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Figure 1: Renderings of three of the scientific data sets used in the performance study. The images were generated in 43 ms on an NVIDIA
Titan Black, using a ray tracer consisting entirely of data parallel primitives.

ABSTRACT

Current architectural trends on supercomputers have dramatic in-
creases in the number of cores and available computational power
per die, but this power is increasingly difficult for programmers to
harness effectively. High-level language constructs can simplify
programming many-core devices, but this ease comes with a poten-
tial loss of processing power, particularly for cross-platform con-
structs. Recently, scientific visualization packages have embraced
language constructs centering around data parallelism, with famil-
iar operators such as map, reduce, gather, and scatter. Complete
adoption of data parallelism will require that central visualization
algorithms be revisited, and expressed in this new paradigm while
preserving both functionality and performance. This investment has
a large potential payoff: portable performance in software bases
that can span over the many architectures that scientific visualiza-
tion applications run on.

With this work, we present a method for ray tracing consisting
of entirely of data parallel primitives. Given the extreme computa-
tional power on nodes now prevalent on supercomputers, we believe
that ray tracing can supplant rasterization as the work-horse graph-
ics solution for scientific visualization. Our ray tracing method is
relatively efficient, and we describe its performance with a series
of tests, and also compare to leading-edge ray tracers that are op-
timized for specific platforms. We find that our data parallel ap-
proach leads to results that are acceptable for many scientific visu-
alization use cases, with the key benefit of providing a single code
base that can run on many architectures.

1 INTRODUCTION

Supercomputing system design emphasis has moved from raw per-
formance to performance-per-watt, and as a result, supercomputing
architectures are becoming increasingly varied. While the preva-
lent architectures all feature wide vector units and many processing
cores per chip, the specific architectures are manifold, including:
programmable graphics processors (GPUs, e.g., NVIDIA Tesla);
many-core co-processors (e.g., Intel Xeon Phi); large multi-core
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CPUs (e.g., IBM Power, Intel Xeon); low-power architectures (e.g.,
ARM); hybrid designs (e.g., AMD APU); and experimental designs
(e.g., FPGA systems).

This diversity of hardware architectures is increasingly problem-
atic for software developers. Developers are typically not eager to
devote time to porting their software to each platform, and then
further to optimizing their software’s performance on each plat-
form. One solution to this problem is Domain Specific Languages
(DSLs). With DSLs, developers write their algorithm one time,
and then the burden of supporting many architectures and achiev-
ing good performance is shifted to the developers of the DSL. As-
suming that many projects make use of a DSL, this shift of bur-
den makes sense, because DSL development team can do the “hard
work” once and have wide benefit. Further, DSLs offer develop-
ers the possibility of “future-proofing,” since the DSL development
team will, ideally, port efficiently to new architectures as they arise.
Of course, DSLs can only succeed if they pick abstractions that si-
multaneously create enough flexibility for the software developers
who use them and also map to well-performing routines on the un-
derlying architectures.

Guy Blelloch’s book, Vector Models for Data-Parallel Comput-
ing [8], described a computing paradigm where a fixed set of prim-
itives — map, scan, reduce, gather, etc. — operated on vectors of
data. The model only included primitives that could be achieved
in time proportional to the logarithm of the size of the input vec-
tors. Blelloch’s book argued that vector models and data paral-
lelism were at the nexus of programming languages, algorithms,
and architecture. Twenty years later, the concept of data-parallel
primitives has only grown in popularity. Coming back to DSLs, the
NVIDIA Thrust library is a DSL that provides programmers with a
set of data-parallel primitives. Thrust natively can generate CUDA
or x86 code, and extensions for the Xeon Phi are possible.

With the rise of in situ processing, visualization and analysis rou-
tines must be run on the same architectures as the simulation code.
Further, they must fit within the constraints of the simulation code
— execution time, memory usage, network traffic, energy expendi-
ture — and so they must be efficient. To meet this need, a number
of new visualization libraries are emerging, including DAX [27],
EAVL [26], and PISTON [25]. These libraries are striving to be-
come hubs of software development, with large numbers of visu-
alization algorithms, and, at the same time, offer portable perfor-
mance over varied architectures. All three do this by exposing data-



parallel primitives to software developers and asking them to re-
think algorithms in this new environment. Each of these packages
could have been an excellent foundation for a ray tracer; we chose
EAVL because we were most familiar with development within that
framework.

With this paper, we explore ray tracing within the context of a
data-parallel framework. The contributions of this work are:

• A description of a ray tracing algorithm, novel because it is
composed entirely of data-parallel primitives in a manner that
enables portable performance on many-core nodes;

• Analysis of how this algorithm performs over various plat-
forms;

• A comparison of our data parallel ray tracer with leading-
edge platform-specific ray tracers, in an effort to better un-
derstand the performance gap that comes from implementing
algorithms within a data parallel framework; and

• Additional documentation that ray tracing is viable alternative
to rasterization for scientific visualization use cases.

