
Eurographics Symposium on Parallel Graphics and Visualization (2016)
W. Bethel, E. Gobbetti (Editors)

External Facelist Calculation with Data-Parallel Primitives

Brenton Lessley1, Roba Binyahib1, Robert Maynard2, and Hank Childs1,3

1University of Oregon, Eugene, 2Kitware, Inc., 3Lawrence Berkeley National Laboratory

Abstract
External facelist calculation on three-dimensional unstructured meshes is used in scientific visualization libraries
to efficiently render the results of operations such as clipping, interval volumes, and material boundaries. With
this study, we consider the external facelist algorithm on many-core architectures. We design and introduce two
novel approaches, one based on sorting and one based on hashing. Both of these algorithms consist entirely of
data-parallel primitive operations, in an effort to achieve portable performance across different architectures.
We study the performance of the algorithms via experiments varying over data set, hardware, and other factors.
Overall, we observe that the hashing-based implementation achieves better runtime performance for the majority
of configurations, while also achieving the most-stable performance on highly unstructured data sets.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming I.3.3 [Computer Graphics]: Picture/Image Generation—Display algo-
rithms

1. Introduction

This work considers External Facelist Calculation (EFC) in
the paradigm of Data-Parallel Primitives (DPP). We moti-
vate each topic independently, and then motivate the purpose
for joint consideration and the corresponding research chal-
lenges.

1.1. External Facelist Calculation

Scientific visualization algorithms vary regarding the topol-
ogy of their input and output meshes. When working with
three-dimensional volumes as input, algorithms such as iso-
surfacing and slicing produce outputs (typically triangles
and quadrilaterals) that can be rendered via traditional sur-
face rendering techniques, e.g., rasterization via OpenGL.
Algorithms such as volume rendering operate directly on
three-dimensional volumes, and use a combination of color
and transparency to produce images that represent data
both on the exterior of the volume and in the interior of
the volume. However, some scientific visualization algo-
rithms take three-dimensional volumes as input and produce
three-dimensional volumes as output. While these three-
dimensional volume outputs could be rendered with volume
rendering or serve as inputs to other algorithms such as iso-
surfacing, users often want direct renderings of these algo-

rithms’ outputs using surface rendering. With this work, we
consider this latter case, and consider the approach where
geometric primitives are extracted from a volumetric un-
structured mesh, in order to use traditional surface rendering
techniques.

Given, for example, an unstructured mesh of N connected
tetrahedrons to render, a naïve solution would be to extract
the four faces that bound each tetrahedron, and render the
corresponding 4×N triangles. This naïve solution would be
straight-forward to implement and would fit well with ex-
isting rendering approaches. However, many of the 4×N
triangles this algorithm would produce are contained within
the interior of the volume, and thus not useful. The primary
downside to the naïve approach, then, is efficiency. For a
data set with N tetrahedrons, only O(N

2
3) of the faces would

actually lie on the exterior, meaning the large majority of
the 4×N faces produced are unwanted, taking up memory
to store and slowing down rendering times. If N was one
million, then the expected number of external faces would
be approximately 10,000, where the naïve algorithm would
calculate four million faces, i.e., 400X too many. A second
downside to these triangles is that they can create rendering
artifacts. If the faces are rendered using transparency, then
internal faces become visible, which is typically not the ef-

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

fect the user wants when they opt to use surface rendering
on a three dimensional volume.

A better algorithm, then, is to produce only the faces that
lie on the exterior of the mesh, so called “External Facelist
Calculation," or EFC. EFC is a mainstay in scientific visu-
alization packages, specifically to handle the case of render-
ing the exteriors of three-dimensional volumes via surface-
rendering techniques.

1.2. Data-Parallel Primitives

Many-core architectures are being increasingly included on
leading-edge supercomputers, although the specific types of
architecture vary. While developers of large-data visualiza-
tion software packages recognize the need to update their
code bases for many-core [A∗11, CGS∗13], they view the
variation in architecture as problematic, because their pack-
ages contain so many algorithms. Restated, if faced with N
algorithms and M architectures, they do not want N×M im-
plementations. Rather, they prefer an approach where they
can deal with many-core architectures abstractly, and thus
implement their algorithms only one time each. Of course,
they still want their instantiation of each algorithm on a given
architecture to perform as efficiently as possible.

Data-parallel primitives [Ble90], or DPP, is a paradigm
for achieving portable performance across many-core archi-
tectures. In this paradigm, programmers compose operators
known to perform efficiently on many-core architectures.
However, translating an algorithm into data-parallel primi-
tives is a non-trivial task, and often requires “re-thinking" an
algorithm rather than “porting" it.

1.3. Combination and Challenges

The challenges with EFC and DPP are two-fold. One, serial
EFC is traditionally done with hashing, which is non-trivial
to implement with DPP. As a result, we needed to construct
new, hashing-inspired algorithms that sidestep the problems
with traditional hashing within DPP. And, although DPP has
been shown to be efficient with more traditional scientific vi-
sualization algorithms that iterate over cells or pixels, EFC
is essentially a search problem, and so it is unclear if DPP
will perform well. On this front, we demonstrate that DPP
does indeed perform well and again does provide good per-
formance on this class of scientific visualization problem.

This paper’s contribution, then, is to illuminate the best
techniques to execute EFC with DPP. We design and intro-
duce two novel algorithmic variants inspired by hashing and
by sorting. We then conduct a performance study, where we
measure execution time for our algorithms on multiple data
sets and architectures. Our findings show that our hashing-
inspired variant is the best approach for EFC on parallel ar-
chitectures using DPP.

