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Abstract—We consider the problem of automatic camera se-
lection in the context of in situ visualization. This problem
is important because high-performance computing trends are
increasingly mandating in situ processing, and this processing
paradigm frequently has no human-in-the-loop — new re-
search is needed to automate the decisions that have previously
been made by human beings. We begin by briefly evaluating
what makes an image good, i.e., informative, pleasing, etc. The
majority of this work is in surveying existing techniques for
camera selection that have been considered in a non-in situ
setting, organizing them around geometric- and data-driven
techniques. We then survey considering the in situ context
that an automatic camera selection algorithm should run,
specifically in the infrastructures that house such algorithms
and in the driving use cases from application codes. Finally, we
conclude the survey by considering data sets from represen-
tative simulation codes and evaluating the efficacy of various
existing camera selection techniques.

1. Introduction

As the computational power of computers steadily in-
creases, researchers’ abilities to run more complex simula-
tions at higher resolutions also increases. And the growing
gap between compute power and I/O has made it very
difficult for scientists to interact with their data. In the
traditional paradigm, scientists would save out their data
at regular or irregular intervals and explore the results post-
hoc. To combat the growing I/O gap, scientists would simply
save out their data less and less frequently, but this runs
the risk of missing important phenomena, or discovering
the phenomena but lacking the temporal resolution to truly
explore it. This has resulted in a new in situ processing
paradigm. In situ processing means that data is not written
to disk, instead data is processed in place, in many cases
sharing resources with the simulation. There are several
strategies researchers can employ with in situ processing,
and it depends on if they have a priori knowledge of their
data. If there is a priori knowledge, sceintists can visualize
their data as the simulation is running, but again the scientist
runs the risk of missing important phenomena. If there is no
a priori knowledge, scientists can perform lightweight anal-
ysis to process data as the simulation is running, allowing
scientists the ability make decisions based on the analysis
or save a reduced/transformed version of the data to disk
for post-hoc exploration. Alternatively, instead of saving
transformed/reduced data for post-hoc exploration, scientists

can perform automatic scientific visualization. That is, per-
form in situ processing to automatically analyze, reduce, or
transform the data without a human-in-the-loop driving the
exploration.

And yet, with supercomputers on the brink of exascale
capabilities, new in situ analysis and visualization methods
are still needed. Ideally they need to be lightweight, not in-
creasing the simulation runtime too dramatically or requiring
too much from the memory footprint. An emerging require-
ment is that the new algorithms should run independently.
That is, algorithms that used to require user input should
be able to generate input automatically, thus eliminating
the human-in-the-loop. Research in automatic visualization
is being developed to solve a number of problems, such
as automatic seed placement for flow visualization [LS07],
[MCHM10] and automatic transfer functions for volume
rendering [WDC*07], [RBB*11], [VFESGO06], [VKGO5], to
name a few. The primary focus of this paper is automatic
camera placement while running in situ. The primary focus
of this paper is automatic camera placement.

Visualization is a key component to understanding large
scale scientific data. Compared to raw data, images are
perceivable to the human mind, allowing us to visually
discover phenomena, detect patterns and trends, as well as
outliers and possible errors. Additionally, images can be
used as proof of concept by clearly conveying the con-
ducted research or results. But not all images are created
equal: data can produce countless images depending on the
camera placement, and while some may contain valuable
information, others may not. Being able to determine the
best viewpoint based on some criteria is a useful way to
produce noteworthy visualizations. But with the increase in
computing power, scientists are having to adapt how they
visualize their data and how to produce the best represen-
tative image of their data. And with the increasing size of
simulation data, where to point the camera without a human-
in-the-loop is an ongoing problem.

In the post-hoc setting, algorithms for determining the
best viewpoint has been a growing area of research and
has been used in scene exploration and camera placement,
image-based modeling and rendering, scientific visualiza-
tion, shape retrieval, and mesh simplification [BFS*18]. The
majority of the techniques perform some calculation based
on the geometry of the data, with few techniques for field
data.

This paper explores the automatic camera placement
techniques that have been proposed to date, as well as
presenting preliminary evaluations of more than half of the



metrics applied to scientific data in order to test their fitness
for in situ analysis.

The paper is organized as follows: Section 2 explores
the question, “What makes an image good?”’; Section 3
describes the metrics used to quantify the quality of a view-
point; Section 4 describes software packages and libraries
that enable in situ analysis and visualization; Section 5
explores in situ analysis and visualization use cases on large-
scale simulations; and Section 6 evaluates a number of the
viewpoint metrics.

2. What Makes an Image Good?

Trying to quantify what makes an image good is not a
new venture. The Ancient Romans did it with the Golden
Ratio, a proportion that is still considered to be visually
pleasing, and psychology has shown that it is preferred when
formatting an image [GRMSO1], [Arn88], [SK32].

In the 1930s a mathematician named George D. Birkhoff
attempted to quantitatively measure beauty [Bir33], [Bir56].
He believed beauty is a ratio of order over complexity, i.e.
beauty increases as complexity decreases. But after applying
these notions to a wide array of formats, including simple
geometries, poetry, melodies, art, etc., he was unable to
produce a general formula for order and complexity. And
while he did not produce a detailed equation for beauty, he
did remark that “a fine composition is always arranged so
as to be easily comprehensible.”

Tarr and Kriegman [TKO1] conducted psychoanalysis
experiments investigating the influence of an object’s aspect
on user preference. They found that for many models there
exist a small number of views that are preferred by most
people.

It has also been shown through numerous user studies
that users prefer an image with a three-quarter or canonical
view [BTB99], [PRC81]. Kamada et al. [KK88] calls that a
non-degenerate view and consider an image good if it min-
imizes the number of degenerate views, as shown in Figure
1. According to Blanz et al. [BTB99], canonical views are
stable and expose as many salient and important features
as possible. But while these views have been proven to be
visually pleasing, they provide no guarantee of scientific
merit or importance.

Other aspects of an image are also critical to user
understanding and preference. For instance, color maps play
a key role in image comprehension. Bujack et al. [BTS*18]
survey research that quantifies good color maps and present
mathematical design rules for choosing color maps.

There has also been work on optimal light source place-
ment. Much like color this is a non-trivial problem that
may not have a general solution [JPP02], [PF92], [PRJ97].
Current works are based on inverse lighting techniques,
where the optimal light source is deducted from an expected
result. In general, most current techniques are not fully
automatic and require user interaction [MAB*97], [HMO3].
Gumhold [GumO02] presents an automatic method based on
light entropy, but results are not consistent.

Figure 1: Taken from Barral et al. [BDP99], this image
depicts one non-degenerate view of a cube (left) and two
degenerate views of a cube (center and right) as defined by
Kamada et al. [KK88]. Notice that the non-degenerate cube
is shown at a three-quarter, or canonical view.

Bordoloi and Shen [BSO05] understand that the “best
image” depends on context. From a volume rendering per-
spective, they have two guidelines for determining a “good
image”:

e A viewpoint is good if voxels with high notewor-
thiness factors have high visibilities. This guideline
applies to user input that has placed importance
on certain aspects of the model when defining the
transfer function.

e A viewpoint is good if the projection of the volumet-
ric data set contains a high amount of information.

It is clear that there is a significant amount of research
into what makes an image good, but this raises the question:
“How do we find it?”