2 RELATED WORK

2.1 Data Parallelism and Visualization
Data parallelism has been advancing at two somewhat distinct lev-
els. Large-scale data parallelism, particularly in the supercomput-
ing arena, commonly involves entire processes executing the same
program with decomposed chunks, communicating across a dis-
tributed network as necessary through the Message Passing Inter-
face [18, 19]. For scientific visualization, this approach has been
embraced by tools such as VisIt [13] and ParaView [5], and has
seen usage ranging from tens of thousands of processing elements
for production runs [14] to hundreds of thousands of processing ele-
ments for research experiments [20]. Fine grain data parallelism has
occurred at both coarse grain (threads) and fine grain (vector pro-
cessors and SIMD instructions), and current graphics processors ex-
hibit both of these techniques with thousands of concurrent threads.
Programming languages and APIs which expose these types fine-
grain parallelism explicitly include CUDA [30], OpenCL [22], Cilk
Plus [15], and Threading Building Blocks [37].

The parallel algorithm primitives described by Blelloch [8]
have led to higher-productivity application programming interfaces.
Through compile-time expansion of combined data-parallel pat-
terns and user-defined function objects (functors), the compiler
can heavily optimize the resulting code, resulting in flexible pro-
grammability and high performance across multi-core and many-
core devices. One of the most notable libraries to use this technique
is Thrust [6]. Domain knowledge can extend these techniques; for
example, domain specific languages like Liszt [16] for scientific
solvers and APIs like EAVL [26] for visualization and analysis pro-
vide one more level of productivity beyond domain-independent
collections of parallel primitives. See Section 3 for more informa-
tion on these primitives and their use.

In terms of re-thinking visualization algorithms in terms of node-
level fine-grained data parallel primitives, the work in DAX, EAVL,
and PISTON represent the community’s latest advancements. Fur-
ther, interest in ray tracing for large-scale scientific visualization
has increased recently [11, 12, 28], and its reputation as an “embar-
rassingly parallel” algorithm make it a prime candidate to explore
the usefulness of data parallel primitives.

In terms of previous work, Schroeder et al. [35] explored the gen-
eration of acceleration data structures for ray tracing two decades
ago when data parallel primitives were first a hot topic; our own
work contrasts with theirs, in that we are considering the ray trac-
ing component (which is complementary to their acceleration data
structures), and in that we present extensive performance results
on modern architectures. BnsView [23] demonstrated a ray trac-
ing system with portable performance over CPUs via language-

based abstractions that hide architecutural details; our work con-
trasts with theirs in our usage of data-parallel primitives, and our
support for additional architectures (specifically GPUs). Finally,
Northam et al. [29] demonstrated a MapReduce-based ray tracing
system for the cloud. While both systems share operators such
as “map” and “reduce,” their usage is as a mechanism for pro-
gramming to a distributed-memory (cloud) machine, while ours are
aimed at achieving portable performance on vector machines.

2.2 SIMD Ray Tracing
During a ray tracer’s execution, sibling rays often start at similar
points and travel in similar directions (e.g., camera rays, shadow
rays). This spatial coherence can be exploited through the use
of vectorized SIMD instructions to reduce the total number of in-
structions required for both ray traversal and ray intersection [39].
This fine-grained parallelism has formed the fundamental build-
ing block of many modern high-performance ray tracers (e.g.,
[3, 7, 31, 34, 39, 40]), including vendor-specific implementations
for multi-core and many-core architectures. We discuss implemen-
tations from NVIDIA and Intel in greater detail below.

2.2.1 NVIDIA OptiX
On GPUs, NVIDIA’s OptiX PrimeTMleads the way with a set of
high and low level APIs that supports a rich feature set, including
scene graph management and a variety of acceleration structures to
meet the needs of static and dynamic scenes. The newly introduced
OptiX Prime in Optix V3.5 replaces the previous rtuTraversal API
that has been available in the API since version 2.1. The OptiX
Prime kernels are based on the hand-tuned kernels by Aila et al. [3,
4], and they leverage features of the recent Kepler GPU architecture
for improved per-ray performance.

In order to maximize SIMD efficiency on the GPU, intra-warp
thread polling is used to coordinate the behavior of threads, which
either all traverse inner nodes of the BVH or intersect with the tri-
angles contained within the leaves. Using this type of coordinated
action, SIMD efficiency is increased by reducing the number of
predicated instructions, thus improving ray throughput. The OptiX
code was also organized to reduce the number of instructions gen-
erated by the compiler, and, in some cases, in-line assembly was
used. Since the OptiX kernels are not public, it is unknown if this
is included in the release, but seems likely. Another source of in-
efficiency on the GPU is dead rays within a warp. Since a warp
terminates when all of the threads within it have completed, utiliza-
tion decreases as more rays terminate. Alia and Laine [3] proposed
the use of dynamically fetching work. Dynamic fetching of rays
increases the SIMD efficiency on the Kepler architecture by replac-
ing dead rays if the number of dead rays reaches some specified
value [4], but is not beneficial on all architectures.

