are shorter than the input arrays), since it is more
efficient and cannot result in race conditions. One common
use for Gather is downselecting a set of input data to operate
on a subset of the full data set. A specialized Scatter oper-
ation called ReverseIndex can generate the set of indices

to be used in subsequent Gather operations when passed a
Boolean array of flags specifying whether each input ele-
ment is included in the set.

Reduce operations combine the input values of an array
to a single output value, such as summing all the values in
an array or finding the maximum value in an array. In se-
rial code, this is often implemented as a loop with sequential
dependencies. However, tree-style reductions can enable ef-
ficient parallelism.

Scan, like Reduce, has loop-carried dependencies, but in
Scan, the output is an array instead of a single value, and the
result at each point in the output array is the partial reduction
up to that point. For example, in the “prefix sum" variant of
Scan, the output at position i is the sum of all values in the
input array up to position i.

In the following section, we describe how we build our
volume renderer using these data-parallel primitive opera-
tions combined with custom functors.

4. Algorithm

4.1. Algorithm Description

At a high-level, the algorithm is sampling-based, meaning
the goal is to populate a buffer of W ×H × S samples, as-
suming W and H are the width and height of the image and
S is the number of samples in depth. Of course, this buffer
size could be very large: for a 1024×1024 image with 1000
samples in depth, the buffer would be approximately 4GB.

To reduce memory requirements, the algorithm can break
up the sampling work into passes, evaluating sections of the
buffer each pass. When it does this, the algorithm defines
the portion of the buffer to operate on at the beginning of
the pass. In our implementation, we break up the buffer by
depth: when doing multiple passes, we have the first pass
evaluate the front portion of the buffer, the second pass eval-
uate the portion behind it, and so on. This particular strategy
enables early ray termination, since we can evaluate which
pixels have become opaque at the end of each pass.

Each pass consists of four phases: Pass Selection, Screen
Space Transformation, Sampling, and Compositing. When
running with two passes, the four phases are executed in se-
quence (focusing on extracting the close half of the samples)
and then executed a second time, again in sequence (focus-
ing on the far half of the samples).

The algorithm also depends on an initialization step. The
initialization step and the four phases are described in the
following subsections.

4.1.1. Initialization Step

Unlike the four phases, this initialization is executed just a
single time, before the passes begin. The goal of this step is

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

to calculate the minimum and maximum depth of each tetra-
hedron. It does this by applying the camera transform to each
tetrahedron, and storing the smallest and largest depths in re-
spective arrays. This is accomplished with a Map primitive.

4.1.2. Pass Selection

The job of this phase is to identify which cells can possi-
bly contribute a sample. If there are N cells, then the first
step of this phase is to construct a Boolean array of size N.
An element of the array should contain “true" if the corre-
sponding cell can possibly contribute, and “false" otherwise.
This is determined by consulting the minimum and maxi-
mum depth arrays calculated in the initialization step. This
step can again be accomplished with a Map operation.

The second step of this phase is to create an array of just
the tetrahedrons that can contribute samples during this pass.
This is accomplished by successive use of four data-parallel
primitives. First, a Reduce primitive counts the number of
active tetrahedrons, i.e., tetrahedrons that have “true" in the
Boolean array. Second, an Exclusive Scan primitive calcu-
lates the index that each of the active tetrahedrons will be
copied into. Third, a Reverse Index primitive uses the result
of the Exclusive Scan in order to do the final primitive, a
Gather. This Gather collects the indices of the active tetrahe-
drons into the output array from this phase. If m is the num-
ber of active tetrahedrons for a given pass, then the result of
this second step is an array of size m.

4.1.3. Screen Space Transformation

This phase uses a Map primitive to transform the active tetra-
hedrons into screen space using the camera transform. The
result of this phase is an array of m tetrahedrons.

4.1.4. Sampling

This phase again uses a Map primitive. The functor for this
primitive does the sampling, and outputs the sample values
into the buffer. The sampling operation uses the screen-space
vertices of each cell to calculate the axis-aligned bounding
box (AABB). Using the AABB, the sampler considers every
possible pixel and depth that the cell could contribute to, and
extracts barycentric coordinates by solving a system of para-
metric equations defined by the vertices of the tetrahedron.

Finally, a pointer to an array containing the opacity for
each pixel is also an input to this phase. With this informa-
tion, the sampling functor can decide to abort sampling, in a
vein similar to early ray termination.

