
Enabling Explorative Visualization With Full Temporal
Resolution Via In Situ Calculation Of Temporal

Intervals

Nicole Marsaglia1, Shaomeng Li2, and Hank Childs1

1 University of Oregon, Eugene OR 97403, USA
{marsagli,hank}@cs.uoregon.edu

2 National Center for Atmospheric Research, Boulder CO 80305, USA
shaomeng@ucar.edu

Abstract. We explore a technique for saving full spatiotemporal simulation data
for visualization and analysis. While such data is typically prohibitively large to
store, we consider an in situ reduction approach that takes advantage of temporal
coherence to make storage sizes tractable in some cases. Rather than limiting
our data reduction to individual time slices or time windows, our algorithms act
on individual locations and save data to disk as temporal intervals. Our results
show that the efficacy of piecewise approximations varies based on the desired
error bound guarantee and tumultuousness of the time-varying data. We ran our
in situ algorithms for one simulation and experienced promising results compared
to the traditional paradigm. We also compared the results to two data reduction
operators: wavelets and SZ.

1 Introduction

Traditionally, scientific simulations have enabled their data to be visualized by saving
many “time slices” to disk. That is, at regular (or irregular) intervals, a simulation code
will store the current state of the simulation to a file (or group of files). Visualization
programs then operate on this data by loading it from the disk. In this model, the simula-
tion code performs a temporal sampling, meaning that it contains accurate information
about the simulation’s state for the time slices that were stored, but no information
about what happened for the intervals between its time slices. As a result, information
between time slices is lost, creating a risk of lost science.

The purpose of our research is to enable the storage of full spatiotemporal data, and
our research idea is enabled by an emerging processing paradigm for visualization on
high-performance computers. This paradigm uses a combination of in situ processing
and post hoc processing. First, in situ routines transform — and often reduce — data,
which is then saved to disk. Second, the post hoc routines are then used for explo-
rative visualization after the simulation has finished running. While this paradigm has
emerged to enable explorative use cases in the face of I/O limitations, we believe it also
creates opportunities for better preserving full spatiotemporal data. This is the case with
our own work, which is less about data reduction than it is about increasing temporal
resolution. That said, saving full spatiotemporal data requires prohibitive storage capa-
bilities, and so data reduction is still necessary; we demonstrate reduction factors that



2 N. Marsaglia et al.

reduce storage needs to being equal to the storage needs of the traditional paradigm —
with the benefit of having full temporal access.

Our research approach depends on the concept of temporal intervals. However, raw
temporal interval data is too large to store to disk — just as the traditional model would
be if it stored all time slices — so it is only feasible if the intervals are compressed
as they are stored. With our approach, we compress the data in a way that guarantees
accuracy, e.g., 95% accurate, 99% accurate, etc. Our approach, then, has the benefit
of being able to present known error bounds to stakeholders. However, the storage to
achieve this accuracy guarantee is variable, and, for some types of data, may require
more storage than the stakeholder is willing to allocate. For this research, we decided to
embrace this decision (fixed error rate with unknown storage requirements) rather than
consider the alternative (fixed storage requirements with unknown error rates), since we
feel the former proposition is more desirable to stakeholders.

This work implemented an in situ algorithm with the choice of three different com-
pressors that compress data temporally with a guaranteed error rate. For the chosen
algorithm and user defined error rate, the algorithm operates individually on every grid
point within a simulation. Within each grid point, for every generated value, the al-
gorithm decides whether its current approximation sufficiently captures the value, or
whether the approximation should be reset. We ran our algorithm on multiple data sets
both post-hoc and in situ. We then analyzed the storage differences of our method com-
pared to other known data reduction techniques. By implementing temporal data reduc-
tion in situ, this research has shown an improvement over saving at fixed intervals in
the traditional paradigm. By compressing data temporally, the algorithm provides full
temporal resolution of the simulation data and is a viable compression option compared
to other techniques, namely wavelets and SZ.

2 Related Work

This section begins by classifying related work into categories of compression algo-
rithms and what type of temporal data they operate on:

– Individual Time Slice Data (Section 2.1)
– Multiple Time Slice Data (Section 2.2)
– Complete Temporal Data (Section 2.3)

The remainder of this section considers the impact of introducing error during compres-
sion (Section 2.4) and how our approach differs from previous work (Section 2.5).

2.1 Individual Time Slice Data

This approach to data reduction disregards the temporal coherence between data points.
Most of these data reduction techniques do, however, use spatial coherence to perform
compression.

One approach to compress individual time slice data is to use lossless data com-
pressors. Such compressors include FPC [7] for 64-bit floating-point scientific data;



Explorative Visualization Via Temporal Intervals 3

FPZIP [33] for generic scientific data; a framework by Fout and Ma [14] for floating-
point volumetric data; and the approach by Chen et al. [9] for compressing irregu-
lar grids. Certain operations (e.g., sorting, mutation, etc.) can be applied to “precon-
dition” the data to improve compression effectiveness. Such preconditioners include
MAFISC [17] which consists of five individual filters; ISOBAR [40] which statistically
separates data based on compressability; and a binary mask approach developed by
Gomez et al. [15]. MPC [44] and FPcrush [6] are compressors built on top of precon-
ditioners. However, lossless compression techniques can usually only reduce data by
modest amounts and can be computationally intensive, and thus less attractive for in
situ data reduction.

Another approach to compressing individual time slices is lossy data compression.
ZFP [31] achieves high compression via spatial coherence and bit reduction, but this
technique strongly favors smooth data. Similarly, the RBD algorithms [19] utilize spa-
tial locality by viewing data point grids as graphs and representing subgraphs as singular
values based on a user defined error bound. The lossy version of FPZIP [33] uses pre-
dictive encoding with a relative error bound. The newly emerged SZ compressors [12,
41] use multiple predictive approaches to achieve effective compression.