2.2.2 Intel Embree
On the CPU, Embree is a low-level API developed by Intel Labs
that contains a number of public ray tracing kernels optimized for
CPUs and the Intel Xeon Phi co-processor. These kernels lever-
age CPU support for the vector instruction sets SSE and AVX, and
are “hand optimized” to further improve performance [40]. Us-
ing vector instruction allows for the efficient traversal of a BVH
with branching factors that match the width of the SIMD lanes [38].
The axis-aligned bounding boxes (AABBs) of the child nodes are
fetched and tested within the CPU vector units, and, using the same
technique, a group of triangles can be tested against a single ray
at once. Finally, the code is highly optimized, including usage of
intrinsics, compiler hints, and goto statements.

3 OVERVIEW OF DATA PARALLELISM

The data parallel primitives used in the ray tracer consist of map,
gather, scatter, reduce, and scan. In combination with user defined



functors, these primitives are combined to produce algorithms that
execute on arbitrary architectures without the knowledge of their
underlying details. Though some understanding of the architec-
tures — such as the memory hierarchy and available resources —
could be beneficial to performance, it is not included in the data
parallel model. Memory transfers, in the context of a GPU, are also
abstracted away, freeing the user of the responsibility for copying
arrays from the host to device and vice-versa.
3.1 Map
In its simplest form, the map operation performs a single function
on every element of an array and outputs an equally sized array
containing the transformed elements. In more complex forms, map
can have multiple input and output arrays, provided all arrays have
the same size.

Usage Within Ray-Tracing Algorithm: The map operation is
used in many locations in the ray tracer. Primary ray generation is
a map operation, with the input array being the index of each ray,
and the functor initialized with the screen dimensions and camera
vectors. The functor then computes the ray direction and stores it
in an output array containing the X, Y, and Z components for each
ray. Other usages of the map operation include ray intersection and
color accumulation functions.
3.2 Gather and Scatter
Gather and scatter copy a set of items from the input arrays to the
output arrays, potentially performing some operation on the copied
value. Here, the inputs and outputs may differ in length, as the map-
ping is determined by an array of indices passed by the caller. In
gather, the index array is the same length as the output arrays, and
the index specified for each output value specifies which input ele-
ment to read from. In scatter, the index array is the same length as
the input arrays, and the index specified for each input value speci-
fies the location into which to write it. Since it is possible for scatter
to write to the same location from multiple threads, the operation
can result in race conditions, so use of scatter generally requires
more care than gather. Gather can also be faster, particularly when
going from a longer array to a shorter one.

Usage Within Ray-Tracing Algorithm: Gather is used to col-
lect color values from all rays contributing to the same pixel to per-
form anti-aliasing, and it is used to remove dead rays and compact
remaining rays into a smaller memory footprint. Scatter is used
within the ray tracer to perform ambient occlusion. Specifically,
we transform ray intersection points into directionally random rays
about the hemisphere defined by the point normal, and then scatter
them into an array n times larger than the input array (where n is
the number of samples per intersect point). The ray tracer also uses
a scatter operation to expand previously compacted arrays back to
their original size. For example, the ray tracer scatters color values
out to the frame buffer, so that a map operation can accumulate their
contribution to the final image.
3.3 Reduce
A reduce operation combines all input values in some way to gen-
erate a single output value. Although user-defined functors are per-
mitted (as long as they obey the associative property), reduction is
most commonly performed using pre-defined functors, such as ad-
dition (to sum the values in the array) or minimum and maximum
(to find extrema within an array).

Usage Within Ray-Tracing Algorithm: The reduce operation
is used within the stream compaction step to count the number of
output elements, so new arrays may be allocated. The operation
can also be used to quickly calculate the AABBs of large groups of
geometric primitives [24].
3.4 Scan
The scan operator is similar to reduce. It make use of a binary oper-
ator, but instead of producing in a single value like reduce, scan pro-
duces an output array of the same length as the input array, where

each element is the result of the reduction up until that location in
the array. For example, the result of scan using the addition opera-
tor is called a prefix sum [8], where the element at position i is the
result of the partial sum of elements up to position i. (The inclusive
variant includes element i in this partial sum; exclusive does not.)
A variant of scan called segmented scan performs the scan within
only partitioned sections of the array, and is useful to implement
steps of complex algorithms like parallel quicksort.

Usage Within Ray-Tracing Algorithm: In our ray tracing algo-
rithm, scan is only used to assist with stream compaction. However,
scan is very useful, and may be used more in the future. Methods
for sorting rays into coherent frustrums for better SIMD efficiency
have already been implemented using the scan and other data par-
allel primitives [17, 31, 40]. Furthermore, scan can be used to build
histograms, conduct binary searches, construct k-D trees, and many
more [8].

4 ALGORITHM DESCRIPTION

In this section, we describe our ray tracing algorithm based on the
data parallel primitives described in the previous section. We im-
plement a modified breadth-first ray tracer that processes rays by
type within each ray generation, similar in spirit to Boulos et al. [10]
though without ray sorting. Rays are processed via a pipeline model
that maps well onto the data parallel primitive substrate. We present
these pipeline stages below. Note that we add image contributions
to the framebuffer as they are generated at each stage using the ad-
ditive formulation of the rendering equation described by Pharr et
al. [32].