2.1. How to Find the Best Image?

Finding the best image of a data set is non-trivial prob-
lem. For instance, a data set could contain multiple “best
images” depending on what the researcher wants to convey.
Polonsky et al. [PPB*05] treats viewpoint selection as a
function where the best viewpoint maximizes this function.
A function that measures the viewpoint is called a view
descriptor. Polonsky et al. based their view descriptors off
of the following three principles:

o Geometric Complexity. The first principle is based
on the geometry of the scene and will assign higher
scores to views that expose as much of the geometric
complexity as possible.

o View-dependent Features. The second principle
focuses on features that are view-dependent. In this
case, there are features that are only visible from
certain views; these views are considered better
viewpoints.

o Primitive Elements The third principle involves the
elements that are assigned values or otherwise used
within the descriptor. Descriptors can use a number
of primitive elements (vertices, faces, edges etc.)
to determine the best viewpoint, this principle also
considers larger portions of the model that have
some significance or meaning.



Depending on the data set or what the researcher wants
to convey, researchers could utilize one or more of these
principles to design a viewpoint quality metric.

3. Viewpoint Quality Metrics

This section surveys all of the metrics that have been
used as a viewpoint quality measurement to select the best
camera placement. The metrics have been categorized into
two sections. Section 3.2 surveys the viewpoint quality
measures that are based on the geometry of the data. And
Section 3.3 surveys the viewpoint quality measures that are
based on the field data.

3.1. Notation

This section will define the notation used for these
metrics. Table 1 comes from the in-depth survey from
Bonaventura et al. [BFS* 18] where they compared 22 differ-
ent viewpoint metrics. The notation developed is based off of
an information channel developed by Feixas et al. [FSGO09].
The information channel is defined between a set of view-
points V' and a set of polygons Z of an object. For some
polygon z € Z and some viewpoint v € V, the projected
area of polygon z from viewpoint v is denoted a,(v).
Similarly, the projected area of the model Z from some
viewpoint v € V' is denoted a;(v).

Feixas et. al [FSG09] created a selection framework
based off of their information channel. The information
channel is defined by a matrix of conditional probabilities
based on the ability to view polygons given some v € V.
Since the conditional probabilities represent the probability
of viewing a particular polygon z from some viewpoint v,
the information channel can also be considered a visibility
channel. The information channel defines three elements:

o The conditional probability matrix, p(Z|V'), is made
up of the surface area ratios p(z|v), such that
plzlv) = 2 and Y., p(2lv) = 1.

o The input distribution p(V') represents the impor-
tance of each viewpoint within the set of views.
The importance distribution is made up of elements

— __a(v)
p(v) = v ar(®)

o The output distribution p(Z) represents the average
projected area of polygon z and is made up of

elements p(z) = >, oy p(v)p(2|v).

3.2. Geometry Based Quality Measures

This section will cover all automatic viewpoint selection
metrics that are based on geometry, e.g. surface curvature,
polygons, mesh saliency, etc. While some of these metrics
are used in fields other than computer science, the majority
of them have been utilized in determining camera position
for image-based modeling. Few of these metrics have been
applied to scientific data sets and all have been applied post-
hoc.

Notation Definition
z polygon
Z set of polygons
v viewpoint
|4 set of viewpoints
az(v) projected area of polygon z
from viewpoint v
at(v) projected area of the model
from viewpoint v
i85 (V) visibility of polygon z from
viewpoint v (0 or 1)
N number of polygons
R number of pixels of the projected image
A, area of polygon z
Ay total area of the model
p(z|v) conditional probability of z given v
p(z) probability of z
p(v|z) conditional probability of v given z
p(v) probability of v
H(V) entropy of the set of viewpoints
H(Z) entropy of the set of polygons
H(V|z) conditional entropy of the set
of viewpoints given polygon z
H(Z|v) conditional entropy of the set
of polygons given viewpoint v
slength(v) silhouette length from viewpoint v
{h(a)} normalized silhouette curvature histogram
«@ turning angle bin
a turning angle between two consecutive pixels
A set of turning angles
Ng number of turning angles
depth(v) normalized maximum depth of the
scene from viewpoint v
{h(d)} normalized histogram of depths
d depth bin
D set of depth bins
Ny number of neighbors of v
L(v) size of the compression of the depth
image corresponding to viewpoint v
L(vi, vj) size of the compression of the
concatenation of the depth images
corresponding to viewpoints v; and v;
K; curvature of vertex ¢
{h(b)} normalized histogram of visible curvatures
from viewpoint v
b curvature bin
B set of curvature bins
S(x) saliency of vertex x

TABLE 1: Notation developed in the survey by Bonaventura
et al. [BFS*18].

Work by Bonaventura et al. [BFS*18] and Secord et
al. [SLF*11] have categorized the following 22 viewpoint
quality measures into five different categories based on the
calculations involved. The five categories of measurements
are: area, silhouette, depth, stability, and surface curvature.
This paper will follow the same naming conventions and
categorizations for each measurement.

3.2.1. Area. This section covers the measurements that
involve the projected area of the polygons in relation to
a particular viewpoint, including view area, ratio of visible
area, and surface area entropy. These metrics are useful on
datasets with highly varying polygons and when maximizing
visible area is important. They are all relatively quick,
unless they involve mutual information, and can be simply



(a) The best viewpoint of the Stanford Bunny.

(b) The worst viewpoint of the Stanford Bunny.

Figure 2: The best and worst viewpoints of the Stanford
Bunny determined by metric V Q.

implemented with the aid of graphics hardware [BDP99],
[BDPOO].

Number of Visible Triangles. Several of the first
measurements on viewpoint selection came from Plemenos
[Ple91] and were then expanded upon by Plemenos and
Benayada [PB96]. The first measurement is based on the
total number of visible triangles from some viewpoint. Their
reasoning being that maximizing information means max-
imizing details, and the more triangles present, the more
details associated with that view. This viewpoint quality
measurement is defined as follows:

VQi(v) = Z Vi8y(2).

z€Z

This measurement can be implemented differently de-
pending on the chosen definition of visible. For most imple-
mentations, a polygon z is considered visible if any portion
of it is viewable from the given v (a.(v) > 0).

Unfortunately, this measurement has an obvious pitfall.
By being based solely on the number of visible triangles,
this measurement favors quantity over quality and could
potentially choose views that contain a lot of polygons but
little content. Figure 2 shows the best and worst viewpoints
of the Stanford Bunny based on V@Q;.

Projected Area. Plemenos and Benayada [PB96] real-
ized that their first measurement, V' Q;(v), may not be an
adequate measurement in some cases, and they should take
into account the projected area of the polygons.

Their second measurement is simply the total visible
area of the model from some viewpoint is defined as follows:

VQ2(v) = ar(v).

(a) The best viewpoint of the Stanford Bunny.

(b) The worst viewpoint of the Stanford Bunny.

Figure 3: The best and worst viewpoints of the Stanford
Bunny determined by metric V Q.

For this measurement, the higher the projected area of
the model, the better the viewpoint.

This metric also has known pitfalls. In the worst case,
this metric could potentially choose a viewpoint that con-
tains a single, very large polygon. Further, by maximizing
the visible area there is the risk of potentially maximizing
the number of occlusions. Figure 3 shows the best and worst
viewpoints of the Stanford Bunny using this metric.

Plemenos and Benayada. The next measurement from
Plemenos and Benayada is a combination of V@ (v) and
VQ2(v), creating a viewpoint ratio based on both the total
number of visible triangles and the total projected area. This
measurement is expressed as follows:

ZZ |—(l/az’U(v) —| z
VQy(v) = ZEL O 2 2:(0)

where N is the total number of polygons of the model
(N = |Z]) and R is the resolution of the image (i.e. total
number of pixels).

The best viewpoint will have the highest value, cor-
responding to a viewpoint that maximizes the number of
visible triangles as well as the resolution of the rendered
image. This is a quick and generic metric that should
produce adequate results for most data sets.