4.1.5. Compositing

This final phase again uses a Map primitive, iterating over
groups of samples. This phase again has access to the pixel
information. The functor uses the samples and pixel infor-
mation to composite the color for that pixel, at least with the
samples seen so far.

4.2. Data-Parallel Primitives Pseudocode

The pseudocode is specified in Algorithm 1.

1 /*Input*/
2 array: float tetCoords[N*12]
3 /*Output*/
4 array: byte pixels[w∗h]
5 /*Local Arrays*/
6 array: byte passRanges[N*2] //min pass, max pass
7 array: bool passFlags[N]
8 array: int currentTets[M]
9 array: int indxScan[M]

10 array: int gatherIndxs[M]
11 array: float screenSpaceTets[M*12]
12 array: float samples[(w∗h) / numPasses]

13 //Initialization
14 passRanges← map<FindPasses>(tetCoords)
15 for pass = 0 < numPasses do
16 //Pass Selection
17 flags← map<Thresh>(passRanges, pass)
18 m← reduce<Add>(flags)
19 indxScan←scan<Exclusive>(flags)
20 gatherIndxs←reverseIndex<>(indxScan,flags)
21 currentTets←gather<>(tetIndxs,gatherIndxs)
22 //Screen Space Transformation
23 screenSpaceTets←map<ScreenSpace>(currentTets,tets)
24 //Sampling
25 samples←map<Sampler>(screenSpaceTets,pixels)
26 //Compositing
27 pixels←map<Composite>(samples,pixels)
28 end

Algorithm 1: Pseudocode for our data-parallel primitives-
based algorithm. Data-parallel primitives are shown in the
form: primitive<functor>(args). N is the total number of
tetrahedrons. M is the maximum number of tetrahedrons in
a single pass, and m is the actual number of tetrahedrons
in the current pass. w and h are the width and height of the
image, respectively.

5. Study Overview

5.1. Software Implementation

We implemented our algorithm in EAVL. In this environ-
ment, algorithm developers compose a series of data-parallel
primitives, augmenting each primitive with functors that
perform specialized operations. During compilation, EAVL
applies an optimized implementation of each primitive in
OpenMP or CUDA as appropriate. In terms of memory lay-
out, we organized our data structures into structs-of-arrays,
following acknowledged best practices for both CPU (en-
abling vectorization) [PM12] and GPU (creating coalesced
memory accesses) [CSS11].

EAVL’s usage of the memory hierarchy varies by plat-
form. On the CPU side, its usage is conventional: registers,

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

cache, and memory. On the GPU side, however, the memory
usage varies based on context. Specifically, while EAVL’s
built-in operations, such as scan and reduce, make use of the
GPU’s shared memory, this memory is not exposed to al-
gorithm developers. As a result, algorithms frequently use
global memory. This was the case for almost all of our al-
gorithms, with the one exception being our color look-ups,
which used texture memory.

5.2. Configurations

Our study consisted of two rounds and 56 total tests. Each
test was of a volume rendering that created a 1024× 1024
image. Sampling-based volume rendering algorithms used
1000 samples in depth, and the near and far clipping planes
were made as close as possible without clipping away data.

5.2.1. Round 1: Evaluation of Data-Parallel Primitives

This round was designed to better understand the basic per-
formance of our volume renderer. It varied three factors:

• Hardware architecture (CPU and GPU): 2 options
• Data set: 4 options
• Camera position (zoomed in and zoomed out): 2 options

We tested on the cross product of these options: 2× 4×
2 = 16.

Finally, we also tested multiple transfer functions, but
their variation did not significantly impact results; we
present results from just a single transfer function from our
pool.

5.2.2. Round 2: Comparison With Community Software

This round compared our algorithm to existing standards
for unstructured data, specifically the HAVS volume ren-
derer [CICS05] on the GPU, the integration-based ray-caster
derived from Bunyk et al. [BKS97] on the CPU, and the
sampling-based ray-caster in VisIt [CDM06] on the CPU.

In this round, we ran 24 tests, coming from the cross prod-
uct of three community standards, four data sets, and two
camera positions. Further, to adapt to limitations in the com-
munity standards, we changed the CPU platforms we used.
As a result, we ran additional CPU tests with our algorithm,
for a total of 16 additional tests. (The 8 GPU tests from
Round 1 could be re-used in this Round.)