Finally, note that this ray-tracing algorithm is for a single node,
and it assumes access to all mesh data. In a parallel setting, we
would assume that data is decomposed over nodes, and that the
ray-tracing algorithm would be run on each node. We envision two
mechanisms for this parallelism: (i) OpenGL/rasterization-style
rendering where there are no secondary rays, and so the produced
images can be used as input to a distributed-memory compositer or
(ii) extensions to this algorithm where secondary rays are passed
between nodes (i.e., as in [28]).

4.1 Initial Ray Generation
Camera rays are generated in one pass according to a given camera
and lens model and stored in a contiguous array for processing. For
our experiments described in Section 6, we use a pinhole camera
with rays ordered by a Morton-curve traversal of the framebuffer.
Our algorithm supports both single-ray pixel sampling and four-ray
pixel super-sampling.

4.2 Traversal and Intersection
Within each generation of rays, the rays are separated by type
(shadow, reflection, ambient occlusion, etc), and each type is pro-
cessed in a separate pipeline invocation. For each invocation, the
specific distribution of work across the hardware is determined by
the data parallel primitive engine. The traversal and intersection
of each ray follows the if-if algorithm described by Aila and
Laine [3], with minor modifications to operate within the data par-
allel primitive framework. For each ray that intersects some geom-
etry, the geometry index and intersection point are stored for use in
later pipeline stages. Rays that fail to intersect any geometry are
flagged to prevent further processing.

4.3 Specular Reflections
If the material of the intersected geometry contains a specular com-
ponent, our algorithm generates a reflection ray. All generated re-
flection rays are stored in a contiguous array and processed together,
and the current ray generation information is pushed on a stack for
use by later pipeline stages. Any resulting intersections are pro-
cessed recursively until no more specular rays are generated, either



because there are no intersections or because the remaining rays
have reached the bounce limit.
4.4 Stream Compaction
After the specular reflection check above, our algorithm can per-
form an optional stream compaction step to coalesce the active rays
together in memory. This compaction can improve the amount
of useful work performed when there are a large number of inac-
tive rays that would otherwise be processed but have their results
masked away. Compaction is useful both for scenes where a large
number of primary rays fail to intersect with geometry and for long-
lived, divergent secondary rays, like those used in Monte-Carlo
global illumination estimation, where the time spent compacting
the arrays is amortized over the computation savings from culling a
large number of dead rays (see, e.g., [10]).
4.5 Ambient Occlusion
For each successful intersection, our algorithm performs an am-
bient occlusion pass by casting a user-defined number of random
hemispheric sample rays around each intersection point (our exper-
iments use a default of four samples). All sample rays within a
generation are scattered to a single contiguous array and are pro-
cessed together. While the random sample rays typically diverge
from their origin, we keep the sampling distance sufficiently short
so that the limited distance that these rays travel within the scene
keep data accesses coherent around each intersection point.
4.6 Shadows
For each successful non-shadow intersection, our algorithm also
tests visibility between each intersection point and the point light
sources defined in the scene. For each visibility query that suc-
ceeds (i.e., the ray misses all potentially intervening geometry), the
algorithm performs Blinn-Phong shading [9] and adds the resulting
color contribution to the appropriate pixel in the framebuffer.
4.7 Pseudocode

01 r a y s := rayGenera t ionMap ( eye ) / / i n i t i a l r a y s
02 rayDep th =0
03 whi le rayDepth<maxDepth
04 h i t s := map<i n t e r s e c t >( r a y s )
05 ( r e f l e c t e d R a y s , i n t e r s e c t s ) :=

map<r e f l e c t >( h i t s )
06 r a y s := r e f l e c t e d R a y s
08 i f ( compactOn ) compac tAr rays ( )
09
10 / / amb ien t o c c l u s i o n
11 occRays := s c a t t e r <occRayGen>

( i n t e r s e c t s , normals , numSamples )
12 h i t s := map<i n t e r s e c t >(occRays , maxDis tance )
13 o c c l u s i o n := g a t h e r ( h i t s , numSamples )
14 shadowHi t s := map<i n t e r s e c t >( i n t e r s e c t s , l i g h t s )
15 / / g e n e r a t e and a c c u m u l a t e rgb v a l u e s
16 rgb := map<shade r>

( i n t e r s e c t s , o c c l u s i o n , shadowHi t s )
17 c o l o r B u f f e r := map<accum>( rgb , c o l o r B u f f e r )
18 rayDep th ++
19 / / end w h i l e
20 s c r e e n B u f f e r := g a t h e r<a n t i A l i a s >( c o l o r B u f f e r )
21
22 compac tAr rays ( )
23 t h r e s h := map<t h r e sho ldDeadRays >( r a y s )
24 s c a n R e s u l t := e x c l u s i v e S c a n ( t h r e s h )
25 newIndexes := r e v e r s e I n d e x ( s c a n R e s u l t )
26 a r r a y s := g a t h e r ( newIndexes , a r r a y s )

Figure 2: Pseudocode for our ray-tracing algorithm made up of
data-parallel primitives. Parallel primitives are shown in the form :
primitive<functor>(args)

The functions referenced in this pseudocode are described in
more detail online [2].