Lossy wavelet compression has also been used in many visualization studies. 3D
wavelet transforms have been shown to provide random access of voxels [18, 38], level
of detail [5, 39, 36], and fast volume rendering [21, 16]. Data reduction achieved by
wavelets has also been used to visualize large data in real time, for example, at a cost
of 5 seconds per time slice on a 1,0243 turbulent-flow data set [42]. Work by Li et
al. [28] improves the time cost of wavelet compression using parallel primitives on het-
erogeneous architectures, making wavelets a viable option for in situ compression [27].
These wavelet-based compression schemes, however, do not guarantee an error bound,
and users often need to try their data before knowing the amount of deviation.

2.2 Multiple Time Slice Data

This approach to data reduction takes into account multiple time slices, utilizing the
temporal coherence present in many scientific data sets, and potentially spatial coher-
ence as well.

ISABELA [22] takes advantage of monotonic inheritance of points over time by first
sorting a time slice, applying B-spline curves, and then representing multiple temporal
windows with a reconstructed curve. It is reported to compress tumultuous data by
nearly 85% with a 99% average correlation between the original and compressed data
with little overhead in runtime [23]. Lehmann et al. [25] extended ISABELA by adding
corrective computations to the sorted data and loosening the restrictions of when to
write a window to memory. Additionally, their technique added support for selective
loading of regions with varying levels of resolution.

Wavelet compression is also reported to operate across multiple time slices, making
it a spatio-temporal compressor [30]. Here time slices after traditional spatial wavelet
transforms are grouped into “windows” to perform additional temporal wavelet trans-
forms, making use of the temporal coherence. The authors reported an approximately
2 : 1 benefit of incorporating temporal compression.



4 N. Marsaglia et al.

While these works take into account both spatial and temporal coherency, they do
not provide full spatiotemporal resolution as their compression only applies to several
consecutive time slices, and not every time slice.

2.3 Complete Temporal Data

This section encompasses full temporal resolution at the same spatial resolution as the
native grid.

IDEALEM [24] relies on statistical similarities and breaks streams of data into win-
dows, then compresses those windows based on point distribution to reduce data in situ.
IDEALEM does well with tumultuous data as it provides a heavy distribution of points.
However, it performs poorly with smooth curves as the data distribution is sparse within
each window.

The work by Fernandes et al. [13] improved upon volumetric depth images (VDIs)
by exploiting temporal coherence and utilizing delta encoding, allowing them to achieve
both data reduction and explorable time-varying imagery.

Our work also falls under this category of compression.
And finally, we remind our readers that a more comprehensive survey on scientific

data reduction techniques was done by Li et al. [29].

2.4 Impact of Error in Compression

Some work has been done to study the extent of error and error propagation on simula-
tions utilizing compression techniques or the errors present in the subsequent analysis.

Lindstrom [32] researched error distributions of lossy compression, and found that
the choice of compressors affects the error distribution and subsequent autocorrela-
tion. Baker et al. [4, 3] developed a methodology to evaluate the compression im-
pact on climate data using ensembles of data, and later argued that multiple compres-
sion schemes applied on different variables can achieve the best compression on such
data [2]. Woodring et al. [43] also looked at climate data compression, and argued that
the maximum error (L∞-norm) being most effective in communicating compression er-
ror.

With respect to visualization, Ma et al. [34] informed users the compression varia-
tions by encoding them into marching cubes. Li et al. [26] researched into the impact
of data compression to visual analytics in regard to turbulent flow data.

2.5 How Our Approach Differs From Previous Work

Our work is specifically focused on providing complete temporal resolution at the same
spatial resolution of the simulation. Since this data is assumed to be too large to store,
we compress the data to make storage feasible. This is, of course, related to previous
compression work, although we place a particular focus on guaranteeing accuracy —
without guaranteed accuracy our approach has little meaning. As an example, it would
be possible to use the traditional approach, temporal sampling, and interpolate between
adjacent time slices. But such an approach would not actually be especially informative,



Explorative Visualization Via Temporal Intervals 5

since it would miss features that fell outside the interpolation. We experimented with
this approach, and found that more than 1% of all interpolated values were more than
5% away from their correct values (see Table 7); we believe this rate of inaccuracy is
unacceptable.

Our work operates on each grid point’s continuous stream of data, attempting to
compress every incoming value. Our research includes three in situ compressors that
reduce temporal data into piecewise approximations. Each compressor uses a sliding
window similar to the SWAB [20] data mining technique for segmenting time series
data.

3 Algorithm

The objective of this work is to provide full temporal resolution with spatial resolution
identical to the native grid, that is feasible enough to store on disk, and comes with an
error bound guarantee; this is accomplished via a tailored compression technique.

Our algorithm was designed to work in situ and works as follows. Our algorithm
creates an instance of a compression object for each grid point in the simulation. Each
such object reduces its respective time series into piecewise approximations. The com-
pression object at a given grid point runs independent of the compression objects at
other grid points. For every generated value at a grid point, there are two possible out-
comes. One, the simulation’s current value falls within the error bound of the current
approximation. Or two, the simulation’s current value does not fall within the error
bound of the current approximation. In this case, the former approximation is written to
disk or memory and the process begins anew with the current value.

3.1 Error Bound

For most of the research presented in Section 2, a user defined error is realized as a
maximum error bound. Maximum error can either mean a maximum absolute error (all
reconstructed values must be within X units of the original values) or a relative absolute
error (all reconstructed values must be within X% of the original values). In our case,
we focus on relative absolute error, because maximum absolute error can lead to loss of
important information when a value is near zero.

However, by using a maximum relative error bound rather than an absolute error
bound, we are imposing a stricter threshold on our compression algorithms. But we be-
lieve this guarantee, that results in no post-hoc artifacts, is important to domain scien-
tists. Future work could involve relaxing this error guarantee, which would undoubtedly
result in better compression.

3.2 Compression Approaches

As discussed earlier, our overall algorithm instantiates a compressor object for each
grid point. We considered three types of compression approaches, each of which could
be instantiated as the compressor objects for our algorithm. The three compression ap-
proaches are:



6 N. Marsaglia et al.

Fig. 1: Image (a) represents a simulation mesh with nine grid points. As the simula-
tion runs, it generates a stream of data at each grid point. In our notional example, we
consider the data stream at the grid point indicated with the red square. We apply a com-
pressor object at each grid point which independently compresses its time series into
a piecewise approximation. Image (b) shows the original time series of one grid point
with 500 values, (c) is the piecewise approximation, and (d) is the per point difference
of the two. In the example, the error bound is selected to be 5%, and image (d) shows
our approximation to be within that error bound.