2. Background and Related Work

2.1. Visualization and Data Parallel Primitives

Many community visualization packages, such as
VTK [SML98], OpenDX [AT95], and AVS [UJK∗89],
have demonstrated the benefit of having interoperable
modules connected via a data-flow paradigm. However,
these packages were developed more than two decades
ago, and the majority of their functionality is implemented
with single-thread programming. Starting around the year
2000, packages such as VisIt [C∗12], ParaView [AGM∗12],
EnSight [Com16], and FieldView [Leg90] added paralleliza-
tion via distributed-memory concepts. With this model, the
program managed parallel processing of data, but the basis
for applying algorithms mostly derived from the existing
(serial) visualization packages. This approach allowed these
community packages to remain effective on supercomputers
until present day. However, recent supercomputing trends
increasingly include many-core architectures, such as GPUs
and Intel Xeon Phis.

In response to this trend, multiple efforts began in the
2010 time frame to create visualization systems that would
work efficiently on many-core architectures, and further
would provide portable performance over multiple archi-
tectures (e.g., both NVIDIA GPUs and Xeon Phi). The
high-level approach for these efforts was informed by sig-
nificant research on efficient visualization algorithms on
GPUs [A∗13], which illuminated the best patterns for imple-
menting visualization systems in many-core environments.
But the new efforts — DAX [MAGM11], EAVL [MAPS12,
MSPA12], and PISTON [LSA12] — aimed to achieve ef-
ficiency on any many-core architecture, and to be future-
proofed against upcoming architectures. All of the three ef-
forts arrived independently at the same strategy, namely us-
ing data-parallel primitives as their basic construct. Two of
the efforts, DAX and PISTON, made heavy use of NVIDIA’s
Thrust [BH11], which subscribes to the data-parallel prim-
itive approach. Ultimately, these three efforts united into a
single effort, now called VTK-m [MSU∗16].

Despite the adoption of data-parallel primitives so far,
a major research question for the approach is whether it
can achieve high efficiency on varying platforms (so-called
portable performance). Some of this evidence was reported
in the initial papers by the DAX, EAVL, and PISTON teams,
with additional evidence coming afterwards. Specifically,
Maynard et al. demonstrated good performance with thresh-
olding [MMA∗13] and Larsen et al. demonstrated good per-
formance with both ray-tracing [LMNC15] and volume ren-
dering [LLN∗15]. Schroots and Ma extended these two stud-
ies by examining the tradeoffs of performance and porta-
bility for ray casting and cell projection volume render-
ers [SM15]. These latter papers are likely the most closely
related work, in that they recast existing visualization algo-
rithms into the data-parallel primitives paradigm and con-
sider their performance. Our work is differentiated from

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

those in that (1) EFC has not been previously considered
and, moreover, (2) EFC represents a class of scientific visu-
alization algorithm that has not been previously considered:
search-based algorithms rather than iterating over loops of
cells or pixels.

2.2. External Facelist Calculation

EFC comes up surprisingly often in scientific visualization.
For example, many engineering applications, such as bridge
and building design, use the external faces of their model
as their default visualization, often to look at displacements.
Further, clipping and interval volumes are also commonly
used with external facelist calculation. In these algorithms, a
filter removes a portion of the volume (based on either spa-
tial selection or data selection); if no further operations are
performed then EFC is needed to view the clipped region.
As a final example, some material interface reconstructions
approaches, like that by Meredith et al. [MC10], take three-
dimensional volumes and create multiple three-dimensional
volumes, each one corresponding to a pure material. In this
case, when users remove one or more materials, EFC is
needed to view the material boundaries.

While not an active area of research, implementa-
tions of EFC can be found on the internet, for example
with VTK’s vtkUnstructuredGridGeometryFil-
ter [vtk16a] and VisIt’s avtFacelistFilter [avt16].
The basic idea behind these filters is to count how many
times a face is encountered. If it is encountered twice, then
it is internal, since the face is incident to two different cells,
and so it is between them. If a face is encountered a single
time, then it is external, since there is no neighboring cell to
provide a second abutment.

In both implementations readily available on the internet,
the “face count" is calculated through hashing. That is, in the
first phase, every face is hashed (with the hash index derived
from the point indices that define the face) into a large hash
table. Then, in the second phase, the hash table is traversed.
If a face was hashed into a hash table index two times, then
it is internal and discarded. But if it was hashed into a hash
table index only a single time, then it is external, and the face
is added to the output.

Niessner et al. [NZIS13] employ a DPP-based hashing ap-
proach on the GPU to perform scalable, real-time 3D scene
reconstruction of live captures from a depth camera. This
work uses a speed-efficient hash table data structure to in-
sert, retrieve, and delete voxel blocks, each of which store
sensor data for a uniform subregion of the perceived world.
While the hashing routines are data-parallel, they, however,
depend on atomic operations to avoid race conditions and
collisions that can arise when inserting hash entries in par-
allel. Our proposed DPP-based hashing algorithms for EFC
do not depend on this restriction and resolve collisions via
an iterative, non-blocking process. Moreover, the work of

[NZIS13] does not apply data-parallel hashing to the EFC
task, which is the focus of our work.

3. Data Parallel Primitives

The new parallel algorithms presented in this study are
based entirely on data parallel primitives, or DPP, which
are architecture-agnostic operations that can be written once
in a high-level language and compiled on different environ-
ments. The following primitives are used in our algorithm
implementations:

• Gather: Given an input array of elements, Gather reads
values into an output array according to an array of in-
dices.

• Map: Applies an operation on an input array to produce
an output array of the same size.

• Reduce: Applies a “combiner" operator (e.g., summation
or average) to an input array to produce a single output
value. A variation includes performing a Reduce for each
key, or unique data value, in the input array.

• Scan: Performs a series of partial reductions, or a prefix-
sum, on an input array to produce an output array of the
same size.

• Scatter: Given an input array of data and an array of in-
dices, Scatter writes each element of the data array into
a location in an output array, as specified in the array of
indices.