Figure 4 shows the best and worst viewpoints of the
Stanford Bunny using this metric.

Visibility Ratio. Lastly, Plemenos and Benayada [PB96]
measured the visibility ratio of the model given some view-
point. Interestingly, their ratio involves the real surface area
of some polygon z and not its projected area (i.e. the area
of the triangle in World Space).

This measurement is defined as follows:



(a) The best viewpoint of the Stanford Bunny.

(b) The worst viewpoint of the Stanford Bunny.

Figure 4: The best and worst viewpoints of the Stanford
Bunny determined by metrics V Q3 and V Q7.

_ ez Visu(2)A;
= 1

The higher the visibility ratio the better the viewpoint.

Notice that A, and A; are the real area of polygon z
and the model, respectively, and are insensitive to the chosen
viewpoint.

This metric has similar pitfalls and advantages as V Q5.

Viewpoint Entropy. To determine the best, most rep-
resentative viewpoint of an image, a new technique is
used involving information theory called Viewpoint Entropy
[VFSHO1], [SFR*02].

Viewpoint Entropy is based off of Shannon Entropy
[CTO6], [Bla87a]. From a high level, Shannon Entropy
determines the saliency of data by calculating how many
bits are required to save the given data. The more bits that
are required, then the more information that is present.

From a low level, Shannon Entropy is the summation
of the negative log of the probability mass function of each
possible data value:

VQ4(U)

—> PilogP;

To calculate Viewpoint Entropy, Vazquez et al.
[VESHO1] alter Shannon Entropy to take into account the
projected area of the scene when centered at a particular
viewpoint.

To define viewpoint entropy, let a(v) be the projected
area of polygon z from viewpoint v, let a;(v) be the total
projected area of the model from viewpoint v, and let NV be
the total number of polygons of the model. Then, viewpoint
entropy of a given view v is defined as follows:

al z'U (U)
; ar(v) at(v)

((U; represents the proportion of the projected

area of each polygon This ratio is also proportional to the
cosine of the angle between the normal of the projected
polygon a(v) and the camera angle. Additionally, this ratio
is inversely proportional to the squared distance from the
camera to polygon. This means that Zj&’; will be higher
when the polygon is seen from a better angle and at a closer
distance.

Viewpoint entropy can be rewritten in terms of condi-
tional probabilities, since it measures the conditional entropy
of Z given some v. Using conditional probabilities, view-
point entropy can be defined as follows:

VQs(v) = H(ZJv) = = p(z[v) log p(z[v).

z€Z

Given this definition, the best camera position for a
scene is the view that has the highest viewpoint entropy and
thus the highest information content. This metric will work
best on data sets with varying polygonal size, since larger
polygons are penalized in comparison to smaller polygons.

Polonsky et al. [PPB*05] also considered viewpoint
entropy and a handful of the other measurements as view
descriptors. But instead of assigning values to primitive el-
ements of the model (e.g. vertices, faces, edges), importance
is assigned to segments and connected components.

I,. The measurement I, is a normalization of V Q5
and has been used in neuroscience by DeWeese and Meis-
ter [DM99] to quantify the information content in the brain
in terms of stimuli and response. Bonaventura et al. [BFS11]
also applied this measure to selecting the best viewpoint. I,
is defined as follows:

VQs(v) = Iz(v; Z) =H(Z) — H(Z|v)
=H(Z) - VQs(v)
== p(z)logp(z) + Y p(z[v) log p(z[v).
z€Z z€Z

H(Z) represents the entropy of the polygons and is
constant for every viewpoint. Notice that I5 is based off of
viewpoint entropy, H(Z|v), and subsequently has the same
behavior, but in this case, the higher the viewpoint entropy
then the lower the value of Iy will be. And unlike viewpoint
entropy, which grows to infinity for finer and finer mesh
resolutions, the normalization within I makes its behavior
more stable.

Viewpoint Kullback-Leibler Distance (VKL). The
Kullback-Leibler distance was applied by Sbert et
al. [SPFGO05] as a viewpoint quality measurement between
the normalized distribution of the real areas of the polygons,
and the normalized distribution of the projected area of the
polygons from viewpoint v. The VKL distance is defined as
follows:



(a) The best viewpoint of the Stanford Bunny.

(b) The worst viewpoint of the Stanford Bunny.

Figure 5: The best and worst viewpoints of the Stanford
Bunny determined by metric V Qs.
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Notice that the best viewpoint, which corresponds to the
minimum value, happens when the distribution of projected
areas is equal to the distribution of real areas.

Figure 4 shows the best and worst viewpoints of the
Stanford Bunny using this metric.

Viewpoint Mutual Information (I;). Feixas et
al. [FSGO9] introduces this viewpoint selection method that
quantifies the degree of correlation between the viewpoints
and set of polygons. I; is expressed as follows:

Zp z|v) log ()

z€Z

VQS(’U) =

High values of I; correspond to representative views for
certain areas of the model. Meaning that the respective im-
age is highly coupled with the polygons from that viewpoint,
and certain regions of the model can only be seen from this
or few other viewpoints. Alternatively, low values of I; cor-
respond to the most representative views of the entire model,
i.e., views that capture the most polygons in a balanced way.
This measure has been used in neuroscience to capture the
correlation between stimuli and brain responses [DM99].

Note that mutual information is a time intensive calcu-
lation, making this metric, as well as the following metric,
potentially less desirable than the 7 previous metrics, which
perform much more quickly.

Figure 5 shows the best and worst viewpoints of the
Stanford Bunny using this metric.

(b) The worst viewpoint of the Stanford Bunny.

Figure 6: The best and worst viewpoints of the Stanford
Bunny determined by metric V Q.

Information I3. Again from neuroscience, Butts [But03]
presents a metric to quantify the information associated with
a stimulus using mutual information. Whereas Bonaventura
et al. [BFS11] proposed this metric as a viewpoint quality
measure. I3 is expressed as follows:

VQo(v) = Is(v; 2) = > _ p(z[v)I2(V; 2)
z€Z
such that
I(V;z) =H(V) = H(V|2)
=— Y p(v)logp(v) + Y _ p(v|2)logp(v]z)
veV veV

where I2(V; 2) is comprised of the entropy of the view-
points, and the conditional entropy of the viewpoints for
polygon z. A high I3 means a high Io(V;z) value and
corresponds to the view that sees the highest number of
“maximally informative polygons.” [BFS*18]

Figure 6 shows the best and worst viewpoints of the
Stanford Bunny using this metric.

3.2.2. Silhouette. This section surveys metrics that utilize a
model’s silhouette. The silhouette, or occluding contour, of
an object is a view-dependent metric. Simply, the silhouettes
of an object are the edges that are created if the object were
to be represented as a single color on a plain background,
as shown in Figure 7.

In computer science, silhouettes have most commonly
been used for image recognition. For scientific data, sil-
houettes are best used on datasets with lots of occlusions.
Since silhouettes are a view-dependent metric, a model with
significant occlusions, either in number or size, will result



(a) The Stanford Bunny.

(b) The corresponding, view-dependent silhouette of Image 7a.

Figure 7: An example of a silhouette of a model.

in silhouettes that are specific to certain viewpoints. The
following metrics utilize a model’s silhouette to determine
the best viewpoint.

Silhouette Length. The use of an object’s silhouette
as a goodness measure was presented by Polonsky et
al. [PPB*05]. From the given viewpoint, the silhouette of
the model is calculated by counting the number of pixels
that belong to the silhouette, or edge, of the object. The
silhouette length is defined as follows:

VQ10(v) = slength(v).