– Piecewise Linear (PL)
– Piecewise Constant (PC)
– Piecewise Constant Mean (PCM)

While each compression approach is similar, they are differentiated by how they
approximate the time series. Each compression object approximates a stream of data by
attempting to compress each value it encounters one by one.

Figure 1 shows an instance of a compressor object on a single grid point, the re-
sulting approximation, and the difference between the original and approximated time
series.

Piecewise Linear (PL) This compression approach transforms consecutive grid point
values into piecewise linear approximations as the simulation progresses.

The approximation begins by taking the first value of the stream and assigning it
to the starting value of the approximation. When the subsequent value is encountered,
the slope (i.e. rate of change) is calculated. Using the starting value and the associated
slope, it’s possible to calculate the predicted value for a given time step. If f (n) is a valid
linear approximation up to time step n with xi being the start of this approximation, and
if t is the different in simulation time between two cycles, then the slope = xi+1−xi

t . Let
n be the current time step and i be the starting time step of the approximation, let k be
the difference between the current time step and the approximation’s starting time step.
In this case, k = (n− i)∗ t. The prediction for time step n becomes

f (n) = slope∗ k+ xi (1)
From the starting value, the slope is extended one unit for every time step, creating our
approximation as seen in Equation (1). For each time step, the prediction is compared
to the current value. If the difference between the approximated value and the current
value is within the error bound, ε , then this process continues. If the difference between



Explorative Visualization Via Temporal Intervals 7

Struct PC CompressorObject state contains
float prediction;

end
void PiecewiseConstant AddToStream(PC CompressorObject state *s, float cur value,

int cycle, int grid point index, float error target)
if (cycle == 0) then

s→prediction = cur value;
else

float allowable diff = abs(cur value)*error target;
float actual diff = abs(cur value − s→prediction);
if (actual diff > allowable diff) then

s→prediction = cur value;
end

end
Algorithm 1: The pseudocode for the PC compressor object for a single grid point.
This object will approximate the grid point’s stream of values with a guaranteed error
bound.

the current value and the approximated value does not fall within the error bound then
the starting value, slope, and previous time step are saved. Once an approximated line
has been saved, the approach then restarts with a new starting point.

f (n+1) =

{
slope∗ k+ xi Error(xn+1, f (n+1))≤ ε

xn+1 Error(xn+1, f (n+1))> ε
(2)

The new starting point is the last value that was not within the error bound of the
approximation, as seen in Equation (2). A new slope will then be calculated using the
starting point and the subsequent value.

Fig. 2: Image (a) shows the original values. Images (b)-(d) are approximations created
by our compression approaches using a 5% error bound. Image (b) is the piecewise
approximation created by the PCM compression approach. Image (c) is the piecewise
approximation created by the PC compression approach. And image (d) is the piecewise
approximation created by the PL compression approach.



8 N. Marsaglia et al.

Piecewise Constant (PC) Piecewise Constant, our second approach and the approach
described in Algorithm 1, is similar to Piecewise Linear. However, in the Piecewise
Constant compression approach, a single value represents an interval of the time series,
as in Equation (3). If f (n) is a valid constant approximation up to time step n and if xi
is the start of this approximation, then the prediction for time step n becomes

f (n) = xi (3)
The approximated line is extended until the difference between the predicted value and
the current value exceeds the error bound, ε .

f (n+1) =

{
xi Error(xn+1, f (n+1))≤ ε

xn+1 Error(xn+1, f (n+1))> ε
(4)

Once the error bound is exceeded, the compression approach saves the previous refer-
ence value and last valid time step, and the value that could not be represented by the
approximation becomes the reference value going forward, as in Equation (4).

Algorithm 1 shows the pseudocode of the PC compressor object at a single grid
point and how this particular approach approximates each individual value encountered.
For each incoming point in the stream, the compressor object makes a decision based
on the error bound. If the incoming point and the predicted value are within an error
bound then the prediction is valid and no actions are taken. Otherwise, the compression
object saves the previous prediction and begins a new approximation with the current
value.

Piecewise Constant Mean The third compression approach, Piecewise Constant Mean,
is similar to the first two, but takes the average of the encountered values per approxi-
mation interval. If f (n) is a valid constant approximation up to time step n and if xi is
the start of this approximation, then the approximation is the average of all encountered
points from xi to xn. The prediction for time step n becomes

f (n) = AV G(xi,xi+1, . . . ,xn−1,xn) (5)
With each new incoming value, the compression approach calculates an approx-

imation. The approximation is the mean of all the encountered values in the current
interval, as in Equation (5). The compression approach also makes sure that no point in
the interval range falls outside the error bound in relation to the mean, as in Equation
(6).

f (n+1) =


Error(range max, f (n+1))≤ ε

AVG[xi,xn+1] and
Error(range min, f (n+1))≤ ε

xn+1 o.w.

(6)

That is, for every new value the approach checks to make sure that all represented
points of the interval are within [mean− ε,mean+ ε] where ε is the error bound. This
error bound needs to be checked for the minimum and maximum value of the current
interval mean approximation. If the current minimum and maximum are within the error
bound of the mean, which can change with every added value, then all values within
the minimum and maximum are within their relative error bound to the approximated
mean.



Explorative Visualization Via Temporal Intervals 9

Figure 2 shows our three compression approaches approximating the same time
series.

3.3 Memory Requirements

Within memory, each grid point is required to save several values that facilitate the
compression process. Table 1 lists all the necessary data that each grid point must store.