5 STUDY OVERVIEW

5.1 Test configurations
Our study was designed to test the viability of a data-parallel ap-
proach for ray tracing, and also to better understand the gaps in-
cumbent to using this approach compared with architecture-specific
ray tracers. Our tests varied four factors:

• Data set (12 options)
• Hardware architecture (7 options)
• Ray tracing software (3 options)
• Workload (3 options)

Not all combinations of options made sense, since not all ray
tracing software ran on all architectures, and since not all work-
loads were needed for our evaluations. As a result, we tested 246
configurations (i.e., not 12×7×3×3 = 756).

5.1.1 Data set
Our pool of data sets consisted of scientific visualization data and
standard ray tracing benchmarks:

• Richtmyer-Meshkov (RM): an isosurface of density on a
time-slice of a RM-instability simulation from Lawrence Liv-
ermore National Laboratory. We considered five different
sizes:

– RM 3.2M: 3.2M triangles from a 41M cell regular grid
(400x400x256).

– RM 1.7M: 1.7M triangles from a 17M cell regular grid
(256x256x256).

– RM 970K: 970K triangles from a 8M cell regular grid
(200x200x200).

– RM 650K: 650K triangles from a 3M cell regular grid
(192x144x144).

– RM 350K: 350K triangles from a 2M cell regular grid
(128x128x128).

• Lead Telluride : an isosurface from the charge density of a
Lead Telluride (PbTe) crystal lattice provided by Oak Ridge
National Laboratory.

– LT 350K: 351K triangles from a 1.4M cell regular grid
(113x113x133)

– LT 372K: 372K triangles from a 1.4M cell regular grid
(113x113x133)

• Seismic: 6.2M triangles generated from SPECFEM3D repre-
senting wave speed perturbations measured by seismograms
provided by Oak Ridge National Laboratory.

• Stanford Dragon: a 100K triangle model based on the
dragon from the Stanford Computer Graphics Laboratory.

• Conference Room: a 331K triangle model of a conference
room at Lawrence Berkeley National Laboratory created by
Anat Grynberg and Greg Ward.

• Dabrovic Sponza: a 66K triangle model of the interior of a
building, created by Marko Dabrovic.

• Happy Buddha: a 1.2M triangle model from the Stanford
Computer Graphics Laboratory.

Figure 3 shows renderings of the Richtmyer-Meshkov data sets.

5.1.2 Hardware architecture
We ran on seven hardware architectures: four GPU, two CPU, and
a coprocessor. Of the GPUs, two were from NVIDIA’s Kepler line,
one from the Fermi line, and one from the Maxwell line. The hard-
ware architectures were:



Figure 3: Ray tracings of the Richtmyer-Meshkov isosurfaces used
in this study, using the RM 3.2M version of the data. The left im-
age represents the results of basic intersection tests (i.e., WORK-
LOAD1 from Section 5.1.4) and the right image contains the pic-
tures produced from the shaded pictures (i.e., WORKLOAD2).

• GPU1: A desktop computer with a GeForce GTX Titan
Black, running 2,688 CUDA cores at 837MHz, 6GB of video
memory, and a memory bandwidth of 288.4 GB/s.

• GPU2: The Texas Advanced Computing Center’s (TACC)
Maverick machine using its Tesla K40M, running 2,880
CUDA cores at 745 MHz, 12GB of video memory, and a
memory bandwidth of 288.4 GB/s.

• GPU3: A desktop computer with a GeForce GTX 750Ti, run-
ning 640 CUDA cores at 1020 MHz, 2 GB of video memory,
and a memory bandwidth of 86.4 GB/s.

• GPU4: A laptop computer with a GeForce GT 620M, running
96 CUDA cores at 625 MHz, 1 GB of video memory, and a
memory bandwidth of 28.8 GB/s.

• CPU1: A desktop computer with Intel’s i7 quad-core archi-
tecture (model 4770K), running at 3.5 GHz and with 32GB of
memory.

• CPU2: The TACC Maverick machine with a Intel Xeon E5
CPU (model E5-2680 V2), containing ten cores running at
2.7GHz and with a total of 256GB of memory.

• MIC: An Intel Xeon Phi Coprocessor 3120 containing 57
cores running at 1.1GHz with 6GB of memory.

5.1.3 Ray tracing software

We considered three different implementations of ray tracing soft-
ware:

• An EAVL-based implementation of the ray tracer described in
Section 4.

• NVIDIA’s OptiX Prime (see Section 2.2.1)
• Intel’s Embree (see Section 2.2.2)

We now describe, for each package, the options for kernel and
Bounding Volume Hierarchy (BVH), the quality of which greatly
affects the number of triangle intersection tests.

EAVL: The EAVL-based ray tracer uses a split BVH [36],
adapted from Alia and Laine’s publicly available implementa-
tion [3]. BVH construction uses a split alpha of 1e−6 and a max-
imum leaf size of eight triangles. BVH construction is performed
in serial on the CPU and construction time is not measured. Also,
padding was not used in the final flat array representation of the
BVH and is a possible area for future improvement.