• Stream Compact: Removes all elements from an input ar-
ray that satisfy a unary predicate condition (e.g., if an in-
put element equals zero), and places the remaining ele-
ments into an output array of an equal or smaller size.

Additionally, while DPPs capture high-level operations,
they are augmented with functors, which describe the spe-
cific operation to perform. For example, if a developer wants
to convert an array of temperatures from Celsius to Fahren-
heit, then they can write a functor that does the conversion
for a single value, followed by the use of a Map DPP to ex-
ecute this functor over the entire input array in parallel.

4. Algorithms

This section presents our two new DPP-based EFC algo-
rithms, which are described in Sections 4.2 and 4.3. Both
algorithms share a common initialization procedure, which
is described in Section 4.1.

The implementations of both algorithms are available on-
line [vtk16b], for reference and reproducibility.

4.1. Initialization

For each algorithm, the first step is to generate a list of point
indices for each of its faces. That is, for a tetrahedral mesh
of N cells, we generate an 12×N array, where the first three
elements are the indices of the first face of the first cell, the

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

next three elements are the indices of the second face of the
first cell, and so on. While generating this array is concep-
tually simple, doing so with DPP takes multiple invocations
of scans, gathers, and maps, using various functors. A de-
tailed description of this process is contained in a technical
report [Les15]. For the remainder of this paper, this initial-
ization procedure will be referred to as GetFacePoints and
its output array as facePoints.

4.2. Hashing-Based Algorithm

4.2.1. Algorithm Overview

Collisions are a key aspect of hashing. Typically, these colli-
sions are dealt with via chaining (i.e., employing linked lists
to store multiple entries at a single index) or open address-
ing (i.e., when an index is occupied, then storing the data at
the next open address). While these strategies are straight-
forward to implement in a serial setting, they do not directly
translate to a parallel setting. For example, in a GPU set-
ting where each thread is executing the same program, the
variable number of operations resulting from chaining or
open addressing can lead to divergence (while non-collided
threads wait for a collided thread to finish), and thus a per-
formance bottleneck. Additionally, if multiple threads map
to the same hash entry at the same time, then the behavior
may be erratic, unless atomic operations are employed.

To address the problem of collisions in a parallel setting,
we employ a modified hashing scheme that uses multiple
iterations. In our scheme, no care is taken to detect colli-
sions, making atomic operations unnecessary. Instead, every
face is written directly to the hash table, possibly overwriting
previously-hashed faces. The final hash table will then con-
tain the winners of this “last one in" approach. However, our
next step is to check, for each face, whether it was actually
placed in the hash table. If so, the face is included for calcu-
lations during that iteration. If not, then the face is saved for
future iterations. All faces are eventually processed, with the
number of iterations equal to the maximum number of faces
hashed to a single index.

In terms of hashing specifics, our hash function uses a
face’s three point indices as input, and produces an unsigned
integer as output. This integer value, modulo the size of the
hash table, is the hash index for the face. The hash function
is important, as good function choices help minimize colli-
sions, while poor choices create more collisions and, thus,
more iterations. We experimented with multiple hash func-
tions and used the best performing, FNV-1a, for our study.

4.2.2. Algorithm Details

The pseudocode for Hashing is listed in Algorithm 1, and
the following subsections complement this pseudocode with
descriptions.

The algorithm begins by computing a hash value for each

Algorithm 1: Pseudocode for the EFC hashing algo-
rithms. N is the total number of tetrahedral cells, F is the
total number of (non-unique) cell faces, E is the number
of external faces, and A is the number of active cell faces.
The constant c is a multiplier for the hash table size.

1 /*Input from GetFacePoints*/
2 Array: Vec<int,3> facePoints[F]
3 /*Output*/
4 Array: int outShapes[E], outNumIndices[E],
5 outConn[3E]
6 /*Local Objects*/
7 Array: int faceHashes[F], faceIndices[F],
8 hashTable[cF], isActive[F],
9 isExternalFace[F]

10 Array: Vec<int,3> externalFaces[E]
11 ArrayPerm: Vec<int,3> currentHashedFaces[F],
12 activePoints[F]
13 ArrayPerm: int currentHashedIds[F]

14 facePoints←GetFacePoints
15 F = |facePoints|
16 A← F
17 //Parallel array allocations
18 hashTable←~0
19 activePoints← <0, . . . ,F−1>
20 isActive←~1
21 isExternalFace←~1
22 faceHashes←ComputeFaceHash(facePoints)
23 while A > 0 do
24 hashTable←Scatter(faceHashes, faceIndices,
25 isActive, hashTable);
26 currentHashedIds←Gather(faceHashes, hashTable);
27 currentHashedFaces←Gather(currentHashedIds,
28 facePoints);
29 (isActive, isExternalFace)←
30 CheckForMatches(currentHashedFaces,
31 facePoints, currentHashedIds,
32 isActive, isExternalFace);
33 hashTable←Shrink(hashTable);
34 faceIndices←StreamCompact(faceIndices,
35 isActive);
36 activePoints←Gather(faceIndices, facePoints);
37 faceHashes←ComputeFaceHash(activePoints);
38 isActive←StreamCompact(isActive, isActive);
39 A← |isActive|;
40 end
41 externalFaces←StreamCompact(facePoints,
42 isExternalFace)
43 //Serial loop to create triangle face connectivity
44 return (outShapes, outNumIndices, outConn)

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

face (line 22). After this, the algorithm applies an iterative
process to identify duplicate faces (lines 23-40). Unlike se-
rial hashing-based EFC, our algorithm is iterative, which al-
lows us to account for the collisions that can arise without
the use of atomics. Within an iteration, some faces will not
be successfully placed into the hash table, because a colli-
sion with another face will displace it. These “lost" faces
are identified, and considered again in subsequent iterations.
The algorithm terminates when every face has been consid-
ered, meaning that it was successfully placed into the hash
table and then classified as external or internal. We refer to
the set of faces that still need to be considered as “active
faces," and the algorithm begins with every face as an active
face. The specifics of an iteration are as follows:

1. Place all active faces into the hash table, via a scatter DPP
(line 24). The destination of the scatter is the hash indices,
and so it is this scatter process that results in collisions.
The results of this operation are non-deterministic: faces
with the same hash index displace (overwrite) each other,
meaning only a subset of the active faces actually remain
in the hash table at the end of the scatter.