3.4 Reconstruction

Algorithm Memory

Piecewise Linear 4 Byte Slope
(PL) 4 Byte Starting Value

4 Byte Count

Piecewise Constant 4 Byte Approx. Value
(PC)

4 Byte Min and Max
Piecewise Constant Mean 4 Byte Approx. Value

(PCM) 4 Byte Count

Table 1: The data members for each compressor
object. For each approximation, it is necessary to
have either the starting value or the current ap-
proximation value. For the PL approach, each ob-
ject stores the slope associated with the current
approximation. The PL and PCM also require the
count, or number, of time steps they are approx-
imating. The PL needs the count for post-hoc re-
construction, in order to calculate the current posi-
tion of the line using the slope and starting value,
and the PCM needs it to calculate the mean of
all relevant values for the line. Note that an un-
signed short could be sufficient for the count vari-
able. Additionally, PCM requires the local range
to be stored in order to guarantee the error bound
criteria.

Constructing an approximation of
the original data requires the de-
sired time slice along with the
compressed data.

The reconstruction process from
the compressed data works as fol-
lows. The data from every grid
point is written and subsequently
available in its own file. Better or-
ganization of this data, for exam-
ple, in one file, is future work. This
information consists of the saved
data values and their correspond-
ing time steps. In addition to the
time step and value, the PL ap-
proach also saves the associated
slope.

Given the desired time slice, it
is straightforward to find the cor-
responding value within each grid
point’s file. If the desired time slice
falls within an approximation in-
terval, we know that the value as-
sociated with that interval repre-
sents the desired time slice at some
grid point. For reconstructing the
PL approach, it is necessary to
determine where the desired time
slice falls within the approxima-
tion interval, this information can
then be used to calculate the ap-
proximation value using the start-
ing value and slope for that interval.



10 N. Marsaglia et al.

Reconstruction Time Due to the rudimentary file organization, with each location
having its own approximation file, the reconstruction time is proportional to the size
of each file. With 250,000 time steps, reconstructing the later time steps takes longer
than reconstructing earlier time steps due to searching individual files for the desired
approximation interval and respective value. The reconstruction time of the compressed
data set in Phase 3 of our research ranged from 30 seconds to 2 minutes. We aim to
decrease reconstruction time in future work by implementing a more sophisticated way
to save the approximation data.

4 Evaluation

Our experiments were designed to quantitatively evaluate our technique. This section
outlines the parameters of the research conducted.

Our study was divided into three phases. In the first phase, we evaluated our tech-
nique in various configurations, including multiple data sets and error bounds. Phase
one helped determine the potential and viability of our approaches as well as what
type of data is best suited for our experiments. In the second phase, we compared our
method with data reduction techniques that focus solely on spatial coherence. In the
third phase, we ran an in situ study using our technique to demonstrate its viability as
an in situ compressor.

The discussion of experiment factors is organized into configuration parameters
(Section 4.1), measurement and metrics (Section 4.2), computing environment (Section
4.3), and software (Section 4.4).

4.1 Experiment Configuration

We varied the following factors:

– Compression Approaches (3 options)
– Data Sets (4 options)
– User Defined Error Bounds (3 options)

In the first phase of our study, the cross product of these factors was explored. In
the second and third phases, only a subset of the cross product was considered.

Compression Approaches We evaluated the three compression approaches described
in Section 3: Piecewise Constant (PC), Piecewise Linear (PL), and Piecewise Constant
Mean (PCM).

Data Sets The first phase focused on time series data, with each time series coming
from a spatial location within a simulation. The times series data we considered is as
follows:

– LULESH [1]: A collection of 8 time series (i.e. from 8 different spatial locations)
from an explosion data set. Each time series has 4,561 single-precision data points;
each time series is 18.244kB.



Explorative Visualization Via Temporal Intervals 11

– Tornado [37]: A collection of 10 time series from a tornado data set. Each time
series has 500 single-precision data points; each time series is 2kB.

– XGC1 Ion Particles [8]: A collection of 25 time series from a tokamak data set.
Each time series has 818 single-precision data points; each time series is 3.272kB.

– GHOST [35]: A collection of 15 time series from a turbulent rotational flow data
set. Each time series has 5,000 single-precision data points; each time series is
20kB.

For the second phase we compared our algorithm results on 10,000 time slices of
GHOST with two spatial compression techniques: wavelets and SZ-1.4. Each time slice
of GHOST is roughly 8MB in size, with each time slice being comprised of 1283 single-
precision floating point values.

For the third phase, we ran our algorithm in situ on the GHOST simulation for
250,000 time steps.

User Defined Error Bound We applied three user defined error bounds: 1%, 3%, and
5%. Our error bound is a point-wise relative error bound, and is the same error bound
that SZ-1.4 provides as a compression option. The point-wise relative error bound acts
on individual grid points. If a grid point has value v, and the point-wise error bound is
set at 5%, then the reconstructed value will be abs(0.05∗ v) away from v.

From here on we will refer to this error bound approach as point-wise error bound.

4.2 Phase Overview and Measurements

The first phase was comprised of applying our algorithm to the four data sets, LULESH,
Tornado, XGC1 Ion Particles and GHOST. For each data set we ran our algorithm with
each compression approach and each user defined error bound. This means we ran 36
experiments each with multiple measurements. For each data set we calculated the max-
imum compression ratio, the minimum compression ratio, and average compression
ratio.

For the second phase, we compared our compression approach with two other com-
pressors: wavelets and SZ-1.4. In this phase, we fixed certain aspects of each compres-
sion operator, compressed 10,000 time slices of GHOST, and measured the results. Be-
cause our method produces results with full temporal resolution that allow for post-hoc
exploration, we applied wavelets and SZ-1.4 to every time step to mimic the temporal
resolution that our algorithm produces.

For the wavelet compressor, we fixed the compression ratio and measured the av-
erage point-wise error, maximum point-wise error, and average compression time. We
ran four wavelet configurations that guaranteed compression size, namely, 32:1, 64:1,
128:1, and 256:1 compression.

For SZ-1.4, we fixed the point-wise error bound to be 1%, 3%, and 5% and then
measured the average point-wise error, maximum point-wise error, average compres-
sion ratio, and average compression time.