Embree: Embree offers a wide variety of kernels for intersec-
tion. We tested three different Embree configurations and found
that, on the CPU1 architecture, the most performant choice was
a branching factor of four, performing four triangle intersections
at once, and using Embree’s high-quality BVH (i.e., “SBVH”).
While Embree provides kernels for both single ray and packet-
based traversal, single ray traversal was used to match the algorithm
employed by OptiX Prime and the EAVL based ray tracer. We re-
used this Embree configuration for the CPU2 architecture for con-
sistency, although we note that a different configuration could have
led to increased performance. Finally, we used the gcc compiler,

not Intel’s ICC compiler, which advertises 10% to 20% improve-
ments in performance. (The EAVL code also was run with gcc and
also could have benefited.)

OptiX Prime: We used the default OptiX Prime configura-
tion. (OptiX Prime does not have many configuration options, com-
pared to Embree.) OptiX Prime’s acceleration structure is the TR-
BVH [21].

5.1.4 Workload
We considered three workloads:

• WORKLOAD1: Tracing rays with no shading.
• WORKLOAD2: Tracing rays with shading.
• WORKLOAD3: Tracing rays with all features enabled.

WORKLOAD1 corresponds to conventional ray tracing perfor-
mance studies, where evaluation is based on how many millions of
rays can be traced in one second. For this workload, the work for
each ray is simply to calculate the index of the nearest intersected
triangle and distance to the intersection point.

WORKLOAD2 corresponds to a scientific visualization use
case, which is focused on meeting interactivity goals — a fixed
frame rate with basic shading — for end users. For WORKLOAD2,
the work for each ray is to calculate the index of the nearest in-
tersected triangle, to calculate the exact intersection point and its
barycentric coordinates, to interpolate the normal at the intersection
using the barycentric coordinates, and then to calculate the shading
(ambient, diffusion, specular) using the normal and the triangle’s
material properties, which are fetched from an array. Shading in-
cludes light attenuation factors and additional color using interpo-
lated scalars that are indexed into a color map.

WORKLOAD3 also corresponds to a scientific visualization use
case, but includes all features of the EAVL based implementation.
The workload adds ambient occlusion with four samples per pixel,
shadows, anti-aliasing, and stream compaction on top of the second
workload.

5.2 Testing Procedure
When comparing ray tracing software, we used a shared software
infrastructure for all tests, regardless of ray the tracing software
package being tested. This software infrastructure was responsible
for generating rays and interpreting results. The individual ray trac-
ing software packages were only responsible for calculating inter-
sections. We felt it was appropriate to use uniform infrastructure to
surround the intersection calculation, since intersection calculation
is understood to be the dominant term in ray tracing.

For each scene, we chose three or four camera positions, picking
positions from the front of a data set, from the back, and zoomed in.
For each of these camera positions, we performed one-hundred fifty
renderings (all producing identical pictures). The first fifty rounds
were warm-ups, and the latter one hundred rounds were used for
measurement.

All tests were conducted at 1080P resolution (1920x1080). For
GPU tests, data was transferred to the device once and output was
retrieved only after all rounds were completed. Rays were sorted
into Morton order to increase SIMD efficiency. On the CPU, trans-
fer was a non-issue and the rays were left unsorted.

5.3 Measurements
For WORKLOAD1, we measured the number of primary ray inter-
sections that were performed in one second. This number ranged
from the low millions on CPUs to hundreds of millions on GPUs.
For WORKLOAD2 and WORKLOAD3, we measured the time to
render an image, although this time does not include readback from
the device or display to a monitor. For all workloads, the numbers
reported are the average over each camera position and over the



RM RM RM RM RM LT LT Seismic Stanford Conf- Dabrovic Happy
3.2M 1.7M 970K 650K 350K 350K 372K Dragon erence Sponza Buddha

GPU1 (Titan Black) 59.1 62.3 68.0 73.5 79.5 66.5 57.8 51.3 86.1 76.9 69.7 77.1
GPU2 (Tesla K40) 38.9 40.9 44.0 47.9 52.2 43.4 38.1 34.4 55.3 48.5 46.2 50.1

GPU3 (GTX 750Ti) 21.8 22.8 24.0 25.6 27.1 21.6 21.9 20.3 28.1 25.7 24.7 26.9
GPU4 (GT 620M) 3.7 3.9 4.3 4.7 5.3 4.3 3.8 3.3 5.2 5.3 4.9 5.0

CPU1 (Intel i7) 2.0 2.1 2.2 2.5 2.4 2.1 2.1 2.0 2.4 2.0 1.9 2.5
CPU2 (Intel Xeon) 5.5 5.9 6.2 6.7 6.6 5.8 5.7 5.7 6.8 5.7 5.4 6.8

Table 1: This table shows the frames per second for the EAVL-based ray tracer to do a rendering workload with shading, i.e., the performance
expected when approximating traditional rasterization. The rows correspond to hardware configurations (see Section 5.1.2) and the columns
correspond to data sets (see Section 5.1.1).

RM RM RM RM RM LT LT Seismic Stanford Conf- Dabrovic Happy
3.2M 1.7M 970K 650K 350K 350K 372K Dragon erence Sponza Buddha

CPU2 (Intel Xeon) 1.7 1.8 1.9 2.3 2.3 1.7 1.7 1.6 2.3 2.0 1.8 2.3
GPU1 (Titan Black) 10.3 9.7 10.6 14.6 15.6 9.0 8.5 9.6 16.1 12.4 9.6 16.3

Table 2: This table shows the frames per second for the EAVL-based ray tracer to do WORKLOAD3, i.e., all features of the EAVL-based ray
tracer.

hundred rounds for each of these positions. No initialization time,
such as BVH construction, is included in the averages.