In the cases where there are multiple connected compo-
nents and, subsequently, multiple silhouettes, the silhouette
of each component is combined for a total sum of the
silhouette lengths. The maximum silhouette is the longest
silhouette and is associated with the best viewpoint.

Silhouette Entropy. Page et al. [PKS*03] was the first
to combine silhouettes and entropy, and it was Polonsky et
al. [PPB*05] who first identified their approach as a metric
for viewpoints. The entropy of a curve is the entropy of
the curvature distribution. The histogram for the silhouette
curvature distribution is computed using the angles between
the pixels that make up the silhouette. In the discrete case,
the turning angles range from =~ to 5 with a step of 7, and
entropy is calculated for all turning angles between adjacent
silhouettes. Silhouette entropy is defined as follows:

[NE]

VQui(v) = — h(e) log h(c),

a=—

[SE]

where h(«) is the normalized silhouette curvature histogram
and « is the bin for a particular turning angle. The highest
silhouette entropy corresponds to the best viewpoint.

Silhouette Curvature and Silhouette Curvature Ex-
trema. Vieira et al. [VBP*09] introduced a new metric,
based on the work by Felldman et al. [FSO5], where the
integral curve of the silhouette is calculated. Silhouette
curvature is defined as follows:

ZCEC
Ne 7

where c is the turning angle between two consecutive
pixels, C' is the set of turning angles, and V. is the number
of turning angles (s.t. |[N.| = slength(v)). The highest
silhouette curvature corresponds to the best viewpoint.

Secord et al. [SLF*11] slightly alters silhouette curvature
by enhancing the impact of the turning angles, this will
emphasize any extreme curvatures present in the silhouette.
Silhouette curvature extrema is expressed as

ZcEC(%)2
N,

Similarly, the higher the silhouette curvature extrema,
the better the viewpoint.

Note that for both curvature and curvature extrema,
intersecting silhouettes create T-junctions that can create
high curvatures and create false positives when searching
for the best viewpoint.

cl

m\:l‘

VQu2(v) =

VQuz(v) =

3.2.3. Depth. This section reviews the metrics that involve
the model depth. Depth is a natural metric for choosing the
best viewpoint because depth, and portraying depth, is a
key component to three dimensional renderings. For certain
data sets, such as terrain, taking into account the depth of the
model is a necessity. For example, if we were to apply the
area metrics to a terrain model, the best viewpoint will most
likely be an overhead view that makes the terrain appear flat.
Stoev and Straber. Stoev and Staber [SS02] realized
that the area metrics perform poorly on terrain data sets
and introduced a metric that selects the viewpoint that best
maximizes both the projected area and the projected depth.
The Stoev and Straber metric is defined as follows:

VQ14(v) = ap(v) + Bd(v) + (1 = [d(v) = p(v))),

where p(v) is the normalized projected area of the
model from some viewpoint v, and d(v) is the normalized
maximum depth of the model from some viewpoint v. For
general purposes, the authors set « = = = % And for
terrain models the authors recommend setting o = 3 =
and v = 1.

For this metric, the highest value will correlate to the
best viewpoint. This metric is best used when projected area
as well as depth are key components of the model, such as
with terrain data sets. This metric is adaptable and allows
for some user input in terms of prioritizing depth, area, or
both.

Maximum Depth. Secord et al. [SLF*11], inspired by
Stoev and Straber, also considered depth when creating a



(a) The best viewpoint based on maximum depth, V Q1.

(b) The worst viewpoint based on maximum depth, V Q1.

Figure 8: The best and worst viewpoints of the Stanford
Bunny based on the metric Maximum Depth.

viewpoint metric. Their first metric is simply the maximum
depth of the model. Maximum depth is defined as follows:

VQ15(v) = depth(v),

where depth(v) is the maximum depth of the model from
some viewpoint v.

For this metric, the best viewpoint will have the greatest
depth. This metric should work well for terrain datasets, but
could perform poorly on image-based models, as shown in
Figure 8.

Depth Distribution. Secord et al. [SLF*11] also took
into account the depth distribution of the image for each
viewpoint. Their metric maximizes the range of depths and
chooses the camera placement that has the most equally
distributed view of depths.

Depth distribution is defined as follows:

VQus(v) =1- > h(d)*,

deD

where d is a depth bin, D is the set of bins, and h(d) is
the normalized histogram of depths. Figure 9 is an example
of a normalized historgram and corresponds to Figure 7a.

The best viewpoint will have the most even distribution
of depths. Hence, this metric will work well for most 3-
dimensional data sets.

3.2.4. Stability. The metrics in this subsection involve vi-
sual stability, which is determined by analyzing a neighbor-
hood of surrounding views (defined by a threshold). If the
difference between the view and its neighboring views are
large, then that view is said to be unstable, conversely, if
the difference is small, then that view is considered stable.

1000000

100000

10000

1000

100

HORNMEH ORI N E AN DM A RN M A QNN DM QNN M= O
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Figure 9: The normalized depth histogram corresponding
to Figure 7a. The Depth Distribution metric will favor
viewpoints whose histograms are evenly distributed with
few peaks or valleys. This analysis used 256 bins for the
1M pixels of the image.

From user studies, a stable viewpoint has been shown to
be more visually appealing, whereas an unstable viewpoint
is a good starting point for post-hoc exploration since the
user can see a large change in the model with only slight
changes to the view.

Instability. Bordoloi and Shen [BS05] were the first
to consider the similarities between viewpoints for volume
rendering. To find similar or dissimilar images, they use
the projected area distributions associated with each view-
point and compute the distance using the Jensen-Shannon
divergence measure [BR82]. They considered the Kullback-
Leibler difference [Bla87b] as well, but two images with
differing occlusions cannot be compared with that measure.

Feixas et al. [FSG09] expanded on this research and
used instability as a metric for image-based rendering. And
Lin [Lin91] showed that the Jensen-Shannon divergence of
projected area distributions used in stability calculations can
be expressed in terms of Shannon Entropy. Instability is
calculated as follows:

VQirlo) = 3 > Dlo.vy)

where v; is a neighboring view of v, IV, is the number
of neighbors of v, and D(v,v;) is the Jensen-Shannon
divergence of the projected area distributions. D(v,v;) is
defined as follows:

p(v) p(v;)
p(v) +p(v;)" p(v) + p(v;)
where p(Z|v) and p(Z|v;) are the distributions with weights
p(v)/(p(v) +p(v;)) and p(v;)/(p(v) + p(v;)), respectively.

For this metric, the lowest instability is the best view-
point. This metric is suitable for data producers who want
a viewpoint that will appeal to most users.

Depth-based Visual Stability. Vazquez et al. [VFSHO1]
computes stability using the corresponding depth images

D(v,vj) = JS( ;p(Z]v), p(Z]vy)),




from every viewpoint. To determine the similarity between
two depth images, the Normalized Compression Distance
(NCD) is utilized. NCD is defined as follows:

L(v;vj) — min{L(v;), L(v;)}

NCD('UivUj) = maaj{L(Ui)7L(Uj)} ’

where L(v;) and L(v;) are the sizes of the compressed
depth images for viewpoints v; and v; respectively, and
L(v;v;) is the sized of the compressed concatenation of the
depth images for views v; and v;.

A view is considered similar to another if their corre-
sponding NCD score is less than a given threshold. The
best viewpoint will be the one that has the largest number of
similar views. Hence, the depth-based visual stability metric
is defined as follows:

VQ1s(v) = number of similar views to v.

Again, this metric is useful when user appeal/preference
is aesthetically important.

3.2.5. Surface Curvature. The metrics in this section an-
alyze the curvature of the model’s surface in order to de-
termine the best viewpoint. Intuitively, the curvature of a
surface is the amount of curve the surface deviates from
being flat.