5.3. Testing Options

5.3.1. Hardware Architectures

We used the following architectures:

• CPU1: NERSC’s Edison machine, where each node con-
tains two Intel “Ivy Bridge" processors, and each proces-
sor contains 12 cores, running at 2.4 GHz. Each node con-
tains 64 GB of memory.

• CPU2: the same configuration as CPU1, but using only
one of the 24 cores.

• CPU3: An Intel i7 4770K with 4 hyper-threaded cores (8
virtual cores total) running at 3.5GHz, and with 32 GB of
memory.

• GPU1: An NVIDIA GTX Titan Black (Kepler architec-
ture) with 2,880 CUDA cores running at 889 MHz, and
with 6 GB of memory.

5.3.2. Data Sets and Camera Positions

Our study examined the following four data sets:

• Enzo-1M: a cosmology data set from the Enzo [OBB∗04]
simulation code. This data set was natively on a rectilinear
grid, which we then decomposed into tetrahedrons. The
total number of tetrahedrons was 1.31 million.

• Enzo-10M: a 10.5 million tetrahedron version of Enzo-
1M.

• Nek5000: a 50 million tetrahedron unstructured mesh
from a Nek5000 [FLK08] thermal hydraulics simulation.
Nek5000’s native mesh is unstructured, but composed of
hexahedrons; we divided these hexahedrons into tetrahe-
drons for our study.

• Enzo-80M: an 83.9 million tetrahedron version of Enzo-
1M.

Figure 1 shows volume renderings for these data sets, in-
cluding the zoomed in and close up camera positions.

5.4. Performance Measurements

We used the following techniques for performance measure-
ment:

• With our algorithm on CPU1, we enabled PAPI [pap12]
performance counters to measure the total instructions
executed and total cycles during each phase of the al-
gorithm. Specifically, we capture PAPI_TOT_INS and
PAPI_TOT_CYC and use these results to derive instruc-
tions executed per cycle.

• With our algorithm on GPU1, the nvprof profiler [NVI15]
was used to measure total instructions issued, instructions
executed, total cycles, registers per thread, and achieved
occupancy.

• For each of the community standards, we used that soft-
ware’s built-in timing infrastructure.

6. Results

The results are organized following the two rounds of our
study: Section 6.1 details the performance of our algorithm
over multiple architectures, and Section 6.2 compares our
performance to community standards.

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

Figure 1: Volume renderings produced in this study. The two images on the left are of density from a cosmology simulation.
The two images on the right are of temperature from a thermal hydraulics simulation. For each pair of images, the larger one
is zoomed in (meaning the data set fills the screen) and the smaller one is zoomed out (meaning the data set is surrounded by
white space, which is the default view for many visualization tools).

1 2 4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

Camera Angle

R
un

tim
e

(s
)

1 2 4 6 8 10 12 14 16

0

1

2

3

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

Camera Angle

R
un

tim
e

(s
)

1 2 4 6 8 10 12 14 16

0

3

6

9

12

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

Camera Angle

R
un

tim
e

(s
)

1 2 4 6 8 10 12 14 16

0

5

10

15

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

Camera Angle

R
un

tim
e

(s
)

6 8 10 12 14 16

0.00

0.25

0.50

0.75

1.00

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

Camera Angle

R
un

tim
e

(s
)

Initialization
Pass Selection
Screen Space
Sampling
Compostiting

Figure 2: Running times for our algorithm. Enzo-1M is top left, Enzo-10M is top right, Nek5000 is bottom left, and Enzo-80M
is bottom right. These tests were run on CPU1 and renderings from both camera angles were made. Within a figure, the number
of passes increases from left to right.