6 RESULTS

Section 6.1 describes the performance we observed for scientific vi-
sualization workloads using our data parallel ray tracer. Section 6.2
compares with leading edge ray tracers.

6.1 Performance of the Data-Parallel Approach
Table 1 shows the frames per second achieved with the EAVL-based
ray tracer while rendering with shading (i.e., WORKLOAD2),
while Tables 2 shows the rates achieved with full lighting ef-
fects (i.e., WORKLOAD3). WORKLOAD2 provides images that
are substantially similar to the OpenGL/rasterization-based images
produced by GPUs for most scientific visualization use cases, while
WORKLOAD3 reflects rendering effects that benefit high-quality
visualizations.

The Intel i7 architecture (CPU1) had a poor frame rate, rang-
ing from 1.9 to 2.5 frames per second (FPS), as did the GT 620M
(GPU4), which ranged from 3.3 to 5.3 FPS. However, these ar-
chitecture are not representative of those found on modern super-
computers, because they lack sufficient computational power. The
remaining architectures (GPU1, GPU2, GPU3, and CPU2) fared
quite well, with the Xeon (CPU2) having a minimum of 5.4 FPS,
and the GPUs all exceeding 20 FPS. Further, the Xeon rendered
above 5 FPS, but would be over 10 FPS at 1024x1024.

In all, we conclude that ray tracing is a viable alternative to
OpenGL/rasterization in a high-performance computing context,
since compositing often limits parallel rendering’s performance to
similar overall frame rates. Further, the data parallel approach it-
self is shown to be viable for this task, which is important because
scientific visualization programs need to run on many architectures,
and our data parallel approach can provide portable performance.

6.2 Comparisons with Leading Ray-Tracers
We compare separately with OptiX Prime and Embree using
WORKLOAD1.
6.2.1 OptiX Prime
Table 3 compares the performance between our data parallel ray
tracer and OptiX Prime. OptiX Prime is clearly superior on the Ke-
pler architectures (GPU1 and GPU2), and calculates between two
and four times as many rays per second as our data parallel ray

tracer. Optimization specifically for GPU1 and GPU2 provide an
additional 25% performance increase over other GPUs [1]. On the
Fermi and Maxwell architectures (GPU3 and GPU4), our data par-
allel ray tracer fares better, and outperforms OptiX Prime occasion-
ally. While OptiX Prime’s performance on the Keplers is extremely
impressive, we note that the frames per second achieved on these
data sets by our ray tracer (see Section 6.1) exceeded 20 FPS.

Saying it another way, Optix Prime’s large number of triangle
intersection tests can either enable direct lighting (i.e., the basic
OpenGL lighting model) at frame rates well within the constraints
traditionally imposed by distributed-memory compositing, or, alter-
natively, they can lead to significant additional lighting effects (e.g.,
ambient occlusion, area light sources for soft shadows, etc.) or dif-
ferent rendering paradigms (e.g., Monte Carlo techniques). While
direct lighting is typically the goal for scientific visualization use
cases, the latter approaches can both lead to insight and improve
aesthetics. Finally, we believe that the performance gap can be at-
tributed to the use of the GPU texture units in addition to methods
used to maximize SIMD efficiency with GPUs.

6.2.2 Embree
Table 4 compares Embree and our data parallel ray tracer, and
shows that Embree was approximately twice as fast in all configu-
rations. We attribute the performance gap, in part, to Embree’s use
of architecture specific SIMD vector instructions which the EAVL
OpenMP back-end is unable to capitalize on. In a similar vein to
the observations made in Section 6.2.1, the frame rates we observed
on CPU2 were at the interactivity threshold for scientific visualiza-
tion use cases. That said, these results are closer to the threshold,
and additional performance could be useful. Fortunately, architec-
tural trends are pushing towards more and more compute power per
node, meaning that advances in hardware should naturally push the
frame rates even higher.

6.3 Emerging Architecture: MIC
Finally, we measured performance on the Intel Xeon Phi. Unlike
the rest of our tests, these experiments used the Intel compiler, a
requirement for MIC usage. Our usage was as a native application
running directly on the Xeon Phi (i.e., not from a host running the
main program offloading compute-intensive routines to the Phi).