Curvature Entropy. Page et al. [PKS*03], interested
in shape analysis, first proposed calculating the entropy of
the Gaussian curvature distribution over the entire surface
of the object. Polonsky et al. [PPB*05] built off of this
work to develop a metric that calculates the entropy of the
curvature distribution over the visible portion of the object’s
surface. With this metric, the best viewpoint will maximize
the projection of unique curvature present in the model.

The curvature of vertex x is estimated by the standard
angle deficit approximation:

Kx = 27‘(’2(1)]',
J

where angle ¢; is the wedge subtended by the edges of
a triangle whose corner is at vertex x.
The curvature entropy is defined as follows:

VQug(v) = =Y h(b) log h(b),

beB

where b represents a curvature bin, B is the set of
curvature bins, and h(b) is the normalized histogram of
visible curvatures from viewpoint v.

The best viewpoint will have the highest curvature en-
tropy. This metric is fitting for data sets that place impor-
tance on depth and specifically the angles of the peaks and
valley’s that make up the model’s visible surface.

Visible Saliency. Lee et al. [LVJ05] present a metric for
computing the mesh saliency of a 3D object. This is based
on the center-surround method from Itti et al. [IKN98] which
computed the saliency for 2D images.

To calculate visible saliency, the curvature at every
vertex is calculated using the strategy presented by Taubin
[Tau95]. Next, the saliency, S(z), of each vertex, z, is
calculated using the Gaussian-weighted average of the mean
curvature, defined as follows:

S(x) = |G(C(x),0) = G(C(x), 20)],

where G(C(z), o) is the Gaussian-weighted average of
the mean curvature and ¢ is Gaussian’s standard deviation.
Multiple saliency maps are created by varying o. The final
saliency is the aggregate of the saliency maps with a non-
linear normalization. Visible saliency is defined as follows:

VQu(v) = Y S(),

zeX

with X being the set of visible vertices and S(X) being the
saliency of vertex x. Figure 10 shows how mesh saliency
is calculated. The best viewpoint will be the one with the
highest visible salience value.

Center-Surround

Nonlinear
Normalized Sum

Multiscale
Saliency Maps

Curvature

Mesh Saliency

Figure 10: To compute visible saliency, the mean curvature
is computed for each vertex. The vertex saliency is then
computed as the difference between mean curvatures filtered
with a narrow and broad Gaussian. Multiple saliency maps
are computed by varying o, the Gaussian standard deviation.
Lastly, the saliency of the viewpoint is the aggregate of all
the saliency maps using a non-linear normalization. Taken
from Lee et al. [LVJO05].

Sokolov and Plemenos [SPOS] also implemented this
metric, but for curvature they used the standard angle deficit
approximation K, as seen in V Q9.

The authors believed that a curvature peak within a flat
region is as important as a flat region in the middle of
dense peaks. This metric aims to quantify the variations
present in the geometry, the more intense the variations,
the higher the saliency. Subsequently, zero saliency will
correspond to a region with uniform intensity, such as a
sphere. Mesh saliency and the produced saliency map can
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(a) Mesh simplification using QSlim [GZ05].
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(b) Mesh simplification guided by the saliency map.

Figure 11: Taken from [LVJO05], Lee et al. visually compared
the QSlim mesh simplification to their saliency-guided mesh
simplification. The mesh saliency map produced from this
metric guides the mesh simplification in order to keep the
highly salient aspects of the object intact.

be a preservation guide when applying other visualization

operations, such as mesh simplification, shown in Figure 11.
Projected Saliency. Feixas et al. [FSG09] apply the idea

of mesh saliency to individual polygons. The saliency of a

polygon is defined as the average dissimilarity between this

polygon and its neighbors. This metric is based on mutual

information, similar to metric VMI from Section 3.2.1.
The saliency, S(z), of polygon z is defined as:

1 &
S(2) = 7 D D(z. %),
z j:1

where z; is a neighboring polygon of z, N, is the set
of heights of z, and

p(2) p(z)
p(2) +p(2)" p(2) + p(2))
is the Jensen-Shannon divergence between the distributions
p(V|z) and p(V|z;) with weights p(z)/(p(z) + p(z;)) and

p(z;)/(p(2) + p(2;)). respectively.
The visible saliency is defined as follows:

VQu(v) =) S(z)p(v]z),

z€EZ

D(Z,Zj) :JS( ;p(V|Z),p(V|Zj)),

where the best viewpoint will have the highest visible
saliency.

This metric takes into account the saliency of individual
polygons rather than the curvature of the mesh surface,
meaning it will do well on amorphous geometries comprised
of locally unique polygons. But, much like the other polygo-
nal metrics that use mutual information, this metric is likely
to have a long execution time.

Saliency-based EVMI. Feixas et al. [FSG09] extends
VMI from Section 3.2.1 to include a weighted importance
factor. Saliency-based EVMI is defined as follows:

o) = o) o PE1Y)
VQa2(v) Z;p( [v) log 75

)

with p/(z) defined as:

p(2)i(2)
>oez P(2)i(2)

and i(z) is the importance of polygon z.

Serin et al. [SSB13] alter this metric, redefining i(z) as
the curvature of polygon z and in place of p(z) they use the
total area of polygon z, a,.

The best viewpoint will correspond to the minimum
value. This metric will do well with geometries comprised
of differing polygons, but will have a long execution time,
similar to the other metrics based on mutual information.

P (2) =

3.3. Data Driven Quality Measures

This section will cover all automatic viewpoint selection
metrics that are based on data. Metrics in this category
would most likely be applied to scientific data sets, such
as scalar fields and volumetric data that lie on a regular
mesh.

There has been little research done to define data-driven
metrics that will determine the best viewpoint of a regular
grid. The solutions that have been proposed involve informa-
tion theory. While this survey only covers entropy informed
camera placement, Wang and Shen [WS11] survey the use
of information theory in scientific visualization.

3.3.1. Entropy. This section will cover all metrics that
utilize entropy to determine the best viewpoint.

Viewpoint Entropy. The first metric is to utilize view-
point entropy established by Vazquez et al. [VFSHO3],
[VESHO1]. Viewpoint entropy would maximize the visible
entropy of each face. Unfortunately, a regular mesh has at
most six faces.

This is an easily implementable and quick metric that
could be applied to all 3D regular datasets. A significant is-
sue with this metric — and all of the geometry-based metrics
— is that it assumes the surfaces have zero thickness.

Isosurface Entropy. Takahashi et al. [TFTNO5] applied
viewpoint entropy to volumetric data, utilizing the inher-
ent geometry that is based on the transfer function. Let
pi(t = 0,...,mn — 1) be the set of scalar values that has
been uniformly sampled from the entire data set. This set of
scalar values will be used to create n individual isosurfaces,
Li(i=0,...,n—1).

The viewpoint entropy of an individual isosurface,
E;(v), is defined as follows:

1 e

G
E;(v) = %ij 100 &3
i(v) 1og(mi+1);0 R ® R

where a;;(j = 0,...,m;) is the jN visible face of the

i™ isosurface, R is the resolution of the viewpoint (i.e. pixel



(a) The best and worst images based on isosurface entropy (left) and
weighted isosurface entropy (right)

f )

(b) The best and worst images based on interval volume entropy (left)
and weighted interval volume entropy (right).

worst

(c) The key for Figure 12.

Figure 12: The viewpoint entropy distributions as well as
the best and worst images based on the isosurface (12a)
and interval volume (12b) metrics, and respective key (12c).
Taken from [TFTNO5].

resolution), m; is the total number of visible faces of the
isosurface, and m normalizes the value.