We also applied our approach to the 10,000 time slices of GHOST and measured
the average point-wise error bound, maximum point-wise error bound, average com-
pression ratio, and average compression time. We note that we did not run the SZ-1.4



12 N. Marsaglia et al.

or wavelet compression operators in situ, but applied the compressors to each of the
10,000 time slices of GHOST post-hoc.

In the third phase, our algorithm was run in situ on GHOST with each compression
approach and each error bound. The GHOST simulation setup has 1283 grid points
oriented as a cube. We instantiated a tightly coupled compressor object on each grid
point and ran each simulation configuration for 250,000 time steps. The measurements
on GHOST include the number of values saved per time step and resulting average
compression, as well as the average computation time and average I/O time for all three
compression approaches at each error bound.

For all experiments, we only consider a single scalar value per grid point per time
step. While this may not be in line with current simulations, we decided to explore the
feasibility of in situ compression on individual scalar values and save implementing in
situ compression on multiple scalar values for future work.

4.3 Hardware

This research was done on Alaska, our in-house research cluster. Alaska is composed
of a dual-Xeon E5-2667v3 (16 core) head node and four Intel Xeon E5-1650v3 (6 core)
cluster nodes.

4.4 Software

Besides our proposed algorithm, we used two other compressors as comparators: a
wavelet compressor from VAPOR [10, 11] and SZ-1.4 [41].

VAPOR is an open-source visualization package for the the geoscience community
that adopts wavelet transforms to achieve compression. It utilizes coefficient prioritiza-
tion as its compression strategy, which means wavelet coefficients are prioritized based
on their information content, and the ones containing less information are discarded.
We used the best wavelet configurations reported in [26] in our study.

SZ-1.4 is an open-source lossy compression code that uses a multidimensional pre-
diction model. The model compresses each data point using the prediction of nearby
values in multiple dimensions. From here on we will refer to SZ-1.4 as SZ.

For all three softwares, we compiled them using gcc with the -O2 optimization on
for a fair comparison.

5 Results

This results section is organized as follows: Phase One (Section 5.1) of our evaluation
applies our compression algorithm on time series data. Phase Two (Section 5.2) com-
pares our compression results with two other compression methods: wavelets and SZ.
Phase Three (Section 5.3 ) evaluates our algorithm in situ for the GHOST simulation
and compares our compression results with temporal sampling.



Explorative Visualization Via Temporal Intervals 13

5.1 Phase One: GHOST, LULESH, XGC1 Particle Ions, and Tornado

The four data sets displayed a wide range of compression ratios compared to the size
of the original time series data. Table 2 displays the minimum, average, and maximum
compression ratios achieved for each data set using the PCM compressor with a 5%
error bound.

The best results were for GHOST. Over the fifteen time series, the worst compres-
sion was 11:1 and the best compression was 2500:1. The average over the time series
was just under 41:1. Assuming the time series were representative, this means we could
save all temporal data using the same storage requirements as the traditional temporal
sampling technique when saving every 41st time slice.

Data Set Min CR Max CR Avg. CR
GHOST 11:1 2500:1 40.99:1
LULESH 16.89:1 21.51:1 18.6:1
Tornado 1.11:1 3.7:1 1.07:1
XGC1 .63:1 2.11:1 .845:1

Table 2: The minimum, maximum, and
average compression ratios of all four
data sets using the PCM approach and
an error bound of 5%.

The results for the Tornado and XGC1
data sets were much worse. The time series
for these data sets were much more turbu-
lent temporally, and they do not seem to be
appropriate for our technique. As a result,
we eliminated them from further consider-
ation, recognizing that our technique works
best with smooth data. Further, although the
LULESH results were better than the Tornado
and XGC1 data sets, we decided to focus on
GHOST for our in situ experiments, since it
produced the best results.

5.2 Phase Two: Comparison with
Wavelets & SZ

Wavelets are fundamentally different from our approach in that wavelets allow the
end user to pick an arbitrary compression level with no consideration to accuracy. In
contrast, our approach and SZ both guarantee an error bound, but they are unable to
guarantee a given level of data reduction. We found the best way to compare wavelets
and our approach was to find configurations where they achieve similar data reduc-
tions, and then compare their respective accuracies. Results for wavelets are in Ta-
ble 3 and for our compression algorithm using the PCM approach are in Table 5.

Time 0.327s 0.327s 0.327s 0.327s
Space 32:1 64:1 128:1 256:1
Avg Error 10.89% 15.46% 23.67% 34.6%
Max Error 352k% 443k% 776k% 980k%

Table 3: The results from Phase 2 using
wavelet compression on 10,000 time slices
of the GHOST data set.

For 5% error, our PCM approach
achieved a compression ratio of 34:1,
whereas the wavelet approach with fixed
32:1 compression had an average error
of 10.89%. This is a bigger contrast than
initially appears, as the maximum error
for our approach is twice as good as the
average error for wavelets in this case.
As a result, we conclude that our method
is superior for spatiotemporal data with
high temporal frequency.



14 N. Marsaglia et al.

Our approach produced better compression rates for each error bound compared to
SZ (Table 4). We believe this is due to the fact that SZ is based on spatial coherency,
whereas our method is based on temporal coherency. For example, with a 5% error
guarantee, SZ achieved a compression ratio of 4:1, whereas our approach using PCM
achieved 34:1 compression.

Time 0.155s 0.156s 0.156s
Space 2.37:1 3.46:1 4.01:1
Relative Error 1% 3% 5%
Avg Error .0254% 0.051% 0.102%
Max Error 1.01% 3% 5%

Table 4: SZ

Time 0.364s 0.325s 0.304s
Space 9.61:1 21.0:1 35.0:1
Relative Error 1% 3% 5%
Avg Error 0.481% 1.79% 2.3%
Max Error 1% 3% 5%

Table 5: Intervals: PCM

Fig. 3: Results from Phase 2. In this phase, 10,000 time slices of the GHOST data set
were compressed using SZ and using our interval compression with the PCM approach.

SZ had the best runtime, taking roughly half the compression time experienced by
both the parallelized wavelet implementation and our interval approach. Overall, all
three compression approaches have runtime overhead that we feel are acceptable for in
situ.