2. Retrieve the point indices for each of the faces in the hash
table, via a pair of gather DPPs (lines 26–28). Each of
these faces is denoted as a “current" hashed face and con-
sists of 3 point indices.

3. Detect which of the current hashed faces is an internal
face, via a map DPP (lines 29–32). Each active face is
hashed to a location in the hash table and compared to the
current face residing at that location. Given the possibil-
ity of hashing collisions, multiple faces may be compared
to the current hashed face at a given location. If an active
face and current face have different face Ids but the same
point indices, then the faces overlap and are considered
internal; however, if the indices differ, then a hashing col-
lision has occurred at this hash table location. If the faces
share the same Ids and point indices, then the active face
resides in the hash table and is considered external un-
less another active face (different Id) satisfies the internal
face criteria with the current face. After being designated
as an internal or external face, an active face becomes
“inactive".

4. Rehash the remaining set of active faces into the hash
table, which is shrunk each iteration to be proportional
in size to the number of active faces; these operations
are performed via stream compact, gather, and map DPPs
(lines 33–37). This change in hash table size will affect
the output of the hash function and the face hash values.

5. Update the list and number of active faces via a stream
compact DPP (lines 38–39).

The foregoing process continues until every face becomes
inactive and has been considered as either an internal or ex-
ternal face. If the maximum number of distinct faces (differ-
ent point indices and face Ids) that hash to a given hash table
location is K, then at most K iterations will be performed.
Since an active face that “collides" with a current face does

not immediately become inactive, it must wait to become the
current face (reside in the hash table) before becoming inac-
tive and considered as an internal or external face. If K− 1
other faces hash to the same location, then it can take up to
K iterations for this face to become a current face.

4.2.3. Variants on Hashing-Based Algorithms

In this study, we also considered two alternative data-
parallel, hashing-based approaches to EFC. Both designs
only compute the face hash values once before the hash-
ing loop begins, reusing these values throughout each it-
eration via the same gather DPP operations of Hashing
(lines 26–28). This strategy differs from the per-iteration
ComputeFaceHash operation of Hashing (line 37), which
populates the decreasing-sized f aceHashes (decreased size
via a stream compact DPP) array with new hash values.
One of the alternative approaches compacts the f aceHashes,
f aceIndices, and isActive arrays in the same fashion as
Hashing, whereas the other approach always kept the arrays
at a fixed size F , which is the initial number of faces. This
latter approach therefore avoids compaction operations and
updates the same blocks of memory each iteration.

During our experiments, we found that both of our vari-
ants performed at best comparably to our main hashing-
based algorithm from Section 4.2.2. Hence, we elected not
to consider them in the remainder of this paper.

4.3. Sorting-Based Algorithm

The idea behind this approach is to use sorting to identify du-
plicate faces. First, faces are placed in an array and sorted.
Then, the array can then be searched for duplicates in con-
secutive entries. Faces that repeat in consecutive entries are
internal, and the rest are external. The sorting operation re-
quires a way of comparing two faces (i.e., a “less-than" test);
we order the vertices within a face, and then compare the ver-
tices with the lowest index, proceeding to the next indices in
cases of ties.

The pseudocode for the Sorting algorithm is presented in
Algorithm 2. In terms of details, the array of face points is
parallely sorted in ascending order (line 13) so that a reduce-
by-key DPP (lines 14–15) can be performed to determine the
unique faces and their frequency counts within the array. All
faces with counts greater than 1 are considered internal and
removed, in parallel, from the array via a stream compact
DPP (lines 16–17). The final, compacted array consists of
only the external faces, which are returned as output.

5. Experiment Overview

5.1. Factors

This study varied the following four factors:

• Data set: Since data set may affect algorithm performance,
we varied them over both size and data layout.

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

Algorithm 2: Pseudocode for the Sorting approach of
external facelist calculation. N is the total number of
tetrahedral cells, M is the total number of (non-unique)
cell faces, and E is the number of external faces.

1 /*Input from GetFacePoints*/
2 Array: Vec<int,3> facePoints[M]
3 Int: M
4 /*Output*/
5 Array: int outShapes[E], outNumIndices[E],
6 outConn[3∗E]
7 /*Local Objects*/
8 Array: Vec<int,3> uniqueFaces[E ≤ L≤M],
9 externalFaces[E]

10 Array: int uniqueFaceCounts[E ≤ L≤M]
11 ArrayConstant: int ones[M]

12 (facePoints, M)←GetFacePoints
13 facePoints←Sort(facePoints)
14 (uniqueFaces, uniqueFaceCounts)←
15 ReduceByKey(facePoints, ones)
16 externalFaces←StreamCompact(uniqueFaces,
17 uniqueFaceCounts)
18 //Serial loop to create triangle face connectivity
19 return (outShapes, outNumIndices, outConn)

• Hardware architecture: In order to evaluate portable per-
formance, we test our implementation for two architec-
tures: CPU and GPU. For the CPU, we also consider the
effect of concurrency on runtime performance by varying
the number of hardware cores.

• Algorithm implementation: We assess the variation in per-
formance for two different EFC data-parallel algorithms.

• Hash table size: For the hashing-based algorithms, we var-
ied the size of the hash table, and observe its effect on
performance.