The viewpoint entropy of the entire volumetric data set
is the average of the individual isosurface entropies and is

defined as follows:

n—1

VQQg(’U) = % Z Ez(v)

=0

The best viewpoint will have the highest isosurface
entropy.

A downside of this metric is that it uses the isosurfaces
individually and does not take into account occlusions, as
shown in Figure 12a.

Weighted Isosurface Entropy. Wanting to improve
their previous metric to account for occlusions, Takahashi
et al. [TFTNOS] assign different weights to the individ-
ual isosurfaces, helping to accentuate certain features and
choose views with fewer occlusions. The weight, \;, for
the i isosurface is computed using the transfer function.
Transfer functions can be designed to emphasize the inherent
geometry present in the scalar field [TTF04], [WSO04].

Denote the transfer function of a scalar value s as
TF(s). Then ); is defined as follows:

Ai = TF(pi),

where p; is the isovalue for isosurface, I;.

Figure 13: An example of a contour tree and the respective
interval volumes associated with sections of the tree. Taken
from [TFTNO5].

Then the weighted isosurface entropy is defined as fol-
lows:

n—1

VQau(v) =Y

=0

| >

Ei(’l)),

where L =" " \..

The best viewpoint will correspond to the highest en-
tropy.

Adding these weights resulted in fewer occlusions, but
still suffers from overlaps as shown in Figure 12a. They
found this was the case for other volumetric data sets as
well.

Interval Volume Entropy.

Takahashi et al. [TFTNO5] hypothesized that an
isosurface-based metric could not provide satisfactory re-
sults, even when individual results are weighted, due to three
reasons:

o Universally sampling the data for isovalues does not
precisely reflect all the shapes present in the data,
and it’s possible the most interesting isovalue will
not be selected.

o The approach cannot distinguish between connected
components of a single isosurface, meaning they
cannot assign different weights to disjoint compo-
nents.

o The isosurface is neglecting the overall thickness
present in the data.

The authors shift their focus towards interval volumes.
Interval volumes are defined as a subvolume composed
of isosurface within a range of scalar field values. The
authors use an interval volume decomposer IVD) [TFT05]
to represent an interval volume as a contour tree [BPS97],
which tracks the topological transitions of isofields with
respect to the scalar field as shown in Figure 13. Once the
data has been decomposed, entropy can be calculated. The



viewpoint entropy of an individual interval volume EY (v)
is defined as follows:

EY (’U) — 1 i aj lo aﬂ

Y logmi+ 1) &R ° R’

j=

where a;; is the 4™ face of the ™ interval volume V;(i =
0,...,n), and R is the total area of the screen.

The interval volume entropy of the entire volumetric data
set is the average of the individual isovolume entropies and
is defined as follows:

n—1
VQ25(U) = % Z EZU(U)
=0

Using this metric, the best viewpoint will correspond to
the highest entropy.

By using interval volumes, the authors notice that the
thickness of the data is more accurately portrayed as shown
in Figure 12b.

Weighted Interval Volume Entropy.

Again, Takahashi et al. [TFTNOS5] build off the previous
metric by adding weights to the interval volumes. The
weights are based on a multidimensional transfer function.
Figure 14 shows how using a multi-dimensional transfer
function enhances the internal structure of the volume com-
pared to a single-dimensional transfer function.

Let k; be the number of voxels present in V; and let
tij(j =0,...,k — 1) be the opacity value associated with
the j™ voxel of the i interval volume. Then ); is defined
as follows:

Then the weighted interval volume entropy is defined as
follows:

where L =" "\

The best viewpoint will have the highest entropy.

The previous two metrics are applicable when the thick-
ness of the data is important. And though Figure 12b shows
only a modest difference between the two metrics, the use
of a multi-dimensional transfer function can be critical to
enhancing interior structures as shown in Figure 14, which
is only utilized in the weighted interval volume metric.

As a final note, for extremely large data sets, these
metrics are computationally heavy with potentially high
communication costs. That said, utilizing software from
Section 4 can help mitigate these performance costs.

(a) Weighted interval volume using a single-dimensional transfer
function.

"

(b) Weighted interval volume using a multi-dimensional transfer
function.

Figure 14: Viewpoint entropy distributions and the best
and worst views of the simulation based on the weighted
interval volume metric using a single-dimensional transfer
function (14a) and a multi-dimensional transfer function
(14b). By using a multi-dimensional transfer function the
inner structures are emphasized. Taken from [TFTNOS].

4. In Situ Analysis and Visualization Software

This section will survey the libraries and software that
allow for in situ visualization and analysis. When applicable,
for each software examined we determine how the default
camera position is chosen.

ADIOS. The Adaptable IO System (ADIOS) [LLT*14]
is a simple and flexible I/O middleware library that allows
users to describe, write, read, or move data in situ. Using
XML files as input, ADIOS easily lets users change how
their I/O is handled. ADIOS has been shown to be scalable,
portable, and efficient on supercomputers.

VTK-m. VTK-m [MSU*16] is a many core implemen-
tation of the Visualization Tool Kit (VTK) [SMLO06]. VTK is
an open-source software that is used for 3D computer graph-
ics, modeling, image processing, volume rendering, scien-
tific visualization, and 2D plotting. VTK-m has been used
to rewrite visualization algorithms using data parallel primi-
tives, allowing a single implementation to run efficiently on
emerging architectures [LHK*16], [LMC*17], [LBMC16],
[KCK*16], [LLCC17]. The VTK-m library plays a critical
role in many of the following software implementations.

Ascent. Developed by Larsen et al. [LAA*17], Ascent
is a multi-institutional project funded by the Exascale Com-
puting Project (ECP) [Mes17]. A later implementation of
Strawman [LBC*15], [HLB16], Ascent is a flyweight in-
frastructure that allows for in situ analysis and visualization



of scientific datasets. Ascent utilizes VIK-m [MSU*16]
for shared-memory parallelism using data-parallel primitives
that are efficient and hardware agnostic. The goal of Ascent
is three-fold:

o Provide in situ analysis and visualization for modern
and emerging supercomputing architectures.

o Be a flyweight infrastructure with a simple interface,
minimal dependencies on outside software, and min-
imal processing overheads when it comes to memory
and copying data.

o Interoperability with other software. Ascent can sup-
port software other than VTK-m (such as R [R
C14]). But it is up to the user to build a bridge for
the data models to or from VTK-m.

Ascent also comes with several built-in scientific simula-
tions.

In Ascent, unless otherwise specified, camera placement
is based on the magnitude of the extents. This guarantees
the data is in frame and is a canonical view for 3D datasets.

Cinema. Cinema [AJO*14] is an open source soft-
ware that provides a unique approach to in situ and post-
processing analysis and visualization of large scale scientific
data. Unlike the other software that will typically only save
a single image, Cinema saves a set of images in what
the authors call a Cinema database. Using this database
of images, the user can explore data at a fraction of the
storage and I/O costs of saving the entire time slice. Beyond
exploring data, Cinema provides sophisticated analysis and
visualization routines that can be applied to the database.
And now databases can now be composed of a range of
metadata, such as run parameters, output variables, grids, or
any other type of data that can written to disk.

Cinema has been integrated as an export option for
Vislt/Libsim, Paraview/Catalyst, and Ascent. For this soft-
ware, discussing camera placement does not make sense as
this approach saves data from many viewpoints.

The components of the Cinema ecosystem are shown in
Figure 15.