5.3 Phase Three: In Situ Experimentation

Fig. 4: Image (a) is the original data at time slice 25,000. Image (b) is the reconstructed
data that used the PCM algorithm with a 5% error. Image (c) is a data comparison of
their difference. And image (d) is the absolute value of their difference. Both the dark
and light blue in image (d) represents minimal differences between the original and
reconstructed data, differences well within the 5% error.

Phase Three ran our algorithm in situ and measured the number of values saved per
time step. We then calculated the compression ratio based on the size of an entire time
slice.

Figure 4 shows an example of decompressed data and how close it is to the original
data. With our technique, the reconstructed data is always within the user defined error
bound.



Explorative Visualization Via Temporal Intervals 15

Algorithm 1% 3% 5%
PCM 11.27:1 29.6:1 45.59:1
PL 14.56:1 49.9:1 63.55:1
PC 6.64:1 16.38:1 25.45:1

Table 6: The average compression ra-
tio of the reduced data per time step of
each algorithm and each user defined
error percent over 250,000 time steps.

With a 5% user defined error, GHOST,
on average, saves between 11,000 and 41,200
values per time step depending on the ap-
proach, as shown in Figure 5. With the PCM
and PC algorithms this means saving a 4 byte
single precision floating point value and a 4
byte integer time step. Whereas the PL al-
gorithm also needs to save the 4 byte single
precision floating point value, 4 byte integer
time step, as well as an 4 byte single precision

floating point value for the slope. This is an improvement of 25.45:1-63.55:1 per time
step as opposed to saving the entire time slice.

Fig. 5: For each of the 250,000 time steps, the three
methods, with a 5% error bound, saves out reduced
data that is a fraction of the original data. For in-
stance, out of the total grid of 1283, the PCM method
saves out between 20,000 to 40,000 approximation
values per time step.

Table 6 lists the average
compression ratio each approach
achieves per error percent.

Runtime Our algorithm does
affect simulation runtime. Typ-
ically, the algorithm adds roughly
30-35% to the runtime depend-
ing on the compression ap-
proach when running on a single
core. On average, each time step
of GHOST executes in 1.10 sec-
onds per cycle. With minor per-
centage variations depending on
the error bound, the PCM algo-
rithm increased the runtime by
an average of 34% to a total run-
time of 1.48 seconds per cycle.
The PC algorithm increased the
runtime of each time step by an
average of 31% to a total run-
time of 1.44 seconds per cycle.
And the PL algorithm increased
the runtime by an average of
27% to a total runtime of 1.40
seconds per cycle.

These results are based on
a single scalar value being ap-

proximated at each grid point. But many simulations have multiple scalars at each grid
point. We ran our algorithms with two scalar values being approximated independently
at each grid point. We found that an additional scalar approximation added negligible
strain to the simulation. For instance, the PL run time increased from a total of 1.40
seconds to 1.44 seconds when approximating one scalar value and two scalar values,



16 N. Marsaglia et al.

respectively. We believe this is due to the fact that adding scalar values does not increase
the number of cache misses since each approximation can be in the same data structure.
But approximating additional scalars means adding, and in most cases doubling, the
memory requirements for the approximations.

I/O We consider efficient I/O to be an area of future work for this method. Since
our current implementation has many small writes, I/O times could be as much as six
seconds per time step. We believe this slowdown is unacceptable in practice, but could
be mitigated in the future by staging data in a deep memory hierarchy with occasional
saves of large numbers of temporal intervals en masse.

Scalability Our algorithm is embarrassingly parallel, i.e., it can proceed on a per node
basis with no coordination across nodes. Therefore, we expect excellent scalability. One
point of contention, however, would be in coordinating the way we write to disk.

Our Approach vs. Temporal Sampling Although users rarely want to output every
time slice, our approach, with a 5% error bound, would lead to a 63.55:1 improvement.
In a more common case of temporal sampling, such as saving every 50th time step, the
algorithm has an improvement of 1.27:1. This is calculated by comparing the amount
of data of necessary to save a complete time slice every 50th time step, as in the tradi-
tional model, compared to saving intervals intermittently for 50 time steps with our in
situ compression. But our method provides full temporal resolution at the same spatial
resolution as the native grid for the entirety of the simulation with a guaranteed error
bound. Whereas temporal sampling does not provide full spatiotemporal resolution and
can only accurately depict the saved time slices.

Error Percentage of Points
<= 1% 98.1146%
<= 3% 0.475788%
<= 5% 0.141287%
> 5% 1.26834%

Table 7: The percentage of points
with a point-wise error less than or
equal to 1%, 3%, 5%, and greater
than 5% for the reconstructed data
using linear interpolation between
two time slices of GHOST fifty
time steps apart.

With temporal sampling, linear interpolation
can be used to reconstruct the missing time slices.
We reconstructed a time slice using linear inter-
polation between time slices fifty time steps apart
and measured the error compared to the original
time slice, as shown in Table 7. While the major-
ity of points in the reconstruction had a point-wise
relative error less than or equal to 1%, there was
still an occurrence of errors greater than 5%. With
linear interpolation there is no guarantee that the
reconstructed slices will be similar to the ground
truth and may introduce higher than anticipated
error rates. In the context of this example, our
algorithm provides information (with guaranteed
error) for an additional 49 time slices for every individual time slice saved using the
traditional model, all while saving less data overall.



Explorative Visualization Via Temporal Intervals 17

6 Conclusion

With this work, we consider a new approach for visualization of time-varying data,
namely temporal intervals. We introduced an algorithm that uses several compressors
that use the temporal interval approach. Our findings show that the algorithm is effective
enough to create feasible storage requirements for some data (but not others). Temporal
intervals are a different paradigm than the traditional technique. They provide complete
temporal information, as opposed to the traditional method of temporal sampling. But,
to make the technique practical, the displayed results include error. Our approach adapts
to this error by providing firm limits on the total amount of error that can be presented to
an end user. In all, we believe this approach has merit, as it provides domain scientists
certainty that they are not missing important science — which can be a pitfall with
temporal sampling.