5.2. Software Implementation

Both of the EFC algorithms are implemented in the VTK-
m toolkit. With VTK-m, a developer chooses data paral-
lel primitives to employ, and then customizes those primi-
tives with functors of C++-compliant code. This code is then
used to create architecture-specific code for architectures of
interest, for example CUDA code for NVIDIA GPUs and
Threading Building Blocks (TBB) code for Intel CPUs. In
our experiments, both the TBB and CUDA configurations of
VTK-m are compiled with the gcc compiler, and the VTK-m
index integer (vtkm::Id) size was set to 32 bits.

5.3. Configuration

In this study, we vary the four factors over a sequence of five
phases, resulting in 420 total test configurations. The number
of options per factor is as follows:

• Data set (6 options)
• Hardware architecture (7 options)
• Algorithm (2 options)
• Hash table size (5 options)

These configurations are discussed in the following sub-
sections.

5.3.1. Data Sets

We applied our test cases to six data sets, four of which were
derived from two primary data sets. Figure 1 contains ren-
derings for these two data sets.

• Enzo-10M: A cosmology data set from the
Enzo [OBB∗04] simulation code. The data set was
originally on a 1283 rectilinear grid, but was mapped
to a 10.2M tetrahedral grid. The data set contains
approximately 20M unique faces, of which 194K are
external.

• Enzo-80M: An 83.9M tetrahedron version of Enzo-10 M,
with approximately 166M unique faces, of which 780.3K
are external.

• Nek-50M: An unstructured mesh that contains 50M tetra-
hedrons from a Nek5000 thermal hydraulics simula-
tion [FLK08]. The data set contains approximately 100M
unique faces, of which 550K are external.

• Re-Enzo-10M, Re-Enzo-80M, Re-Nek-50M: Versions of
our previous three data sets where the point lists were ran-
domized. Especially for the Enzo data sets, the regular
layout of the data leads to cache coherency — by random-
izing the point list, each tetrahedron touches more mem-
ory. Specifically, each individual tetrahedron in the mesh
occupies the same spatial location as its non-randomized
predecessor, but the four points that define the tetrahedron
no longer occupy consecutive or nearby points in the point
list.

Figure 1: Visualizations of two of the data sets used in this
study. The Enzo-10M data set is on the left and Nek-50M is
on the right.

Finally, while we reference the data sources, we note the
only important aspect for evaluating EFC performance is the
mesh and mesh connectivity.

5.3.2. Hardware architecture

We ran our tests on the following two architectures:

• CPU: A 16-core machine running 2 nodes. Each node has
a 2.60 GHz Intel Xeon(R) E5-2650 v2 CPU with 8 cores

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

and 16 threads. For each CPU, the base frequency is 2.6
GHz, memory bandwidth is 59.7 GB/s, and memory 64
GB. In our experiment we also varied the number of cores:
1, 2, 4, 8, 12 and 16. Each concurrency employed the Intel
TBB multi-threading library for many-core parallelism.

• GPU: An NVIDIA Tesla K40 Accelerator with 2880 pro-
cessor cores, 12 GB memory, and 288 GB/sec memory
bandwidth. Each core has a base frequency of 745 MHz,
while the GDDR5 memory runs at a base frequency of 3
GHz. All GPU experiments use NVIDIA CUDA V6.5.

5.3.3. Algorithm implementation

Both of our DPP-based EFC algorithms are evaluated:

• Hashing: The algorithm presented in Section 4.2.
• Sorting: The algorithm presented in Section 4.3.

5.3.4. Hashing Table Size

For the hashing-based algorithms, we assess the runtime per-
formance as the hash table size changes. The table size is set
at various multiples of the total number of faces in the data
set. In this study, we considered five options: 0.5X, 1X, 2X,
4X, and 8X.

The 0.5X option underscores the difference between reg-
ular hashing and our hashing variant. With regular hashing
and a chaining approach, the size of the hash table must be at
least as large as the number of elements to hash, and prefer-
ably much larger. With our variant, the table size can be de-
creased, with the only penalty being that there will be more
iterations, as the maximum number of faces hashed to a sin-
gle index will (on average) increase proportionally. In this
way, the memory allocated to hashing can be reduced, at the
cost of increased execution time.

6. Results

Our study contains five phases. The first phase examines one
case in depth (“base case") and the next four phases each ex-
amine the impact of different parameters on performance:
hash table size, architecture, data sets, and concurrency. In
this section, we present and analyze the results of these dif-
ferent phases.

6.1. Phase 1: Base Case

Our base case assesses the performance of the Sorting and
Hashing algorithms with the following configuration of fac-
tors:
Configuration: (CPU, 16 cores, Enzo-10M, hash table fac-
tor 2 for Hashing) × 2 algorithms.

For each algorithm, we measured the total execution time,
along with the sub-times for the primary parallel operations
and routines. Additionally, we measured the overhead time
for memory allocations and deallocations. The results of the

Table 1: Comparison of overall execution time (sec) for the
CPU execution time (sec) for the Sorting and Hashing algo-
rithms. The Main Computation quantity measurement does
not include initialization, and instead measures the time for
either sorting or hashing. Total Time includes the time for
both Main Computation and initialization.

Time Sorting Hashing

Main
Computation 0.5 0.6
Total Time 0.9 0.9

Sorting and Hashing CPU-based experiments are presented
in Tables 1 through 3.

As seen in Tables 1 and 2, Sorting completed the ex-
periment in 0.9 seconds, with the Sort and Reduction
operations—the main computation—accounting for 56% of
the total time. From Tables 1 and 3, Hashing performed com-
parably with Sorting, with the main hashing operations con-
tributing 67% of the 0.9-second total runtime.