VisIt/Libsim. Vislt [CBW*12] is a free software for
parallel visualization and analysis. Vislt allows users to
generate visualizations of scientific data, animate through
time, manipulate the data, and save images or viewpoint
animations. Libsim [WFM11] is a tool in Vislt that facili-
tates in situ visualization. This allows users to explore the
data interactively as the simulation is running, in addition to
some debugging and simulation steering capabilities. Unless
otherwise specified, the camera view defaults to a flat, 2D
representation with the origin in the lower left corner.

ParaView/Catalyst. Paraview [AGLO05] is an open
source, data analysis and visualization application that uti-
lizes VTK [SMLO06] under the hood. Providing both qualita-
tive and quantitative techniques that users can perform either
interactively or programmatically. Paraview was designed to
be able to analyze extremely large datasets using distributed
memory resources. Catalyst [ABG*15] is a library within
Paraview that allows for in situ visualization and analysis.

Writers

Viewers
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Catalyst
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DB operations, Image, stats,
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Figure 15: The Cinema ecosystem is composed of databases,
algorithms, writers, and viewers. Cinema databases have
been integrated as an export option for a number of state-
of-the-art in situ analysis and visualization software, or
writers. Cinema can employ sophisticated quantitative and
qualitative algorithms on the database. The output can then
be visualized using the Cinema viewer either post-hoc or in
situ. Taken from [DLANLI14].
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Figure 16: SENSEI is a generic interface that provides a
bridge to many technologies. With a simple API, the user
can decide which analysis routine to run. In other words,
the user can “write once and run every where.” Taken from
[CLR*19].

Unless specified, the Paraview/Catalyst camera place-
ment defaults to a rendering with the origin in the lower
left corner.

SENSEIL SENSEI [AWW*16] is a generic in situ inter-
face, providing the bridge from the simulation to a number
of different visualization and analysis software, I/O file
types, as well as in-transit data movement and analysis,
as shown in Figure 16. The bridge takes the simulation
data and using the data adaptor, exposes the simulation
data structures, this is then passed to the analysis routines
on the back-end via the analysis adaptor. With SENSEI,
a user can can instrument their simulation code to the
SENSEI API and then be able to utilize any of the in
situ infrastructures that SENSEI currently supports (Ascent,
Vislt/Libsim, Paraview/Catalyst, etc.). Additionally, a user
can develop an in situ method using the SENSEI API with
little modification to the simulation code.

For camera placement, unless otherwise specified, place-
ment defaults to what the analysis routine dictates.

Overview. The aforementioned software are the main
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Figure 17: The current state-of-the-art for in situ analy-
sis and visualization software and libraries. This diagram
depicts the workflow from the simulation, to the in situ
application, I/O routines, and then post processing. Taken
from [DLANLI14].

state-of-the-art in situ analysis and visualization applications
and libraries being used today on large-scale simulations.
Figure 17 shows where they fall within the in situ visual-
ization and analysis workflow. Notice that VTK-m is heavily
utilized among all these applications, proving its usefulness
and necessity as supercomputers push for exascale.

5. Use Cases

In this section we look at recent works that apply in situ
visualization to large-scale simulations or works that save
out images. For each use case, we describe their method,
and if applicable, how camera placement for rendering is
determined.

Combustion.

Yu et al. [YWG*10] provide an early result within the in
situ paradigm by proving the feasibility of in situ visualiza-
tion at scale. Their in situ visualization produces high quality
renderings of a large-scale turbulent-combustion simulation
using S3D, a Sandia DNS (direct numerical simulation)
solver. This particular simulation produces volume and parti-
cle data, so their work performs both highly parallel volume
rendering and particle rendering in situ with manageable
simulation strain (ranging from 2-36%). They performed
their experiments using various configurations, with their
largest run having 41 million particles, 600 million cells,
executed on 15,360 cores. The camera position and transfer
function for their renderings are user-specified, with the
default being based on a small set of sample runs.

As analysis routines become more complex, they begin
to take longer to execute and as a consequence, stall the
simulation. A way to mitigate this is to transfer the data
to secondary compute resources to perform the analysis,
allowing the simulation to resume. But transferring data in
itself can be prohibitive depending on the amount of data
and desired configuration, whereas in situ analysis will have
all the data locally. Work from Bennett et al. [BAB*12]
present a hybrid method that utilizes both in situ and in
transit data analytics to offload data that as been reduced

or transformed in situ to secondary compute resources.
Applying their method to a combustion simulation using
S3D with a volume of 1 billion cells using 4,896 cores,
their approach had an average wall time of 16 seconds per
time step. They compare their hybrid methods to purely
in situ algorithms, and show that, for the most part, their
approach produces less or equitable strain on the simulation.
Their hybrid method allows them to track, identify, down-
sample, and visualize features with feasible overhead. Much
like their previous work [YWG*10], their camera placement
is based on previous small scale runs.

Tokamak.

Work by Pugmire et al. [PKC*16] shows that near-
real-time visualization and analysis is possible within a
distributed workflow. This work lies in the cross-hairs of
simulation monitoring and steering, and in situ visualization
and analysis. There has been a lot of effort into develop-
ing steering and monitoring techniques for visualizing data
across a network [BetOOb], [BetOOa], [BSS*03], [PLF*03],
[PJ95], as well as work for in situ approaches [CMY™*12].
In particular, this work focuses on in transit methods, where
data being produced from the XGC1 [CKD*(09] simulation
in Singapore is moved asynchronously over the network to
compute resources in Georgia, USA where the data will be
visualized and queried. Their in transit method uses ADIOS
[LLT*14], the middleware system that has a variety of
different transport methods, including Dataspaces [DPK10],
FlexPath [DBE*14], and ICEE [CWW*]. On the simulation
side, 162MB of field and 62GB of particle data are produced
every time step, which ADIOS then transfers to local staging
nodes. From here, the field data is transferred over the
WAN to Georgia where data consumers can visualize the
data, steer the simulation, query the particle data, and track
individual particles over time, all before the next time step
begins (in 10 seconds). In terms of viewpoint, the user can
interactively choose an area of interest which will determine
the camera placement.

Weather.

Work by Ellsworth et al. [EGH*06] describe a time-
critical visualization pipeline for weather forecasting using
the fourth generation Goddard Earth Observing System
(GEOS4) simulation code. The GEOS4 simulation is run
under tight time constraints four times a day which requires
the visualization to be performed with minimal overhead so
they can be made available to forecasters at the National
Hurricane Center. The visualization had to be performed
on data consisting of 23 million cells with up to seven 3D
and four 2D fields per cell. To be able to visualize the data
quickly with high resolutions, Ellsworth et al. decoupled
the data, transferring the data to staging nodes where they
compressed the data using MPEG encoding. The resulting
MPEG streams are then sent to the remote sites where the
completed time steps are shown in a continuous animation
loop. Camera placement is moot in this circumstance as
the data is always presented on a 2D world map with an
overhead viewpoint.

The work by Slawinska et al. [SCW*13] integrates
ADIOS into the Maya computational astrophysics simula-



tion to allow physicists to analyze and visualize their data
in situ. By utilizing the staging capabilities of ADIOS,
Slawinska et al. are able to apply in situ techniques to
analyze, reduce, and visualize their data with little impact
on the simulation. This work was primarily an adaptation
of Maya’s workflow, so there was no discussion of camera
placement nor types of visualizations performed.

Molecular Dynamics.