In terms of specific findings, this work presents three piecewise approximation com-
pressors that guarantee an error bound and provides full temporal resolution for post-
hoc exploration. We found that, depending on the data set and specifically for GHOST,
the compression algorithms can reach a compression ratio greater than 2500:1 for in-
dividual grid points, and upwards of 63:1 for an entire simulation. The compression
approaches achieved these results on a data set with smooth temporal coherence with
data fluctuation spread out over time. On the other hand, this algorithm did not achieve
high compression rates on the XGC1 or Tornado data sets, although it did show decent
compression with the LULESH times series.

7 Future Work

The biggest area of future work is to develop new compression operators that improve
the value proposition for stakeholders. New compression operators could include more
elaborate encoding strategies with higher-order reconstruction, this would undoubtedly
require more memory per grid point but may result in better compression. If compres-
sion operators can be developed that produce, for example, 1000:1 reductions in data
storage, then we believe this technique could be very useful in the future to address
shortcomings in supercomputer I/O and scenarios where domain scientists would typi-
cally opt to save data less and less often.

We will continue to evaluate these approaches on other data sets and simulations to
determine the extent of their capabilities on both smooth and tumultuous time varying
data. We will also work on reducing the I/O and reconstruction time, in particular the
way we store our approximations to disk. A final point of evaluation is on the effects
resulting from transitioning from one temporal interval to another. In the worst case,
this could lead to “flickering” when animating over time. We have not observed this in
our own experiments, and we believe that the phenomenon is prevented by our error
bound guarantee. Regardless, more evaluation is needed.

References
1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Tech. Rep.

LLNL-TR-490254



18 N. Marsaglia et al.

2. Baker, A., Xu, H., Hammerling, D., Li, S., Clyne, J.: Toward a Multi-method Approach:
Lossy Data Compression for Climate Simulation Data. In: Proceedings of ISC workshops
on Data Reduction for Big Scientific Data (DRBSD-1). Frankfurt, Germany (Jun 2017)

3. Baker, A.H., Hammerling, D.M., Mickelson, S.A., Xu, H., Stolpe, M.B., Naveau, P., Sander-
son, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C.N.,
Dennis, J.M., Kay, J.E., Lindstrom, P.: Evaluating lossy data compression on climate sim-
ulation data within a large ensemble. Geoscientific Model Development 9(12), 4381–4403
(2016)

4. Baker, A.H., Xu, H., Dennis, J.M., Levy, M.N., Nychka, D., Mickelson, S.A., Edwards, J.,
Vertenstein, M., Wegener, A.: A methodology for evaluating the impact of data compression
on climate simulation data. In: Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing. pp. 203–214. HPDC ’14, ACM, New York,
NY, USA (2014)

5. Bertram, M., Duchaineau, M.A., Hamann, B., Joy, K.I.: Bicubic subdivision-surface
wavelets for large-scale isosurface representation and visualization. In: Proceedings of the
conference on Visualization’00. pp. 389–396. IEEE Computer Society Press (2000)

6. Burtscher, M., Mukka, H., Yang, A., Hesaaraki, F.: Real-time synthesis of compression al-
gorithms for scientific data. In: SC16: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. pp. 264–275 (Nov 2016)

7. Burtscher, M., Ratanaworabhan, P.: Fpc: A high-speed compressor for double-precision
floating-point data. IEEE Trans. Comput. 58(1), 18–31 (Jan 2009)

8. Chang, C., Ku, S., Diamond, P., Lin, Z., Parker, S., Hahm, T., Samatova, N.: Compressed
ion temperature gradient turbulence in diverted tokamak edge). Physics of Plasmas (1994-
present) 16(5), 056108 (2009)

9. Chen, D., Chiang, Y.J., Memon, N., Wu, X.: Lossless Geometry Compression for Steady-
State and Time-Varying Irregular Grids. In: Santos, B.S., Ertl, T., Joy, K. (eds.) EUROVIS
- Eurographics /IEEE VGTC Symposium on Visualization. The Eurographics Association
(2006)

10. Clyne, J., Mininni, P., Norton, A., Rast, M.: Interactive desktop analysis of high resolution
simulations: application to turbulent plume dynamics and current sheet formation. New Jour-
nal of Physics 9(8), 301 (2007)

11. Clyne, J., Rast, M.: A prototype discovery environment for analyzing and visualizing teras-
cale turbulent fluid flow simulations. In: Electronic Imaging 2005. pp. 284–294. International
Society for Optics and Photonics (2005)

12. Di, S., Cappello, F.: Fast error-bounded lossy hpc data compression with sz. Proc. IPDPS.
IEEE (2016)

13. Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ
visualization. In: 2014 IEEE 4th Symposium on Large Data Analysis and Visualization
(LDAV). pp. 59–65 (Nov 2014)

14. Fout, N., Ma, K.L.: An adaptive prediction-based approach to lossless compression of
floating-point volume data. IEEE Transactions on Visualization and Computer Graphics
18(12), 2295–2304 (Dec 2012)

15. Gomez, L.A.B., Cappello, F.: Improving floating point compression through binary masks.
In: Big Data, 2013 IEEE International Conference on. pp. 326–331. IEEE (2013)

16. Guthe, S., Strasser, W.: Real-time decompression and visualization of animated volume data.
In: Proceedings of IEEE Visualization (VIS’01). pp. 349–572 (Oct 2001)

17. Hübbe, N., Kunkel, J.: Reducing the hpc-datastorage footprint with mafisc—
multidimensional adaptive filtering improved scientific data compression. Computer
Science - Research and Development 28(2), 231–239 (2013)



Explorative Visualization Via Temporal Intervals 19

18. Ihm, I., Park, S.: Wavelet-based 3d compression scheme for interactive visualization of very
large volume data. In: Computer Graphics Forum. vol. 18, pp. 3–15. Wiley Online Library
(1999)

19. Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algorithms for sci-
entific datasets. In: Proceedings of the 18th International Conference on Parallel Processing.
pp. 843–856. Euro-Par’12, Springer-Verlag, Berlin, Heidelberg (2012)

20. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series.
Proceedings 2001 IEEE International Conference on Data Mining pp. 289–296 (2001)

21. Kim, T.Y., Shin, Y.G.: An efficient wavelet-based compression method for volume rendering.
In: Proceedings of the Seventh Pacific Conference on Computer Graphics and Applications.
pp. 147–156. IEEE (1999)

22. Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R., Samatova,
N.F.: Compressing the incompressible with ISABELA: In-situ reduction of spatio-temporal
data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 6852 LNCS(PART 1), 366–379 (2011)

23. Lakshminarasimhan, S., Shah, N., Ethier, S., Ku, S.H., Chang, C.S., Klasky, S., Latham,
R., Ross, R., Samatova, N.F.: ISABELA for effective in situ compression of scientific data.
Concurrency and Computation: Practice and Experience 25(4), 524–540 (2013)

24. Lee, D., Sim, A., Choi, J., Wu, K.: Novel data reduction based on statistical similarity. In:
Proceedings of the 28th International Conference on Scientific and Statistical Database Man-
agement. p. 21. ACM (2016)

25. Lehmann, H., Jung, B.: In-situ multi-resolution and temporal data compression for visual
exploration of large-scale scientific simulations. In: 2014 IEEE 4th Symposium on Large
Data Analysis and Visualization (LDAV). pp. 51–58 (Nov 2014)

26. Li, S., Gruchalla, K., Potter, K., Clyne, J., Childs, H.: Evaluating the efficacy of wavelet
configurations on turbulent-flow data. 2015 IEEE 5th Symposium on Large Data Analysis
and Visualization (LDAV) pp. 81–89 (2015)

27. Li, S., Larsen, M., Clyne, J., Childs, H.: Performance impacts of in situ wavelet compression
on scientific simulations. In: Proceedings of the In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization Workshop. ISAV2017, ACM, New York, NY, USA (2017)

28. Li, S., Marsaglia, N., Chen, V., Sewell, C., Clyne, J., Childs, H.: Achieving Portable Perfor-
mance For Wavelet Compression Using Data Parallel Primitives. In: Telea, A., Bennett, J.
(eds.) Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics
Association (2017). https://doi.org/10.2312/pgv.20171095

29. Li, S., Marsaglia, N., Garth, C., Woodring, J., Clyne, J., Childs, H.: Data reduction tech-
niques for simulation, visualization and data analysis. Computer Graphics Forum (Mar
2018). https://doi.org/10.1111/cgf.13336

30. Li, S., Sane, S., Orf, L., Mininni, P., Clyne, J., Childs, H.: Spatiotemporal wavelet compres-
sion for visualization of scientific simulation data. In: 2017 IEEE International Conference
on Cluster Computing (CLUSTER). pp. 216–227 (Sept 2017)

31. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Transactions on Visualiza-
tion and Computer Graphics 20(12), 2674–2683 (2014)

32. Lindstrom, P.: Error Distributions of Lossy Floating-Point Compressors. Joint Statistical
Meetings (October 2017)

33. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE
Transactions on Visualization and Computer Graphics 12(5), 1245–1250 (Sep 2006)

34. Ma, J., Murphy, D., O’Mathuna, C., Hayes, M., Provan, G.: Visualizing uncertainty in multi-
resolution volumetric data using marching cubes. In: Proceedings of the International Work-
ing Conference on Advanced Visual Interfaces. pp. 489–496. ACM (2012)

35. Mininni, P., Alexakis, A., Pouquet, A.: Large-scale flow effects, energy transfer, and self-
similarity on turbulence. Physical Review E 74(1), 016303 (2006)



20 N. Marsaglia et al.

36. Olanda, R., Pérez, M., Orduña, J.M., Rueda, S.: Terrain data compression using wavelet-tiled
pyramids for online 3d terrain visualization. International Journal of Geographical Informa-
tion Science 28(2), 407–425 (2014)

37. Orf, L., Wilhelmson, R., Wicker, L.: Visualization of a simulated long-track ef5 tornado
embedded within a supercell thunderstorm. Parallel Computing 55, 28–34 (2016)

38. Rodler, F.F.: Wavelet based 3d compression with fast random access for very large volume
data. In: Seventh Pacific Conference on Computer Graphics and Applications. pp. 108–117.
IEEE (1999)

39. Sakai, R., Sasaki, D., Obayashi, S., Nakahashi, K.: Wavelet-based data compression for flow
simulation on block-structured cartesian mesh. International Journal for Numerical Methods
in Fluids 73(5), 462–476 (2013)

40. Schendel, E.R., Jin, Y., Shah, N., Chen, J., Chang, C.S., Ku, S.H., Ethier, S., Klasky,
S., Latham, R., Ross, R., Samatova, N.F.: ISOBAR preconditioner for effective and high-
throughput lossless data compression. Proceedings - International Conference on Data Engi-
neering pp. 138–149 (2012)

41. Tao, D., Di, S., Chen, Z., Capello, F.: Significantly improving lossy compression for scien-
tific data sets based on multidimensional prediction and error-controlled quantization. IEEE
International Parallel and Distributed Processing Symposium (2017), (to appear)

42. Treib, M., Burger, K., Reichl, F., Meneveau, C., Szalay, A., Westermann, R.: Turbulence vi-
sualization at the terascale on desktop pcs. IEEE Transactions on Visualization and Computer
Graphics 18(12), 2169–2177 (2012)

43. Woodring, J., Mniszewski, S., Brislawn, C., DeMarle, D., Ahrens, J.: Revisiting wavelet
compression for large-scale climate data using jpeg 2000 and ensuring data precision. In:
IEEE Symposium on Large Data Analysis and Visualization (LDAV). pp. 31–38. IEEE
(2011)

44. Yang, A., Mukka, H., Hesaaraki, F., Burtscher, M.: Mpc: A massively parallel compression
algorithm for scientific data. In: 2015 IEEE International Conference on Cluster Computing.
pp. 381–389 (Sept 2015)


