
Techniques for Data-Parallel Searching for Duplicate Elements

Brenton Lessley∗

University of Oregon

Kenneth Moreland†

Sandia Nat’l Lab

Matthew Larsen‡

Lawrence Livermore Nat’l Lab

Hank Childs§

University of Oregon

Abstract

We study effective shared-memory, data-parallel techniques
for searching for duplicate elements. We consider several
data-parallel approaches, and how hash function, machine
architecture, and data set can affect performance. We con-
clude that most choices of algorithm and hash function are
problematic for general usage. However, we demonstrate
that the choice of the Hash-Fight algorithm with the FNV1a
hash function has consistently good performance over all
configurations.

1 Introduction

Searching for duplicate elements comes up in multiple visu-
alization contexts, most notably external facelist calculation.
There are two main approaches for identifying duplicates: (1)
sorting all elements and looking for identical neighbors, and
(2) hashing all elements and looking for collisions. These ap-
proaches were compared previously by Lessley et al. [5] in
their study of external facelist calculation with data-parallel
primitives (DPP). However, subsequent analysis has shown
that the performance of the algorithm can vary unexpectedly
with certain combinations of hash function, architecture, and
data set. With this short paper, we run a study consider-
ing many test configurations, in an effort to better under-
stand anomalous behavior. Using various metrics, we are
able to understand the causes of unusual performance. We
believe the contributions of this paper are two-fold. First,
we contribute a better understanding of platform portable
algorithms for identifying duplicates and their pitfalls, and
specify recommendations for choices that will perform well
over a variety of configurations. Second, we believe the re-
sult is useful for the community in identifying potential per-
formance issues with DPP algorithms. Overall, we find that
the Hash-Fight algorithm with the FNV1a hash function con-
sistently achieves the best performance in identifying dupli-
cates over all tested configurations.

2 Related Work

This work is a follow-on to the previous external facelist cal-
culation study by Lessley et al. [5]. That work introduced two
DPP-based algorithms for calculating the external facelist of
three-dimensional unstructured grids. That said, the current
work does make algorithmic contributions, in that it con-
siders more variants of the algorithms via additional hash
functions. Our study is again conducted within the VTK-m
framework [9], which provides data parallel primitives as ba-
sic building blocks. Further, this study follows several previ-
ous studies in exploring the limits of portable performance

∗e-mail: blessley@cs.uoregon.edu
†e-mail: kmorel@sandia.gov
‡e-mail: larsen30@llnl.gov
§e-mail: hank@cs.uoregon.edu

for visualization algorithms in a DPP setting [8, 4, 3, 12, 7, 6],
with the main difference being that we are exploring an algo-
rithm of a very different nature — our algorithm is effectively
a large search problem, where many of the others focused on
iterating over cells in a mesh.

3 Experiment Overview

To better understand the behavior of external facelist calcula-
tion with respect to algorithm design choices, particularly for
that of hash functions, we conducted experiments that varied
three factors:

• Algorithm (7 options)
• Hardware architecture (3 options)
• Data set (34 options)

We did run the cross-product of tests (714 = 7 × 3 × 34), but
our results section presents the relevant subset that capture
the underlying behavior.

3.1 Algorithm

We studied three types of algorithms, which we refer to
as SortyById, Sort, and Hash-Fight. Sort and Hash-Fight
each need to be coupled with a hashing function. We con-
sidered three different hashing functions: XOR, FNV1a,
and Morton. In total, we considered seven algorithms:
Sort+FNV1a, Sort+XOR, Sort+Morton, Hash-Fight+FNV1a,
Hash-Fight+XOR, Hash-Fight+Morton, and SortByID.

3.1.1 Algorithms

SortById: The idea behind this approach is to use sorting to
identify duplicate faces. First, faces are placed in an array
and sorted. Each face is identified by its indices. The sort-
ing operation requires a way of comparing two faces (i.e., a
“less-than” test); we order the vertices within a face, and then
compare the vertices with the lowest index, proceeding to the
next indices in cases of ties. The array can then be searched
for duplicates in consecutive entries. Faces that repeat in con-
secutive entries are internal, and the rest are external.

SortById is likely not optimal, in that it requires storage
for each index in the face (e.g., three locations for each point
in a triangular face of a tetrahedron), resulting in a penalty
for sorting extra memory. This motivates the next approach,
which is to use hashing functions to reduce the amount of
memory for each face in the sort.

Sort: We denote the algorithm that modifies SortById to
sort hash values rather than indices. For each face, the three
vertex indices are hashed, and the resulting integer value is
used to represent the face. However, this creates additional
work. The presence of collisions forces us to add a step to
the algorithm that verifies whether matching hash values ac-
tually belong to the same face. In this study, we explore the
tradeoff between sorting multiple values per face versus re-
solving collisions. Further, the specific choice of hash func-
tion may affect performance, and we explore this issue as
well.