Table 2: Individual CPU phase times (sec) for the Sorting
algorithm

Phase CPU Time

GetFacePoints 0.2
Sort 0.3

Reduction 0.2
StreamCompact 0.02

Overhead 0.2
Total time 0.9

Table 3: Individual CPU phase times (sec) for the Hashing
algorithm

Phase CPU Time

GetFacePoints 0.2
Scatter 0.1

CheckForMatches 0.3
StreamCompact 0.1

ComputeFaceHash 0.05
Overhead 0.1
Total time 0.9

6.2. Phase 2: Hash Table Size

In this phase, we study the effect of the hash table size on the
performance of the Hashing algorithm, using the following
set of factors:
Configuration: (CPU, 16 cores, Enzo-10M) × 5 different
hash table proportions.
For each multiplier c, the hash table size is computed as c∗F ,
where F is the total number of non-unique faces (F ≈ 40
million for the Enzo-10M data set).

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

The results in Table 4 show that Hashing is only mod-
estly affected by the hash table multiplier. This primarily
occurs because the hash values are recomputed each itera-
tion, leading to a slower decrease in collisions, which results
in a more-stable number of hashing iterations. Moreover, in
memory-poor environments, lower multipliers can be used
with only a modest slowdown in execution time.

Table 4: Performance of Hashing (sec) as a function of hash
table size multiplier.

Multiplier 0.5X 1X 2X 4X 8X

Total Time 1.0 0.9 0.9 0.8 0.8

6.3. Phase 3: Architecture

In this phase, we assess the performance of the algorithms
on the GPU architecture with the Enzo-10M data set.
Configuration: (GPU, Enzo-10M) × 2 algorithms.

Table 5: GPU execution time (sec) for the two algorithms,
along with the main computation time for the sort-and-
reduction and hashing loop phases.

Time Sorting Hashing

Main
Computation 0.5 0.2
Total Time 0.7 0.4

From Table 5, we observe that Hashing achieves a faster
run time than Sorting. Moreover, Hashing devotes only half
of its total execution time on main computation, which, for
hashing, is the cumulative time spent in the hashing while-
loop. Contrarily, Sorting spends more than 70% of its total
runtime on the CUDA Thrust Sort operation, which, along
with the Reduction operation, comprises the main computa-
tion; see Table 6 for GPU sub-times of the Sorting algorithm.
Table 7 shows that the Scatter and CheckForMatches paral-
lel routines account for at least half of the work for Hashing.
This contrasts slightly from the equivalent CPU findings of
Phase 1, in which the algorithm spent a larger percentage
of the time on the StreamCompact and ScanInclusive oper-
ations. The results of Table 7 indicate that the GPU signifi-
cantly reduced the runtime of these parallel operations.

Table 6: Individual GPU phase times (sec) for the Sorting
algorithm

Phase GPU Time

GetFacePoints 0.1
Sort 0.5

Reduction 4.0e-02
StreamCompact 4.5e-03

Overhead 0.1
Total time 0.7

Table 7: Individual GPU phase times (sec) for the Hashing
algorithm

Phase GPU Time

GetFacePoints 0.1
Scatter 0.1

CheckForMatches 0.1
StreamCompact 4.1e-02

ComputeFaceHash 8.0e-03
Overhead 0.1
Total time 0.4

6.4. Phase 4: Data Sets

This phase explores the effects of data set, by looking at six
different data sets which vary over data size and memory
locality. The study also varies architecture (CPU and GPU)
and algorithm (Sorting and Hashing).
Configuration: (CPU, 16 cores, GPU) × 6 data sets × 2
algorithms.

Table 8 displays the execution times on the CPU archi-
tecture using 16 cores. These results show that Sorting is
affected by the locality of the cells within the data sets’
meshes, as evident from the increase in runtime between the
pairs of regular and restructured data sets. Further corrobo-
rating this observation, Table 8 also shows that Sorting re-
alizes a nearly 1.5–time speedup in total runtime when pre-
sented with the restructured version of a data set on the GPU
architecture. Contrarily, Hashing maintains stable execution
times regardless of the cell locality in data sets.

With respect to execution time on both the CPU and
GPU, Hashing consistently achieves comparable CPU per-
formance to Sorting for the regular data sets and significantly
better CPU and GPU performance for the restructured data
sets. These findings indicate Hashing is superior for GPU-
based execution and for data sets with poor memory locality
(both CPU and GPU).

Table 8: CPU and GPU execution times, in seconds, for dif-
ferent data set/algorithm pairs

CPU GPU
Data set Sorting Hashing Sorting Hashing

Enzo-10M 0.9 0.9 0.7 0.4
Nek-50M 4.3 4.3 3.3 2.1
Enzo-80M 7.4 7.3 7.4 7.3

Re-Enzo-10M 1.2 0.9 1.0 0.4
Re-Nek-50M 5.5 4.5 5.3 2.2
Re-Enzo-80M 9.2 7.7 10.1 6.5

6.5. Phase 5: Concurrency

In this phase, we investigate the CPU runtime performance
of both Sorting and Hashing using different numbers of
hardware cores with the base case Enzo-10M data set and

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

its corresponding Re-Enzo-10M data set.
Configuration: (CPU)× 6 different concurrency levels× 2
data sets × 2 algorithms.
Tables 9 and 10 show that, although Sorting performs better
than Hashing on configurations of 8 cores or fewer, Hashing
provides stable performance regardless of memory locality;
this confirms our findings from the previous phases. Addi-
tionally, the results indicate that with 1 CPU core, there is
nearly a 10-time increase in runtime over the 16-core ex-
periment, for both Sorting and Hashing. This observation
demonstrates clear parallelism; however, the speedup is sub-
linear.