Before data scientists employ in situ techniques, it’s im-
portant to determine if in situ is a right fit for their use-case.
If the analysis routines are compute heavy, it may be better
to use in transit techniques and move data to secondary
compute resources, or maybe write to disk. There also needs
to be sufficient memory to perform the analysis, which
may not be possible for memory intensive simulations. For
large-scale simulations, Malakar et al. [MVM™*15] propose
a routine for optimal scheduling of in situ analysis that is
based on resource configurations and application demands.
Based on the time and memory requirements of the simula-
tion and the analysis kernels, their program will recommend
which analyses can be done in situ within the constraints,
prioritize the analyses, while also taking into consideration
the expected I/O costs. Overall the contributions of this work
is four-fold [MVM*15]:

o Formulation of optimization problem for scheduling
in situ analyses.

o Recommendation for performing in situ analyses
based on their resource usage and available system
resources.

e Performance modeling of in situ analysis routines.

o Demonstration of in situ analyses execution with
the proposed optimization schedules with two ex-
emplar applications, LAMMPS [P1i95] and FLASH
[VHP*11], on a leadership supercomputing system.

The issue with this work is that after calculating which
analyses to perform it also decides how many times to per-
form each analysis, then evenly spaces the analyses among
the total number of time steps. Thus potentially missing
important phenomena if the analyses are not performed at
the correct time step.

Fluid Mechanics.

In order to visualize their data in situ, Lorendeau et
al. [LFR13] integrate Catalyst [ABG*15] into Code_Saturn
[AMSO04], an open source Computational Fluid Dynamics
(CFD) code designed to solve the Navier-Stokes equations
for 2D, 2D axisymmetric, and 3D flows. With increasing
computational power, researchers at the Electricité de France
(EDF) were beginning to spend the majority of their time
writing and reading their data. By integrating Catalyst the re-
searchers were able to work around the growing I/O gap and
were now able to visualize their data in situ with only 10%
added overhead on runs with 204M hexahedral elements and
3,600 cores on Ivanoe, their corporate EDF supercomputer.
Viewpoints and other parameters were determined based
smaller test runs.

Also wanting to visualize their data in situ, Yi et al.
[YRFB14] integrate Catalyst into the simulation Parallel Hi-

erarchic Adaptive Stabilized Transient Analysis (PHASTA)
[Jan99], an open source codebase used to solve compressible
and incompressible Navier-Stokes equations. They tested
their integration on both Oak Ridge National Lab’s Titan
and Argonne National Lab’s Mira supercomputers. On Titan,
using 18,432 cores and having 167M tetrahedral elements,
the in situ visualization added a 10% execution overhead.
Whereas on Mira, using 32,768 cores, the in situ visu-
alization caused an additional 30% overhead. While they
added steering capabilities and checkpoints so they could
“rewind” and alter simulation parameters in situ, their initial
conditions and viewpoints are based small test runs.

6. Evaluation

Over the course of this survey we implemented 14
of the 26 metrics to determine which are palatable for
in situ implementation. Wanting to keep computational
overheads low and memory footprints small, we imme-
diately disqualified the following metrics for being un-
fit for in situ without significant work parallelizing the
algorithms: V' Qg, VQg, VQ17 — V Q2.

Of the remaining metrics, we applied them to several
scientific datasets of varying size, measuring their average
execution time as well as visually analyzing the images each
metric determines to be the best and worst.

For this research we use isosurfaces of individual time
steps from the following ECP datasets:

« ExaSky-Nyx a cosmological simulation: three dif-
ferent time steps with 19,280, 143,059, and 55,544
triangles.

« ExaAM Truchas a metallurgy casting simulation:
three different time steps with 18,473, 6,474, and
21,255 triangles.

« ExaConstit a metallurgy simulation: two different
time steps with 938,862, and 135,109 triangles.

Table 2 shows the average execution time for each metric
per viewpoint for each time step. Some metrics can be com-
puted during the rendering process, thus requiring little time
to compute. But even those that require extra computations,
none exceeded 2 seconds and most were significantly faster.

Figures 18-25 show the best and worst images for each
metric for the eight time steps. Notice that there are view-
points that are consistently favored among the majority of
metrics, but overall the results could be wildly different
depending on the data set.

In terms of findings, each metric has pros and cons.
For the area metrics, they favor images that maximize pixel
resolution, but in doing so can have lots of occlusions and
little depth. For the silhouette metrics, they favor images
with jagged silhouettes, which, in some cases, reduces oc-
clusions. Similarly for depth, by maximizing the viewable
depth of the image this prevents any large components from
dominating.

In conclusion, we’ve realized is that no one metric will
find the best image, but maybe a combination of metrics can.
Additionally, the metrics implemented are purely based on



the geometry of the data, what is needed is a new metric that
also takes into account the field data. We believe an entropy
calculation on the field data in conjunction with geometric
metrics will result in a scientifically important image.
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Figure 18: The best and worst images for the implemented metrics on the ExaAM time step with 18,473 triangles.
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Figure 19: The best and worst images for the implemented metrics on the ExaAM time step with 6,474 triangles.
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Figure 20: The best and worst images for the implemented metrics on the ExaAM time step with 21,255 triangles.
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Figure 21: The best and worst images for the implemented metrics on the ExaAM time step with 19,280 triangles.
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Figure 22: The best and worst images for the implemented metrics on the ExaAM time step with 143,059 triangles.
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Figure 23: The best and worst images for the implemented metrics on the ExaAM time step with 55,544 triangles.
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Figure 24: The best and worst images for the implemented metrics on the ExaAM time step with 938,862 triangles.
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Figure 25: The best and worst images for the implemented metrics on the ExaAM time step with 135,109 triangles.




Metric | ExaConstit 1 ExaConstit 2 ExaSky 1 ExaSky 2 ExaSky 3 ExaAM 1 ExaAM 2 ExaAM 3
(938,862 As) (135,109 As) | (55,544 As) | (143,059 As) (19,280 As) | (21,255 As) | (6,474 As) | (18,473 As)
Time in us

V1 N/A N/A N/A N/A N/A N/A N/A N/A

VQ2 N/A N/A N/A N/A N/A N/A N/A N/A

VQ3 248065 us 14830.5 ps 5311 ps 14185.3 us 1929.03 2508.63 us 305.72 ps 952.74 us

VQ4 N/A N/A N/A N/A N/A N/A N/A N/A

VQs 1.33009e+06 ps | 268443 s 626197 s 1.36365e+06 ps | 545438 us 148650 ps 207043 ps | 135033 ps

VQe 1.33009e+06 ps | 268443 us 143059 ps 1.36365e+06 ps | 545438 us 148650 ps 207043 ps | 135033 ps

VQ7 1.25724e+06 ps | 33725.3 ps 615655 s 1.33423e+06 ps | 531735 us 143863 ps 202881 ps | 133310 us

VQio | 17144.4 ps 12047.8 ps 14965.4 us 20626.9 us 15637.9 us 11319.3 us 11141.9 ps | 12442.1 ps

VQ11 | 171444 ps 12047.8 ps 14965.4 us 20626.9 us 15637.9 us 11319.3 ps 111419 ps | 12442.1 ps

VQi2 | 171444 pus 12047.8 us 14965.4 us 20626.9 us 15637.9 us 11319.3 us 11141.9 ps | 12442.1 us

VQi3 | 17144.4 us 12047.8 ps 14965.4 us 20626.9 us 15637.9 us 11319.3 us 11141.9 ps | 12442.1 ps

VQia | N/A N/A N/A N/A N/A N/A N/A N/A

VQis | 40476.5 ps 20735.9 pus 29617.2 ps 50017.6 ps 27389 us 17836.3 ps 19834.8 pus | 174455 ps

VQie | 36.96 us 37.52 pus 35.66 s 45.04 ps 39.31 pus 36.85 us 36.4 us 36.1 ps

TABLE 2: The average execution time in microseconds for each metric per viewpoint for each of the eight datasets. N/A
means the metric calculation is done in conjunction with the rasterization process.
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