6.1. Performance Analysis of Algorithm

6.1.1. CPU Performance

Figure 2 shows the runtime per test by phase. Although our
approach requires the evaluation of up to one billion sam-
ples (over one million pixels with one thousand samples for
each pixel), the algorithm can render an image in approxi-
mately one second for small data. As the data size grows,
the overall time also goes up, but not in proportion to the

data size. This is because the amount of work is proportional
to the number of samples, as well as the number of cells. For
small data sets, i.e., Enzo-1M, the extraction of the samples
dominates the overhead for handling each cell. As the data
gets larger, though, the handling for each cell dominates. For
Enzo-80M, the sampling time is nearly the same for both
camera positions. This is because the number of samples ex-
tracted has nearly doubled, so the majority of the time is

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

2 4 6 8 10 12 14 16

0.00

0.25

0.50

0.75

1.00

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

Camera Angle

R
un

tim
e

(s
)

2 4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

Camera Angle
R

un
tim

e
(s

)

6 8 10 12 14 16

0.00

0.25

0.50

0.75

1.00

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

clo
se far

Camera Angle

R
un

tim
e

(s
)

6 8 10 12 14 16

0.00

0.25

0.50

0.75

1.00

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

clo
sefar

Camera Angle

R
un

tim
e

(s
)

Initialization
Pass Selection
Screen Space
Sampling
Compostiting

Figure 3: Running times for our algorithm. From left to right, Enzo-1M, Enzo-10M, and Nek5000. These tests were run on
GPU1 and renderings from both camera angles were made. Within a figure, the number of passes increases from left to right.
The Enzo-80M run failed, since it was too large for the GPU’s 6 GB memory. Further, the Nek5000 test only has results for 6
passes and above; fewer numbers of passes again ran into the GPU’s memory limit.

being spent iterating over tetrahedrons, as opposed to iden-
tifying values at sample locations.

6.1.2. GPU Performance

We present the data in two ways. Figure 3 shows the runtime
per test by phase, and Table 1 summarizes kernel register
usage and achieved occupancy.

While the dominant factor for CPU performance is sam-
pling time, the dominant factor for GPU performance is
compositing time. Even though the compositing kernel uses
a lower number of registers per thread and has a higher
achieved occupancy, data access patterns and the small num-
ber of operations needed to perform compositing make this
step a bottleneck.

Kernel Time Registers Occupancy
Screen Space 0.008s 70 38%
Sampling 0.202s 57 47%
Compositing 0.416s 37 68%

Table 1: Elapsed time, registers per thread, and achieved
occupancy for a close up view of the Enzo-10M data set
with four passes on GPU1. The statistics for pass selection
were omitted since they were difficult to extract; this phase
makes use of multiple data-parallel primitives, which in turn
each use multiple CUDA kernels.

6.1.3. Assessing Performance Portability

The main draw of the data-parallel primitive approach is
portable performance. Since we have analyzed the perfor-
mance on both a CPU and a GPU, we can investigate
whether we are achieving this goal. Table 2 shows measure-
ments on the CPU and GPU for the Enzo-10M data set with
a close up view, using four passes.

Phases
GPU CPU

Time IPC Time IPC
Pass Selection 0.018 1.628 0.514 0.268
Screen Space 0.008 1.704 0.047 0.682
Sampling 0.202 2.477 1.495 1.125
Compositing 0.416 0.131 0.249 1.071

Table 2: Measurements of CPU and GPU performance, by
phase for a close up view of the Enzo-10M data set with
four passes. The measurements are of time (in seconds) and
of instructions executed per cycle (denoted IPC) per core.

The achieved performance on the architectures at different
phases has some interesting results. The instructions per cy-
cle (IPC) indicates how data-intensive the computation is. If
a core cannot issue any instructions because it is waiting on
data to return from cache or memory, then the IPC will drop.
Alternatively, if there are significant computations per load,
then the IPC will be high, since the data loads are amortized.

Intuitively, pass selection should have a low IPC value,
since it involves iterating through an array of data and per-
forming few computations on them, and the CPU indeed has
a low IPC value for this phase. But the GPU has a high IPC
value. This is because the data-parallel operations map to
built-in constructs on the GPU that are specifically optimized
to perform this job, i.e., coalescing memory accesses of large
arrays quickly.

The screen space and sampling phases both have high
IPC values. This matches our intuition that these phases are
compute-bound, and that data movement is not the determin-
ing factor in performance. Further the elapsed time is consis-
tent: the GPU has significantly more FLOPs, and so the GPU
is much faster.

The compositing phase is the most noteworthy. Where the

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

GPU benefited from built-in support for coalesced memory
accesses in the pass selection phase, it is not receiving that
benefit here. Our implementation organizes the data so that
the samples for a given ray are spread out over memory. We
suspect this choice of data organization is leading to poor
performance, since each thread within a warp on the GPU
competes with the others to get the data they need. As a re-
sult, the IPC on the GPU is very low, and the phase is 50%
slower on the GPU than it is on the CPU.