Table 5 shows the performance for WORKLOAD1. Our first
set of runs used EAVL’s OpenMP back-end, which is primarily in-
tended for multi-core CPUs. This led to disappointing results, with



GPU1 (Titan Black) GPU2 (Tesla K40)
EAVL OptiX EAVL OptiX

Prime Prime
RM 3.2M 189.1 333.1 124.8 264.5
RM 1.7M 203.2 319.9 136.6 266.8
RM 970K 228.5 437.1 152.8 347.1
RM 650K 262.9 538.4 172.9 420.4
RM 350K 300.7 564.4 197.5 436.5
LT 350K 230.1 431.4 150.8 357.6
LT 372K 187.3 394.9 124.7 322.4

Seismic 160.3 340.1 106.3 267.8
Dragon 344.9 667.5 224.1 533.9

Conference 299.4 673.8 197.1 524.8
Sponza 272.0 499.4 180.0 394.4
Buddha 282.0 608.7 185.5 477.3

GPU3 (GTX 750Ti) GPU4 (GT 620M)
EAVL OptiX EAVL OptiX

Prime Prime
RM 3.2M 86.4 96.8 11.6 10.0
RM 1.7M 94.4 110.9 12.7 11.1
RM 970K 103.9 123.5 14.4 15.2
RM 650K 119.5 151.9 16.7 17.9
RM 350K 134.5 155.0 20.4 20.8
LT 350K 103.3 119.3 15.0 16.4
LT 372K 88.5 111.3 12.2 14.0

Seismic 77.9 111.6 9.7 n/a
Dragon 144.7 197.7 20.2 27.3

Conference 127.4 180.4 21.9 29.2
Sponza 116.9 134.2 19.3 21.3
Buddha 130.9 176.0 18.1 22.8

Table 3: These tables show the number of rays per second (in mil-
lions) for the EAVL-based ray tracer and NVIDIA’s OptiX Prime.
The top and bottom tables correspond to Kepler and Fermi GPUs,
respectively. The rows correspond to data sets (see Section 5.1.1)
and the columns correspond to hardware configurations (see Sec-
tion 5.1.2). This only measures intersection time (a common ray
tracing benchmark) and there was no shading for WORKLOAD1.

rates that were not only far below CPU2, but also were below the
rates of CPU1. However, this was likely because the Phi’s vector
unit was not being utilized. We then ran a second set of experiments
with a prototype version of EAVL using a back-end based on Intel’s
ISPC [33], an open-source compiler that is capable of utilizing the
Phi’s vector unit. The resulting runs were dramatically better, with
speedups ranging from 5X to 9X over OpenMP, and outperforming
CPU2 in all cases. This experience supported one of the premises of
this paper: by focusing on developing a data-parallel algorithm, we
were able to achieve encouraging performance numbers via an im-
proved back-end provided by the domain-specific language, rather
than providing separate implementations of the algorithm.

We note that Embree can run on the MIC. We will compare Em-
bree and our EAVL-based ray tracer in future work. (Note to re-
viewers: we could not get Embree ported to the Phi and are engag-
ing with the Intel team.)
7 CONCLUSION AND FUTURE WORK

We described an algorithm for ray tracing built on data parallel
primitives and performed a series of experiments that demonstrated
that this ray tracer can be used in the place of OpenGL/rasterization
for scientific visualization use cases. We believe this algorithm to
be novel, as it is the first algorithm constructed entirely from data
parallel primitives, although we recognize that the spirit of the al-
gorithm is similar to preceding, non-hardware-agnostic approaches.

CPU1 (Intel i7) CPU2 (Intel Xeon)
EAVL Embree EAVL Embree

RM 3.2M 9.1 21.4 28.3 48.4
RM 1.7M 9.5 21.8 27.0 52.4
RM 970K 10.3 24.4 29.3 59.1
RM 650K 13.0 28.8 35.6 65.9
RM 350K 11.9 27.7 33.3 64.8
LT 350K 9.7 20.1 27.7 51.9
LT 372K 9.4 21.2 26.1 56.5

Seismic 9.4 18.1 25.2 43.2
Dragon 13.3 30.9 37.2 67.8

Conference 9.7 33.9 28.3 70.4
Sponza 8.0 17.2 24.0 50.5
Buddha 13.7 37.7 37.3 73.9

Table 4: This table shows the number of rays per second (in mil-
lions) for the EAVL-based ray tracer and Intel’s Embree prod-
uct. The rows correspond to data sets (see Section 5.1.1) and the
columns correspond to hardware configurations (see Section 5.1.2).
This only measures intersection time (a common ray tracing bench-
mark) and there was no shading for these workloads.

Further, we believe this result is impactful, because scientific visu-
alization software developers are striving to build large, community
projects that run on many, many architectures. New, portably per-
formant algorithms such as our own help bolster this effort.

We also compared our ray tracer to leading edge ray tracers, to
better understand the performance gap incumbent to a hardware-
agnostic approach. Although the performance gap was significant
(ranging from 1.6X to 2.6X for likely HPC architectures on scien-
tific data sets), it was small enough to provide encouragement that
the data parallel approach — and its benefits in portable perfor-
mance, longevity, and programmability — are a good direction.

In terms of future work, we would like to better understand the
causes for the performance gap. Is it because the leading edge ray
tracers have made such a significant investment? (And thus a data
parallel approach might close the gap.) Or is it because the leading
edge ray tracers make use of architectural-specific features that are
outside of the hardware-agnostic philosophy of data parallelism?
(And thus a data parallel approach can never catch up.) Likely,
the answer is a combination of the two. We have performed some
preliminary work, and found that adding features such as texture
support does make a significant difference. In another direction for
future work, we would like to explore additional architectures, and
further understand whether portable performance is maintained.
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