Table 9: Impact of the number of CPU cores on the execution
time (sec) for Sorting and Hashing using Enzo-10M and Re-
Enzo-10M

Method 1 2 4 8 12 16

Sorting 8.0 4.3 2.3 1.7 1.1 0.9
Hashing 10.8 5.6 3.9 1.9 1.1 0.9

A review of Hashing over both Enzo-10M datasets in-
dicates that only the GetFacePoints, ComputeFaceHash,
and CheckForMatches data-parallel operations achieve near-
linear speedup from 1 core to 16 cores. The remaining oper-
ations (e.g., Scatter and StreamCompact) achieve sub-linear
speedup, contributing to the overall sub-linear speedup. For
a majority of the individual operations, the smallest runtime
speedup from a doubling of the hardware cores occurs in the
switch from 8 to 16 cores. These findings suggest that, on
up to 8 cores (a single CPU node), scalable parallelism is
achieved, whereas from 8 to 16 cores (two CPU nodes with
shared memory) parallelism does not scale optimally, possi-
bly due to hardware and multi-threading limitations.

Table 10: Impact of the number of CPU cores on the execu-
tion time (sec) for Sorting and Hashing using Re-Enzo-10M

Method 1 2 4 8 12 16

Sorting 9.6 5.1 2.9 1.9 1.3 1.1
Hashing 11.2 5.8 3.1 1.9 1.1 0.9

7. Comparing to Existing Serial Implementations

In Section 6.5, Hashing demonstrated a nearly 10-time
increase in runtime over the base 16-core configuration,
when executed on 1 CPU core. This single-core experi-
ment simulates a serial execution of Hashing and motivates
a comparison with the serial EFC implementations of com-
munity visualization packages. This section compares the
runtime of serial Hashing (1-core) with that of the VTK
vtkUnstructuredGridGeometryFilter and VisIt
avtFacelistFilter, both of which are serial, single-
threaded algorithms for EFC.

In Table 11, we observe that the VisIt algorithm outper-
forms both the VTK and Hashing algorithms on all of the

data sets from Section 6.4, while Hashing performs com-
parably with the VTK implementation. The overall weak
performance of Hashing is to be expected, since the DPP-
based implementation is optimized for use in parallel envi-
ronments. When compiled in VTK-m serial mode, the DPP
functions are resolved into backend, sequential loop opera-
tions that iterate through large arrays without the benefit of
multi-threading; hence, Hashing is neither optimized nor de-
signed for 1-core execution; specifically, it introduces extra
instructions to resolve hash collisions that are unnecessary
in this setting. Contrarily, both VisIt and VTK are optimized
specifically for single-core, non-parallel environments, lead-
ing to better runtimes than Hashing on the majority of the
datasets. However, in a parallel setting, both Sorting and
Hashing achieve better runtime performance than the serial
algorithms

Table 11: 1-core (serial) CPU execution time in seconds for
different data set/algorithm pairs. VTK and VisIt are visual-
ization toolkits that each provide serial, hashing-based EFC
algorithms.

Data set VTK VisIt Hashing

Enzo-10M 6.2 1.4 10.8
Nek-50M 33.1 5.2 60.9
Enzo-80M 51.7 9.1 102.6

Re-Enzo-10M 9.9 2.1 8.2
Re-Nek-50M 59.1 10.3 41.5
Re-Enzo-80M 84.4 17.7 109.1

8. Conclusions and Future Work

Our study has contributed two novel algorithms for external
facelist calculation. They are thought to be the first shared-
memory parallel algorithms and provide portable perfor-
mance via the data-parallel primitive (DPP) paradigm. Our
experiments reveal that the hashing-based variant outper-
forms the sorting-based variant on GPU architectures and
with large, complex data sets. Additionally, the DPP ap-
proach leads to improved runtime performance as concur-
rency increases.

In terms of future work, we would like to expand
this study to include more architectures, more data types,
and further understand scalability limitations on multi-core
CPUs.

Acknowledgments

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, Award Number 14-
017566. It was also supported by the Director, Office of Sci-
ence, Office of Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. Hank Childs is grateful for support from

B. Lessley & R. Binyahib & R. Maynard & H. Childs / External Facelist Calculation with Data-Parallel Primitives

the DOE Early Career Award, Contract No. DE-FG02-
13ER26150, Program Manager Lucy Nowell.

References
[A∗11] AHERN S., ET AL.: Scientific Discovery at the Exascale:

Report for the DOE ASCR Workshop on Exascale Data Manage-
ment, Analysis, and Visualization, July 2011. 2

[A∗13] AMENT M., ET AL.: GPU-Accelerated Visualization. In
High Performance Visualization: Enabling Extreme-Scale Scien-
tific Insight, Bethel W. E., Childs H., Hansen C., (Eds.). CRC
Press, Boca Raton, FL, USA, 2013, pp. 223–259. 2

[AGM∗12] AYACHIT U., GEVECI B., MORELAND K., PATCH-
ETT J., AHRENS J.: The ParaView Visualization Application. In
High Performance Visualization—Enabling Extreme-Scale Sci-
entific Insight. Oct. 2012, pp. 383–400. 2

[AT95] ABRAM G., TREINISH L. A.: An extended data-flow ar-
chitecture for data analysis and visualization. Research report
RC 20001 (88338), IBM T. J. Watson Research Center, Yorktown
Heights, NY, USA, Feb. 1995. 2

[avt16] Apr. 2016. https://github.com/visit-vis/VisIt/blob/master/
avt/Filters/avtFacelistFilter.C. 3

[BH11] BELL N., HOBEROCK J.: Thrust: A productivity-
oriented library for CUDA. In GPU Computing Gems, Hwu W.-
M., (Ed.). Elsevier/Morgan Kaufmann, 2011, pp. 359–371. 2

[Ble90] BLELLOCH G. E.: Vector models for data-parallel com-
puting, vol. 356. MIT press Cambridge, 1990. 2

[C∗12] CHILDS H., ET AL.: VisIt: An End-User Tool For Visu-
alizing and Analyzing Very Large Data. In High Performance
Visualization—Enabling Extreme-Scale Scientific Insight. Oct.
2012, pp. 357–372. 2