Summarizing, our tests show the CPU behaving as ex-
pected, and the GPU doing well on compute-based activi-
ties. However, the data-intensive activities can be well ac-
celerated (pass selection) or not (compositing) based on the
specifics of the usage. So we see the evidence that portable
performance from data-parallel primitives is mostly effec-
tive, but there are still pitfalls.

6.1.4. Scalability

Table 3 shows the scalability of the algorithm on CPU1.
While adding threads does lead to a dropoff of 50% up to
24 threads (the number of CPU cores on the node), the algo-
rithm appears to scale generally well overall.

Threads 1 2 4 8 16 24
Raw Time 43.9 24.2 12.9 7.1 3.8 2.5
Total Time 43.9 48.4 51.7 57.0 60.2 60.7

Table 3: Times, in seconds, of a strong scaling study. The ex-
periments were run on CPU1, using the Enzo-10M data set
with the close up view and one pass. The times are reported
as “total time", meaning the raw time to render the image
multiplied by the number of threads. With this measurement,
perfect scaling gives a fixed total time over all threads, while
poor scaling leads to increases.

6.2. Comparisons With Community Software

6.2.1. HAVS

First, we reiterate that HAVS is a projected tetrahedron al-
gorithm and ours is a ray-casting algorithm. As a result, the
pictures produced will be different (but similar), and the fun-
damental performance bottlenecks will be different.

HAVS first sorts geometry, and then rasterizes that geom-
etry to the screen. The VTK implementation of HAVS does
the sorting step on the CPU, and then transfers the sorted ge-
ometry to the GPU for rendering. We felt comparing against
this implementation would be improperly handicapping the
projected tetrahedron implementation. Instead, we evaluated
a parallel radix sort on GPU1, measuring the sorting time
for different data sizes. The data presented here for HAVS
is then the time for our radix sort and the rendering time in
HAVS. Explicitly, the CPU sorting time in HAVS has been
replaced in these results by our GPU radix sort times.

0.0

0.5

1.0

Enz
o−

1M

Enz
o−

10
M

ne
k5

00
0

Enz
o−

80
M

Dataset

R
un

tim
e

(s
)

0.0

0.5

1.0

1.5

 E
nz

o−
1M

 E
nz

o−
10

M

 n
ek

50
00

 E
nz

o−
80

M

Dataset

R
un

tim
e

(s
)

0.0
0.5
1.0
1.5

 Enz
o−

1M

 Enz
o−

10
M

 ne
k5

00
0

 Enz
o−

80
M

Dataset

R
un

tim
e

(s
)

DPP−VR HAVS

Figure 4: Comparing the running times for our algorithm
and HAVS on GPU1 for multiple data sets. The left figure is
for a zoomed out view, and the right figure is for a close up
view.

Figure 4 shows the results from our study. Our algorithm
is mostly slower than HAVS when zoomed in (because so
many samples need to be evaluated), but faster than HAVS
when zoomed out (because there are fewer samples evalu-
ated). We note that the HAVS running times were highly
correlated to data size, and that our algorithm did not slow
down as quickly as HAVS when data size increased. That
said, HAVS was able to complete on all data sets, because it
did not need additional memory to store samples.

6.2.2. Unstructured Ray-Caster

Our next comparison was on the CPU to the unstructured
ray-caster implemented in VTK in the style outlined by
Bunyk et al. [BKS97]. We intended to run this study on Edi-
son, but their implementation exhibited poor scaling proper-
ties, and we felt the comparison was unfair. So we switched
to the CPU3 architecture, where their implementation per-
formed better.

This algorithm has a pre-processing step to trace face con-
nectivity. This step is implemented in serial and took over 50
minutes in the case of the Enzo-80M data set. The timings
for this pre-processing step are omitted in our results.

Figure 5 shows the results from our study. As a trend, we
were faster on larger data sets, and results were mixed on
smaller data sets. Overall, we concluded that our algorithm
performs comparably to the integration-based ray-caster.

6.2.3. VisIt

VisIt’s volume rendering algorithm is also sampling-based,
although it extracts samples by “rasterizing" geometry, i.e.,
by transforming cells into image space, then slicing them
by planes that are aligned with columns of pixels, and then
extracting lines along those planes in depth [CDM06]. The
VisIt volume renderer is designed for distributed-memory
parallelism; after sampling, it redistributes the samples to
do compositing. That said, it is not threaded or ported to

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

0

5

10

Enz
o−

1M

Enz
o−

10
M

ne
k5

00
0

Enz
o−

80
M

Dataset

R
un

tim
e

(s
)

0

5

10

15

20

Enz
o−

1M

Enz
o−

10
M

ne
k5

00
0

Enz
o−

80
M

Dataset
R

un
tim

e
(s

)

0
5

10
15
20

Enz
o−

1M

Enz
o−

10
M

ne
k5

00
0

Enz
o−

80
M

Dataset

R
un

tim
e

(s
)

DPP−VR Ray−Caster

Figure 5: Comparing the running times for our algorithm
to a sample-based on CPU3 for multiple data sets. The left
figure is for a zoomed out view, and the right figure is for a
close up view.

the GPU. As a result, we performed this comparison using
the CPU2 hardware configuration, namely NERSC’s Edison
machine, but limited to one core. Explicitly, we ran VisIt in
serial, and we ran our algorithm using only one core, mean-
ing both implementations had access to the same hardware.
The results of these runs are in Table 4.

Data & View SW SS S C TOT
E-1M/Far VisIt 0.47 12.9 2.34 15.7
E-1M/Far DPP-VR 0.17 8.4 2.60 11.5

E-1M/Close VisIt 0.47 23.5 5.35 29.4
E-1M/Close DPP-VR 0.13 24.9 5.88 31.1
E-10M/Far VisIt 3.94 48.3 0.81 53.0
E-10M/Far DPP-VR 1.41 13.4 2.60 19.2

E-10M/Close VisIt 4.03 51.8 1.74 57.5
E-10M/Close DPP-VR 1.06 35.3 5.88 43.9
N-50M/Far VisIt 24.7 355.5 0.58 391
N-50M/Far DPP-VR 6.93 24.3 2.92 42.8

N-50M/Close VisIt 24.8 395 1.02 421
N-50M/Close DPP-VR 4.93 49.7 5.88 68.7

E-80M/Far VisIt 33.6 351 0.31 385
E-80M/Far DPP-VR 11.4 27.6 2.60 55.7

E-80M/Close VisIt 33.6 361 0.62 396
E-80M/Close DPP-VR 8.62 55.9 5.88 84.1

Table 4: Time to volume render a single frame, in sec-
onds. SW indicates the software used, either VisIt, or our
data-parallel primitives algorithm (DPP-VR). SS denotes
the screen space transformation time (expensive since it is
done repeatedly in a multi-pass setting), S denotes the sam-
pling time, C denotes the compositing time, and TOT denotes
the total time to make the image.

The VisIt algorithm and our algorithm are the most
closely related of the three we studied, and performance be-
tween the two is similar. One difference is that VisIt uses a
three-dimensional rasterization algorithm and our algorithm

considers the samples within the tetrahedron’s bounding box
and does an inside-outside test. VisIt’s approach is benefi-
cial with large cells (i.e., Enzo-1M), since it is amortizing
its calculations. But our approach is faster with small cells
(i.e., Enzo-80M), since the overhead VisIt pays per cell is
no longer amortized away. Another difference is that our al-
gorithm ran with only a single pass, meaning that no early
ray termination was used. VisIt did use an early ray termina-
tion criteria, leading to lower compositing times.

On the whole, however, this comparison shows that the
data-parallel approach leads to better performance to an al-
gorithm that was optimized for one platform (in this case,
the CPU).

7. Conclusion

We presented a new algorithm for unstructured volume ren-
dering that was composed entirely of data-parallel primi-
tives. The algorithm performed comparably to community
standards on the GPU and CPU. Moreover, because the al-
gorithm used data-parallel primitives, the real advantages
are benefits in portable performance, longevity, and pro-
grammability. Each new algorithm re-thought in terms of
data-parallel primitives, including this one, enables the ad-
vancement of data-parallel primitive-based infrastructures
that can run on multiple architectures. Finally, we investi-
gated whether the promise of portable performance is be-
ing achieved, and found that it mostly was, although some
data-intensive patterns can lead the GPU to perform poorly
relative to its potential.