[CGS∗13] CHILDS H., GEVECI B., SCHROEDER W., MERED-
ITH J., MORELAND K., SEWELL C., KUHLEN T., BETHEL
E. W.: Research Challenges for Visualization Software. IEEE
Computer 46, 5 (May 2013), 34–42. 2

[Com16] COMPUTATIONAL ENGINEERING INTERNATIONAL,
INC.: EnSight website, Apr 2016. URL: http://www.
ceisoftware.com/. 2

[FLK08] FISCHER P. F., LOTTES J. W., KERKEMEIER S. G.:
nek5000 Web page, 2008. http://nek5000.mcs.anl.gov. 6

[Leg90] LEGENSKY S. M.: Interactive Investigation of Fluid Me-
chanics Data Sets. In VIS ’90: Proceedings of the 1st confer-
ence on Visualization ’90 (1990), IEEE Computer Society Press,
pp. 435–439. 2

[Les15] LESSLEY B.: Directed Research Project: External
Facelist Calculation with Data-Parallel Primitives. Tech-
nical Report , University of Oregon, Eugene, OR, USA,
Nov. 2015. https://www.cs.uoregon.edu/Reports/DRP-201511-
Lessley.pdf. 4

[LLN∗15] LARSEN M., LABASAN S., NAVRÁTIL P., MERED-
ITH J., CHILDS H.: Volume Rendering Via Data-Parallel Prim-
itives. In Proceedings of EuroGraphics Symposium on Paral-
lel Graphics and Visualization (EGPGV) (Cagliari, Italy, May
2015), pp. 53–62. 2

[LMNC15] LARSEN M., MEREDITH J., NAVRÁTIL P., CHILDS
H.: Ray-Tracing Within a Data Parallel Framework. In Proceed-
ings of the IEEE Pacific Visualization Symposium (Hangzhou,
China, Apr. 2015), pp. 279–286. 2

[LSA12] LO L.-T., SEWELL C., AHRENS J.: PISTON: A
portable cross-platform framework for data-parallel visualization
operators. Eurographics Symposium on Parallel Graphics and
Visualization, pp. 11–20. 2

[MAGM11] MORELAND K., AYACHIT U., GEVECI B., MA K.-
L.: Dax Toolkit: A Proposed Framework for Data Analysis and
Visualization at Extreme Scale. In Proceedings of the IEEE Sym-
posium on Large-Scale Data Analysis and Visualization (October
2011), pp. 97–104. 2

[MAPS12] MEREDITH J. S., AHERN S., PUGMIRE D., SIS-
NEROS R.: EAVL: the extreme-scale analysis and visualization
library. In Eurographics Symposium on Parallel Graphics and
Visualization, EGPGV (May 2012), The Eurographics Associa-
tion, pp. 21–30. 2

[MC10] MEREDITH J. S., CHILDS H.: Visualization and
Analysis-Oriented Reconstruction of Material Interfaces. Com-
puter Graphics Forum (CGF) 29, 3 (June 2010), 1241–1250. 3

[MMA∗13] MAYNARD R., MORELAND K., ATYACHIT U.,
GEVECI B., MA K.-L.: Optimizing threshold for extreme scale
analysis. In IS&T/SPIE Electronic Imaging (2013), International
Society for Optics and Photonics, pp. 86540Y–86540Y. 2

[MSPA12] MEREDITH J. S., SISNEROS R., PUGMIRE D., AH-
ERN S.: A distributed data-parallel framework for analysis and
visualization algorithm development. In Proceedings of the 5th
Annual Workshop on General Purpose Processing with Graphics
Processing Units (2012), ACM, pp. 11–19. 2

[MSU∗16] MORELAND K., SEWELL C., USHER W., TA LO L.,
MEREDITH J., PUGMIRE D., KRESS J., SCHROOTS H., MA
K.-L., CHILDS H., LARSEN M., CHEN C.-M., MAYNARD R.,
GEVECI B.: VTK-m: Accelerating the Visualization Toolkit for
Massively Threaded Architectures. IEEE Computer Graphics
and Applications (CG&A) (May/June 2016). To appear. 2

[NZIS13] NIESSNER M., ZOLLHÖFER M., IZADI S., STAM-
MINGER M.: Real-time 3d reconstruction at scale using voxel
hashing. ACM Transactions on Graphics (TOG) (2013). 3

[OBB∗04] O’SHEA B. W., BRYAN G., BORDNER J., NORMAN
M. L., ABEL T., HARKNESS R., KRITSUK A.: Introducing
Enzo, an AMR Cosmology Application. ArXiv Astrophysics e-
prints (Mar. 2004). arXiv:astro-ph/0403044. 6

[SM15] SCHROOTS H. A., MA K.-L.: Volume Rendering with
Data Parallel Visualization Frameworks for Emerging High Per-
formance Computing Architectures. In SIGGRAPH Asia 2015
Visualization in High Performance Computing (2015), SA ’15,
ACM, pp. 3:1–3:4. 2

[SML98] SCHROEDER W., MARTIN K. M., LORENSEN W. E.:
The Visualization Toolkit (2nd Ed.): An Object-oriented Ap-
proach to 3D Graphics. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1998. 2

[UJK∗89] UPSON C., JR. T. F., KAMINS D., LAIDLAW D. H.,
SCHLEGEL D., VROOM J., GURWITZ R., VAN DAM A.: The
application visualization system: A computational environment
for scientific visualization. Computer Graphics and Applications
9, 4 (July 1989), 30–42. 2

[vtk16a] Apr. 2016. http://www.vtk.org/doc/nightly/html/
classvtkUnstructuredGridGeometryFilter.html. 3

[vtk16b] Apr. 2016. https://gitlab.kitware.com/vtk/vtk-m/. 3

http://www.ceisoftware.com/
http://www.ceisoftware.com/
http://arxiv.org/abs/astro-ph/0403044