In terms of future work, we plan to extend the algo-
rithm for distributed-memory parallelism. Our work melds
well with the distributed-memory algorithm by Childs et
al. [CDM06]; the natural extension is to replace its sampling
and compositing phases with our data-parallel primitive ap-
proach. We believe this will lead to excellent performance,
including frame rates significantly below those observed in
this work, since the samples will be divided over the nodes,
and thus the computational workload per node will be re-
duced.

Acknowledgments

This work was funded in part by US National Science
Foundation grants ACI-1339840 and ACI-1339863. Hank
Childs is grateful for support from the DOE Early Career
Award, Contract No. DE-FG02-13ER26150, Program Man-
ager Lucy Nowell. Some work was performed by Oak Ridge
National Laboratory (ORNL), managed by UT-Battelle,
LLC for the U.S. DOE Department of Energy under Con-
tract No. DE-AC05-00OR22725 and funded in part by the
Advanced Scientific Computing Research (ASCR) program.
This study used resources of the National Energy Research
Scientific Computing Center, which is supported by the Of-

c© The Eurographics Association 2015.

M. Larsen, S. Labasan, P. Navrátil, J.S Meredith, and H. Childs / Volume Rendering Via Data-Parallel Primitives

fice of Science of the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231.

The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to
do so, for United States Government purposes. The De-
partment of Energy will provide public access to these re-
sults of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

References
[BH11] BELL N., HOBEROCK J.: Thrust: A productivity-

oriented library for CUDA. In GPU Computing Gems, Hwu W.-
M., (Ed.). Elsevier/Morgan Kaufmann, 2011, pp. 359–371. 2

[BKS97] BUNYK P., KAUFMAN A., SILVA C. T.: Simple, fast,
and robust ray casting of irregular grids. In Scientific Visualiza-
tion Conference, 1997 (1997), IEEE, pp. 30–36. 2, 5, 8

[Ble90] BLELLOCH G. E.: Vector Models for Data-Parallel Com-
puting. MIT Press, 1990. 2

[CBW∗12] CHILDS H., BRUGGER E., WHITLOCK B., MERED-
ITH J., AHERN S., PUGMIRE D., BIAGAS K., MILLER M.,
HARRISON C., WEBER G. H., KRISHNAN H., FOGAL T.,
SANDERSON A., GARTH C., BETHEL E. W., CAMP D., RÜBEL
O., DURANT M., FAVRE J. M., NAVRÁTIL P.: VisIt: An End-
User Tool For Visualizing and Analyzing Very Large Data. In
High Performance Visualization—Enabling Extreme-Scale Sci-
entific Insight. Oct. 2012, pp. 357–372. 2

[CDM06] CHILDS H., DUCHAINEAU M., MA K.-
L.: A Scalable, Hybrid Scheme for Volume Ren-
dering Massive Data Sets. In Proceedings of Eu-
rographics Symposium on Parallel Graphics and
Visualization (EGPGV) (Braga, Portugal, May 2006), pp. 153–
162. 2, 5, 8, 9

[CICS05] CALLAHAN S. P., IKITS M., COMBA J. L. D., SILVA
C. T.: Hardware-assisted visibility sorting for unstructured vol-
ume rendering. Visualization and Computer Graphics, IEEE
Transactions on 11, 3 (2005), 285–295. 2, 5

[CSS11] CHE S., SHEAFFER J. W., SKADRON K.: Dymaxion:
optimizing memory access patterns for heterogeneous systems.
In Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis (2011),
ACM, p. 13. 4

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Vol-
ume rendering. SIGGRAPH Computer Graphics 22, 4 (1988),
65–74. doi:http://doi.acm.org/10.1145/378456.
378484. 2

[FLK08] FISCHER P. F., LOTTES J. W., KERKEMEIER S. G.:
nek5000 Web page, 2008. http://nek5000.mcs.anl.gov. 5

[FMS00] FARIAS R., MITCHELL J. S., SILVA C. T.: Zsweep:
An efficient and exact projection algorithm for unstructured vol-
ume rendering. In Proceedings of the 2000 IEEE symposium on
Volume visualization (2000), ACM, pp. 91–99. 2

[HBC10] HOWISON M., BETHEL E. W., CHILDS H.: MPI-
hybrid Parallelism for Volume Rendering on Large, Multi-core
Systems. In Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV) (Norrköping, Sweden, Apr. 2010), pp. 1–
10. 3

[HBC12] HOWISON M., BETHEL E. W., CHILDS H.: Hy-
brid Parallelism for Volume Rendering on Large-, Multi-,
and Many-Core Systems. IEEE Transactions on Visualiza-
tion and Computer Graphics (TVCG) 18, 1 (Jan. 2012), 17–
29. doi:http://doi.ieeecomputersociety.org/
10.1109/TVCG.2011.24. 3

[KWN∗14] KNOLL A., WALD I., NAVRATIL P., BOWEN A.,
REDA K., PAPKA M. E., GAITHER K.: Rbf volume ray casting
on multicore and manycore cpus. In Computer Graphics Forum
(2014), vol. 33, Wiley Online Library, pp. 71–80. 3

[Lev88] LEVOY M.: Display of Surfaces from Volume Data.
IEEE Computer Graphics and Applications 8, 3 (May 1988), 29–
37. 2

[LMNC15] LARSEN M., MEREDITH J., NAVRÁTIL P., CHILDS
H.: Ray-Tracing Within a Data Parallel Framework. In Proceed-
ings of the IEEE Pacific Visualization Symposium (Hangzhou,
China, Apr. 2015). To appear. 3

[LSA12] LO L.-T., SEWELL C., AHRENS J.: PISTON: A
portable cross-platform framework for data-parallel visualization
operators. Eurographics Symposium on Parallel Graphics and
Visualization, pp. 11–20. 1, 2

[MAGM11] MORELAND K., AYACHIT U., GEVECI B., MA K.-
L.: Dax Toolkit: A Proposed Framework for Data Analysis and
Visualization at Extreme Scale. In Proceedings of the IEEE Sym-
posium on Large-Scale Data Analysis and Visualization (October
2011), pp. 97–104. 1, 2

[MAPS12] MEREDITH J. S., AHERN S., PUGMIRE D., SIS-
NEROS R.: Eavl: the extreme-scale analysis and visualization
library. 1, 2

[NVI15] NVIDIA: CUDA Profiler Web page, 2015.
http://docs.nvidia.com/cuda/profiler-users-guide. 5

[OBB∗04] O’SHEA B. W., BRYAN G., BORDNER J., NORMAN
M. L., ABEL T., HARKNESS R., KRITSUK A.: Introducing
Enzo, an AMR Cosmology Application. ArXiv Astrophysics e-
prints (Mar. 2004). arXiv:astro-ph/0403044. 5

[pap12] Performance application programming interface,
2012. URL: http://web.archive.org/web/
20080207010024/http://www.808multimedia.
com/winnt/kernel.htm. 5

[PM12] PHARR M., MARK W. R.: ispc: A spmd compiler
for high-performance cpu programming. In Innovative Parallel
Computing (InPar), 2012 (2012), IEEE, pp. 1–13. 4

[SCCB05] SILVA C. T., COMBA J. L. D., CALLAHAN S. P.,
BERNARDON F. F.: A survey of gpu-based volume rendering of
unstructured grids. Brazilian Journal of Theoretic and Applied
Computing (RITA) 12, 2 (2005), 9–29. 2, 3

[SCMO10] STUART J. A., CHEN C.-K., MA K.-L., OWENS
J. D.: Multi-gpu volume rendering using mapreduce. In Pro-
ceedings of the 19th ACM International Symposium on High Per-
formance Distributed Computing (2010), ACM, pp. 841–848. 3

[SML96] SCHROEDER W. J., MARTIN K. M., LORENSEN
W. E.: The design and implementation of an object-oriented
toolkit for 3D graphics and visualization. In VIS ’96: Proceedings
of the 7th conference on Visualization ’96 (1996), IEEE Com-
puter Society Press, pp. 93–ff. 2

[ST90] SHIRLEY P., TUCHMAN A.: A polygonal approximation
to direct scalar volume rendering, vol. 24. ACM, 1990. 2

[WMFC02] WYLIE B., MORELAND K., FISK L. A., CROSSNO
P.: Tetrahedral projection using vertex shaders. In Proceedings of
the 2002 IEEE symposium on Volume visualization and graphics
(2002), IEEE Press, pp. 7–12. 2

c© The Eurographics Association 2015.

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://dx.doi.org/http://doi.acm.org/10.1145/378456.378484
http://dx.doi.org/http://doi.acm.org/10.1145/378456.378484
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.24
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.24
http://arxiv.org/abs/astro-ph/0403044
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm

