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Abstract

Scientific visualization software increasingly needs to support many-core architectures. However, development time is a significant
challenge due to the breadth and diversity of both visualization algorithms and architectures. With this work, we introduce a
development environment for visualization algorithms on many-core devices that extends the traditional data-parallel primitive
(DPP) approach with several existing constructs and an important new construct: meta-DPPs. We refer to our approach as MCD3

— Meta-DPPs, Convenience routines, Data management, DPPs, and Devices. The twin goals of MCD3 are to reduce developer time
and to deliver efficient performance on many-core architectures, and our evaluation considers both of these goals. For development
time, we study 57 algorithms implemented in the VTK-m software library and determine that MCD3 leads to significant savings.
For efficient performance, we survey ten studies looking at individual algorithms and determine that the MCD3 hardware-agnostic
approach leads to performance comparable to hardware-specific approaches: sometimes better, sometimes worse, and better in
the aggregate. In total, we find that MCD3 is an effective approach for scientific visualization libraries to support many-core
architectures.
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1. Introduction

As supercomputers increasingly include many-core archi-
tectures, visualization software design must adapt to support
these architectures. This is a significant challenge, since ex-
isting parallel visualization software, like ParaView [1] and
VisIt [2], have primarily focused on MPI-only parallelism. Fur-
ther, these efforts represent hundreds of person years of effort
and contain hundreds of algorithms. As a result, new, many-
core capable designs must achieve twin goals: efficient perfor-
mance and small development time. This latter goal is partic-
ularly necessary not only because of the large number of vi-
sualization algorithms but also because of the large number of
potential hardware architectures. The worst case would require
an implementation for every possible pair of algorithm and ar-
chitecture. Instead, a better scenario is to achieve “portable per-
formance,” i.e., a single, hardware-agnostic implementation for
each algorithm that works efficiently on all architectures.

Data-parallel primitives [3] (DPPs) have the potential to
achieve the twin goals of efficient performance and small de-
velopment time, but their application in the visualization space
is non-trivial. In particular, the nature of scientific data (mesh-
based data) incurs extra burden with DPPs, as most DPPs are
designed to operate on arrays of data and are not concerned with
issues such as which vertices lie within a cell. This has two
unfortunate consequences for implementing visualization algo-
rithms with DPPs. First, these complex data structures add an
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increased indexing burden on the developer, who has to main-
tain and follow links in the data. Second, the irregular data
typical of visualization algorithms means that the products of
a visualization algorithm do not always have a one-to-one rela-
tionship with the input. Some inputs contribute nothing to the
output whereas other inputs generate multiple things, creating a
“jagged” access pattern for the inputs and outputs of a visualiza-
tion algorithm. As a result, using DPPs could cause more harm
than good — visualization algorithm developers could spend
more time addressing data model issues than they would gain
from DPPs’ benefits.

With this paper, we introduce a design that augments DPPs
with several constructs to shield visualization algorithm devel-
opers from potential pitfalls. Our design incorporates exist-
ing data management practices that separate memory layout
from execution space, adding support for many data layouts
and mesh types. We also incorporate the common practice of
providing convenience routines for common operations, with
our unique contribution being a selection of routines useful for
scientific visualization algorithms, such as locating which cell
contains a point or such as finding the minimum and maximum
value for a field. Finally, and most importantly, we introduce a
new construct, which we call meta-DPPs, which combine DPPs
and data management to address issues such as following links
in data and jagged access patterns. In all, we refer to our al-
gorithm development environment as MCD3 — Meta-DPPs,
Convenience routines, Data management, DPPs, and Devices.

The fundamental research questions of this paper are on the
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overall viability of the MCD3 approach for many-core visual-
ization and on evaluating the twin goals of minimizing devel-
opment costs while providing efficient execution times. These
questions are explored by analyzing the VTK-m library [4],
which is an open source effort that is using MCD3 for many-
core visualization. In all, the contributions of this paper are:

• New meta-DPPs designed for common patterns for sci-
entific visualization algorithms;
• Evaluation of developer costs by studying 57 visualiza-

tion algorithms and their usage of MCD3;
• Evaluation of efficient execution time by surveying 10

performance studies using MCD3 or DPP-based visual-
ization; and
• Evaluation of overall efficacy of MCD3 by studying the

use of MCD3 elements in visualization code.

Finally, these contributions combine to form our overall
finding: the MCD3 approach is effective for creating a portably-
performant many-core visualization library.

2. Motivation, Background, and Related Work

This section is divided into three parts. First, Section 2.1
summarizes background on scientific visualization on super-
computers, and provides motivation for MCD3’s goals of min-
imizing developer time and efficient support for many-core ar-
chitectures. Next, Section 2.2 provides background on data-
parallel primitives. Finally, Section 2.3 surveys the works most
closely related to our own research.

2.1. Scientific Visualization on Supercomputers
Scientific visualization software is an important component

in many computational science workflows on supercomputers.
In these workflows, simulations produce large data sets (up to
trillions of cells per time step), meaning visualization software
must be able to process such data as well. Although there are
multiple strategies for processing large data sets, such as sub-
setting and multi-resolution approaches, the most common ap-
proach is parallel processing — the supercomputer that gener-
ated a data set can then be used to visualize that data set. That
said, execution time remains a significant concern, since some
visualization algorithms require significant computation and/or
are difficult to parallelize, especially in the context of very large
data sets [5].

Scientific visualization software has great potential for scal-
ing to large numbers of users, because of the commonality in
the data produced by computational simulations (mesh-based or
point data) and the algorithms they employ (isosurfacing, slic-
ing, volume rendering, streamlines, etc.). In all, building up
a software instance to support many algorithms, features, op-
erating systems, hardware platforms, file formats, etc., allows
a handful of visualization scientists to make software that can
be useful for many domain scientists (i.e., thousands to tens of
thousands). This pattern of visualization software scaling to
large groups of users has occurred many times, including li-
braries like AVS [6], OpenDX [7], and VTK [8], and end-user

tools like EnSight [9], FieldView [10], MegaMol [11], Para-
View [1], SCIRun [12], VAPOR [13], VisIt [2], and yt [14], just
to name a few. This history provides motivation that developing
a richly-featured many-core visualization library has the poten-
tial to provide much greater impact than developing multiple
bespoke solutions for different stakeholder groups.

Modular designs are a key strategy for many visualization
software packages, since they reduce development costs when
implementing a rich feature set. Typically, each module en-
codes a single visualization algorithm. These modules can then
be composed together to meet the needs of domain scientists.
This modular design is enabled by data models, i.e., an in-
memory description of the representation of meshes and fields.
A data model allows the modules to create outputs that can be
used as inputs to other modules. Modular designs have enabled
some visualization software packages to grow to hundreds of
modules. That said, the nature of these algorithms is quite di-
verse, which places a burden on underlying frameworks to sup-
port diverse processing demands.

Finally, visualization algorithms are regularly being run us-
ing in situ processing [15, 16], i.e., visualizing data as it is
generated. In situ processing has become increasingly neces-
sary because supercomputer disks are unable to store and load
simulation data quickly enough [17, 18]. In situ avoids I/O,
thus sidestepping this bottleneck. That said, the technique re-
quires that visualization algorithms are run on the supercom-
puter, typically by sharing access to simulation data and hard-
ware resources. In all, this motivates the need for visualization
to run efficiently on many-core architectures, as supercomput-
ers increasingly contain such architectures. Further, a recent
Dagstuhl workshop on in situ processing identified efficiency
on exascale machines as one of in situ’s top challenges [19].

2.2. Data-Parallel Primitives
Guy Blelloch’s Ph.D. dissertation [3] considered parallel

vector models as a way to unify theory, language, and archi-
tecture. In this work, he introduced two important primitives,
scan and segmented instructions, and demonstrated that diverse
tasks could be parallelized using these primitives. These two
primitives are part of a larger group of primitives referred to as
“data-parallel primitives” (DPPs).

DPPs operate on arrays (vectors) of data. They need to op-
erate quickly when supplied with sufficient parallelism — if
an array is of size N and if there are at least N cores, then a
DPP needs to complete in O(log N) time. Many operations can
achieve this time bound, including Reduce, Scan, Transform,
and Sort.

DPP-based programming involves selecting the series of
primitives needed to carry out the desired task. Further, some
DPPs can be parameterized with custom operations. For exam-
ple, the Reduce DPP accepts a binary operator indicating how
data is combined, which allows it to be modified to compute the
sum, find the minimum or maximum, or other operations. This
custom operation typically comes as a lightweight function that
operates on one or two elements in the data array. These func-
tions often come in the form of “functors,” which is an object
that can be called like an ordinary function. In this paper, we
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use the term functor to refer to some type of function passed to
a generic routine like a DPP.

DPPs provide multiple benefits for programmers. One ben-
efit is in performant algorithms. Programmers can only choose
from operations that are O(log N) or better (given sufficient par-
allelism), which eliminates scenarios where implementations
have subtle performance issues that blow up at scale. Further,
this model improves performance by sufficiently decomposing
work such that each core on a many-core device can partici-
pate. A second benefit is increased reliability, as this model
eliminates common thread safety issues. The third and biggest
benefit from a DPP-based approach is its hardware-agnostic na-
ture: portability, portable performance, and future proofing are
all inherent. DPP programming makes no assumptions about
the underlying hardware. The majority of a porting task is im-
plementing the individual DPPs (e.g., Reduce, Scan, etc.) ef-
ficiently for a given architecture whereas little to no porting is
necessary for algorithms based on the DPPs. Further, a pro-
grammer using DPPs does not need to learn details for CUDA,
HIP, etc., since DPPs provide a layer over these environments.
Because of these benefits, the DPP approach has been steadily
gaining in popularity, including packages such as AMP [20],
BOLT [21], Boost.Compute [22], and Thrust [23], as well as
concepts in a recent C++ standard.

2.3. Scientific Visualization on Many-Core Architectures

Scientific visualization software has a rich history of us-
ing GPUs, not only for rendering, but also for carrying out the
visualization algorithms and transformations to create render-
able forms. For more information on this topic, we refer the
reader to the following excellent works (in chronological or-
der): Weiskopf’s book [24], and surveys by Ament et al. [25],
Rodriguez et al. [26], and Beyer et al. [27].

In the early 2010’s, three scientific visualization libraries
emerged that focused on portable performance for many-core
architectures. While all three had similar elements, each had
a special focus: Dax [28] on execution models, EAVL [29] on
data models, and PISTON [30] on algorithms. Ultimately, these
three projects merged to become VTK-m [4], and the strengths
of each were brought forward to the new project. VTK-m is
named to also evoke the positive elements of the Visualization
ToolKit (VTK) [8], i.e., rich feature set and open source with a
large developer community, with the ‘m’ denoting support for
many-core architectures. VTK-m is foundational to this paper,
as it provides an implementation of the MCD3 development en-
vironment and thus can be used for our evaluation. In particular,
our evaluation depends on studying the implementations of its
57 algorithms as well as 10 performance studies on individual
algorithms from VTK-m or its predecessors.

Finally, there are several notable efforts on many-core sci-
entific visualization environments. On the whole, these efforts
are aimed at delivering capability directly to domain scientists,
where the focus on MCD3 is on delivering an environment to
visualization algorithm developers. Further, previous work has
had a reduced emphasis on central issues for MCD3 — jagged
access patterns, following links in unstructured data, etc. We

discuss four prominent packages, each of which used domain-
specific languages (DSLs) as part of their approach for support-
ing many-core architectures. First, Scout [31, 32] was an early
project in this space, providing GPU support and delivering op-
erations such as volume rendering and derived field generation,
among others. Second, Diderot [33, 34] placed special em-
phasis on tensor data and mathematical operations, as well as
biomedical images. Third, ViSlang [35] provided an OpenCL-
based system that delivered a variety of DSLs, each of which
are referred to as “Slangs.” Fourth, Vivaldi [36] placed a special
focus on distributed heterogeneous systems and demonstrated
volume rendering and image segmentation operations.

3. MCD3 Design

The MCD3 design relies on five constructs:

• Devices, which enable code to run on a given hardware
architecture.
• DPPs, which provide parallel processing patterns.
• Data management, which insulates algorithms from

data layout complexities. These complexities range from
how data is organized (e.g., structure-of-arrays vs array-
of-structures) to different types of meshes (e.g., unstruc-
tured, rectilinear, etc.) to different memory spaces (e.g.,
host memory, device memory, or unified managed mem-
ory).
• Meta-DPPs, which are parallel processing patterns that

involve one or more DPPs. The word choice of “meta” is
meant to evoke its definition of “denoting something of a
higher or second-order kind.”
• Convenience routines, which encapsulate common op-

erations for scientific visualization.

Differentiating between the last two constructs, meta-DPPs
are effectively templates for parallel processing patterns, while
convenience routines are essentially sub-routines.

Figure 1: Diagram showing the layered natures of MCD3. Gray boxes (data
management, DPPs, and devices) represent existing constructs that we have in-
corporated into our MCD3 design, while colored boxes represent new contribu-
tions. In particular, meta-DPPs are a new construct, while convenience routines
represent a new contribution through the specific visualization routines we have
identified as useful across a wide array of algorithms.

Figure 1 shows how the constructs in MCD3 interact. Meta-
DPPs and convenience routines work through a data manage-
ment layer to call actual DPPs. DPPs then provide hardware-
specific implementations through the device layer. Each layer
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leads to savings in development time, and these savings are
multiplicative across layers — if a meta-DPP represents the
work of N1 DPPs, if the data management layer provides sup-
port for N2 data layouts, and if the DPP/device layer provides
support for N3 devices, then one MCD3 algorithm can do the
work of N1 × N2 × N3 non-MCD3 implementations. That said,
this analysis should be considered as simply an upper bound,
as developers in non-MCD3 settings would not implement the
cross product of options, but rather only those that they need.
Regardless, the MCD3 approach makes this cross product avail-
able from inception.

The remainder of this section is organized into four parts.
It begins by describing algorithm development using MCD3

(Section 3.1). It next describes our five proposed meta-DPPs
(Section 3.2) and our five proposed convenience routines (Sec-
tion 3.3). It then concludes with a summary of the constructs
we use from previous work (data management, DPPs, and de-
vices) and how we use them in MCD3 (Section 3.4). Finally, an
example algorithm in MCD3 can be found in our supplemental
material.

3.1. MCD3 Algorithm Development
MCD3 algorithms operate by applying a sequence of oper-

ations. Formally, an MCD3 algorithm is composed of N opera-
tions (N ≥ 1), which can be labeled S 1 through S N . Each oper-
ation S i comes from one of MCD3’s three main programming
constructs: meta-DPPs, DPPs, and convenience routines. For
example, operation S i may be “Reduce,” which is a DPP. Fur-
ther, operations may be used repeatedly, e.g., S i, S j, and S k all
may be “Reduce.” The inputs and outputs of each S i operation
vary, and can be single numbers, arrays, involve mesh topology,
etc. An algorithm executes by invoking operation S 1, and then
S 2, and so on. The inputs to operation S i may include outputs
from any of the previous operations (S 1 up to S i−1) as well as
inputs to the algorithm. Similarly, the outputs from operation
S i may be used as inputs for any of the subsequent operations
(S i+1 to S n) as well as outputs for the algorithm. The operations
execute sequentially, meaning that S i+1 is invoked only after S i

completes.
MCD3 algorithms operate on a combination of host and de-

vice. An algorithm developer will only write host code. How-
ever, when an algorithm developer invokes an operation (i.e.,
some S i) on the host, this cues the MCD3 infrastructure to exe-
cute code on the device using parallel code. Finally, if an oper-
ation generates an array, then the array is stored in the device’s
memory, i.e., not transferred back to the host. This array can
then be accessed by subsequent operations. In all, data is rarely
transferred from device to host.

MCD3-based algorithm development strongly resembles
DPP-based algorithm development. The job of an algorithm de-
veloper is to devise a sequence of operations to carry out their
desired task(s). Challenges with this job include determining
which patterns best enable the task to be performed efficiently,
as well as ensuring that the outputs of some operations are in
the right format to be inputs for subsequent operations. The key
distinctions for our MCD3 design, however, are: (1) the addi-
tion of a new programming construct (meta-DPPs), (2) the pres-

ence of convenience routines for scientific visualization, and (3)
a data management layer that deal with issues ranging from data
layout to different types of meshes to the jagged nature of inputs
and outputs.

3.2. Meta-DPPs

Meta-DPPs are the most important part of the MCD3 sys-
tem. They identify what type of data to parallelize over, e.g.,
parallelizing over cells, over points, or over elements in an ar-
ray. Meta-DPPs then provide infrastructure that organizes input
data (arrays or data sets) for execution on many-core devices
based on the parallelization type (cells, points, elements in an
array). On the algorithm developer side, the developer provides
a functor to carry out the operation for a single instance. For
example, if the meta-DPP parallelizes over cells, then an algo-
rithm developer would write a functor that operates on a single
cell. Further, the meta-DPP would (for the example of paral-
lelizing over cells) identify which points are incident to a cell
and provide (for example) their spatial locations and field val-
ues to the functor.

In all, meta-DPPs lower the burden for implementing vi-
sualization algorithms, since algorithm developers are freed
from worrying about parallelization and data reorganization. Of
course, the burden for implementing meta-DPPs is high: they
have to do data reorganization for parallel execution in accor-
dance with a data model and also provide infrastructure for par-
allel execution. That said, meta-DPPs can be re-used many
times. In particular, VTK-m has only five meta-DPPs, but its
algorithms contain over eighty instances of using meta-DPPs.
Further, this usage will grow as more visualization algorithms
are developed.

The remainder of this section describes our five proposed
meta-DPPs: Visit Point With Cells (3.2.1), Visit Cell With
Points (3.2.2), Point Neighborhood (3.2.3), Reduce By Key
(3.2.4), and Map Field (3.2.5). Further, Table 1 provides a high-
level comparison of these five meta-DPPs. The section then
concludes with a discussion of modifiers for scatter and mask
patterns (3.2.6). Finally, implementation details of the meta-
DPPs can be found in our supplemental material.

3.2.1. Visit Point With Cells

Figure 2: Data access pattern for Visit Point With Cells. This example takes a
single cell-based array and generates a single point-based array. The example
data set has eight points, so eight instances of the functor (F) are needed, one
for each point. The input to each functor invocation are the incident cells, e.g.,
point 3 receives cell data from its incident cells (1, 3, and 4).

VisIt Point With Cells parallelizes over the point elements
in a mesh. One of its inputs is the set of cells defining the input
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Meta-DPP Parallelizes Over Inputs and Outputs Data Available to Functor
Visit Point With Cells Point elements in a mesh (CF*, PF*→ CF+) Cells incident to a point
Visit Cell With Points Cell elements in a mesh (CF*, PF*→ PF+) Points incident to a cell

Point Neighborhood Point elements in a mesh (CF*, PF*→ PF+) Neighborhoods around a point
Reduce by Key Unique values in a set of keys (KA, VA*,→ OA+) Array values with same key

Map Field Elements in field array (CF*→ CF+) or (PF*→ PF+) Array values at same element

Table 1: Comparing the five Meta-DPPs with respect to what they parallelize over, their inputs and outputs, and the data available to a functor. The symbol “CF*”
means zero or more fields defined on cells, while “PF*” means zero or more fields defined on points. The “+” variants indicate one or more fields and are used for
the outputs, since each meta-DPP produces at least one array. Putting it all together, the Visit Point With Cells Meta-DPP takes zero or more cell fields and point
fields as input, and produces one or more cell fields as output. For Reduce by Key, “KA” refers to an array of keys, “VA*” refers to zero or more arrays of values
for the input, and “OA+” refers to one or more arrays of values for the output. The number of elements for KA and each VA must be the same, while the number of
elements in each OA will always be fewer (unless every key is unique).

domain (i.e., the points being visited). It also can accept any
number of fields on the cells and points as input. Its output is
one or more field arrays, sized to the number of points in the
mesh.

For each point of a mesh, this meta-DPP retrieves informa-
tion about the cells that are incident on that point, as demon-
strated in Figure 2. Any input fields are also collected and
passed to the functor provided to the meta-DPP.

In terms of utility for visualization algorithm developers,
this operation is often used to interpolate cell-based field values
to vertices. Canonical use cases include recentering and gener-
ating vertex normals.

3.2.2. Visit Cell With Points

Figure 3: Data access pattern for Visit Cell With Points. This example takes a
single point-based array and generates a single cell-based array. The example
data set has five cells, so five instances of the functor (F) are needed, one for
each cell. The input to each functor invocation are the incident points, e.g., cell
2 receives point data from its incident points (1, 2 and 5).

Visit Cell With Points parallelizes over the cell elements
in a mesh. It has the same inputs and outputs and Visit Point
With Cells: one of its inputs is the set of cells defining the input
domain to parallelize over (i.e., the cells being visited), and it
can also accept any number of fields on the cells or points. Once
again, the output is one or more field arrays, but for this meta-
DPP, the arrays are sized to the number of cells in the mesh.

For each cell of a mesh, this meta-DPP retrieves information
about the shape of the cell and the incident points for that cell,
as demonstrated in Figure 3. The location of the points as well
as any input fields are also collected and passed to the functor
provided to the meta-DPP.

In terms of utility for visualization algorithm developers,
this operation is often used to operate on sampled point fields
as continuous fields. It is also used to perform transformations
of topology. Canonical use cases include operations such as

gradient calculation and identifying cases for Marching Cubes
[37].

3.2.3. Point Neighborhood

Figure 4: Data access pattern for Point Neighborhood. This example takes 2D
structured cells and requests a point neighborhood with a “radius” of size 1.
The radius determines neighbors in every direction resulting in a 3 × 3 patch
of points. The input to each functor invocation are from the points within this
neighborhood. To reduce the complexity of this figure, the inputs for only one
example functor are shown, as well as the functors on the immediate “left” and
“right” for reference. This meta-DPP is also capable of looking at larger neigh-
borhoods, i.e., two or more cells away, and of course 3D meshes are supported.

Point Neighborhood parallelizes over the point elements in
a mesh, and only works on meshes composed of structured
cells. Its inputs include the set of cells and any number of fields
defined on the points, and its output is one or more field arrays
sized to the number of points in the mesh.

As demonstrated in Figure 4, for each point P in the mesh,
this meta-DPP retrieves information about P, all points Ai ad-
jacent to P, all points adjacent to Ai, and so on. The number of
hops is determined by a user-specified neighborhood size.

In terms of utility, this operation is often used to filter point
data by applying a kernel of the neighborhood size. Canonical
use cases include denoising data and estimating derivatives with
finite differences.

3.2.4. Reduce By Key
Reduce By Key parallelizes over unique values in a set of

keys. Its input domain is defined by a “key” array, and it also
accepts as input any number of “value” arrays. All the input
arrays (1 key array plus n value arrays) must be the same length.
The output is one or more arrays containing an entry for each
unique key in the “key” array. The size of the output can be
(and almost always is) smaller than the input.
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Figure 5: Data access pattern for Reduce By Key. This example takes one array
for the keys and another array of data. The meta-DPP identifies that there are
three unique keys (0, 1, and 4) and so invokes three functors (one for each key).
The input to each functor are the elements of the array that match its key, e.g.,
the middle functor (which corresponds to key 1) receives input values 9.7, 9.2,
6.7, and 5.3.

Before executing, the Reduce by Key meta-DPP finds all
duplicated keys in the “key” array. As demonstrated in Figure 5,
it then collects all the values associated with a key and passes an
array of these values to the functor provided to the meta-DPP.

In terms of utility, Reduce By Key is a powerful tool for
combining mesh elements that are nearby or coincident. It can
be used to find coincident points generated by parallel threads
in algorithms like Marching Cubes and mesh subdivision by
using edges of the original mesh as the keys [38]. It can also be
used to find nearby points by using keys associated with bins in
space [39].

It should be noted that the Reduce By Key meta-DPP is
similar in concept to the ReduceByKey DPP. The biggest op-
erational difference between the two is the functor passed to
each. The ReduceByKey DPP requires a binary operation that
reduces two items to a single item, and this binary operation
is applied recursively to all items in the array. In contrast, the
Reduce By Key meta-DPP takes a functor that accepts all val-
ues to reduce at once. This allows the meta-DPP to implement
more complex operations not possible with the DPP version.
For example, using spatial bins to combine nearby points (as
described in [39]) requires a re-comparison of all items with
the same key. This is trivial with the Reduce By Key meta-DPP
but not directly possible with the simple binary operator of the
DPP version.

3.2.5. Map Field

Figure 6: Data access pattern for Map Field. This example takes two input
arrays and generates an output array. The example arrays each have twelve ele-
ments, so twelve instances of the functor (F) are needed, one for each element.
The input to each functor invocation are the corresponding elements from the
input arrays, i.e., the ith functor receives the ith elements from input arrays #1
and #2.

Map Field parallelizes over the elements in a field array.
This meta-DPP can take any number of arrays as input and any

number of arrays as output. Further, an array can also act as
both an input and an output. That said, all arrays are expected
to be the same size.

Conceptually, the operation of Map Field is quite simple.
This meta-DPP calls the functor once for every element in the
array as shown in Figure 6. Values from the appropriate index
are pulled from the arrays and provided to the functor rather
than giving the functor direct access to the arrays.

In terms of utility, Map Field is used to implement mathe-
matical expressions on fields, for example finding the magni-
tude of a vector field. Further, it is often useful for scheduling
parallel algorithms that are not well covered by the provided
DPPs and meta-DPPs.

3.2.6. Modifiers (Scatter and Mask)
As described earlier, one of the typical challenges of im-

plementing parallel visualization algorithms is the non-uniform
access to inputs and outputs. It is often the case that the input
data get sub-selected based on those that match certain condi-
tions. Likewise, it is common that each input datum produces
a different sized output. For example, in the famous March-
ing Cubes algorithm [37], many of the input cells that do not
contain the isosurface can be ignored, and each cell that does
contain the isosurface can generate anywhere between 1 and 6
polygons.

This jagged input and output is extremely problematic for
the base DPP algorithms as it breaks the typical 1:1 correspon-
dence between input and output that they assume. Our meta-
DPPs handle jagged input and output by applying modifiers to
their execution. These modifiers change the indexing of the
meta-DPP’s inputs and outputs in arbitrary patterns to match
the algorithm being implemented.

The first type of modifier is called a scatter. A scatter can
be used to define how many output items each input item cre-
ates. For example, a scatter can define a meta-DPP to generate
2 or more outputs for each input, which will increase the num-
ber of parallel operations executed. A scatter can also define a
meta-DPP to skip over an input by assigning 0 outputs for that
input. In general, these concepts can be mixed by assigning a
count to each input specifying how many outputs to generate as
demonstrated in Figure 7.

Figure 7: Data access pattern for the Scatter modifier. This example takes three
arrays: two regular arrays (input arrays #1 and #2) and one that specifies the
desired number of executions for each element of the arrays. In this example,
the 0th element of the “count array” has value three, so the specified functor
F will be executed three times, each time taking the 0th element of the input
arrays as input. The next element has value zero, so no functors will be executed
operating for those array elements. Finally, the total size of the output array is
the sum of the count array.
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Figure 7 shows a scatter applied to a simple Field Map
meta-DPP, but the scatter modifier can be applied to any type
of meta-DPP. For example, a scatter can be applied to a Visit
Cell with Points meta-DPP to select which cells to apply an
operation to and how much data to generate. Managing the
multiple levels of indexing required for an operation of this na-
ture is complex, but VTK-m handles this internally. Algorithm
creators can focus on the operations specific to the unit of oper-
ation.

The second type of modifier is called a mask. A mask can be
used to define which items in the output to generate and which
items to skip over. This behavior is similar to a scatter that uses
counts of 0 and 1. However, the mask allows the meta-DPP to
place results in an existing array of a larger size.

For example, a meta-DPP might be constructed to take an
array of particle positions and advance them in a vector field.
This meta-DPP could be iteratively invoked to trace the path
of these particles. As the particles advance, some of the tra-
jectories will naturally terminate because they hit a sink or left
the domain. This leaves the algorithm with an array of parti-
cles, some of which should be advanced and others that do not
move. A mask modifier on the meta-DPP allows the algorithm
to sub-select the particles that are still active. This will schedule
the meta-DPP only on those active particles, which makes the
execution efficient without having to reshuffle the particles.

3.3. Convenience Routines

As with any library, VTK-m provides numerous conve-
nience routines, which are simple to use features that perform a
common operation. Unlike meta-DPPs, which are designed to
be configurable and general, convenience routines have a fixed
interface and perform a specific function. This makes conve-
nience routines very easy to use but of limited applicability. The
convenience routine encapsulates the more complicated use of
DPPs or meta-DPPs.

We do not attempt to list every reusable piece of software
available inside VTK-m. Instead, we limit our discussion to
those convenience routines that satisfy the following two crite-
ria. (1) The implementation of the convenience routine uses a
DPP or meta-DPP in its implementation, thus simplifying per
the developer efficiency metrics used in Section 4.1. (2) The
convenience routine is used at least once by the algorithms an-
alyzed in Section 4.1.

ArrayRange Given an array, ArrayRange finds the minimum
and maximum value in that array. If the array contains
vectors (such as point coordinates), then ArrayRange will
find the minimum and maximum of each component.

CountToOffset Because visualization algorithms often deal
with jagged data, it is common to need to pack items of
different sizes into a larger array. Often an algorithm will
start with a count of how many components are with each
group (e.g. a count of how many vertices are in each cell
of an unstructured grid such as the first has 8 vertices,
the second has 4 vertices, etc.). To pack this data in an
array, you really need the offsets of where each group

starts (e.g. the first cell starts at index 0 of the connec-
tions array, the second at index 8, the third at index 12,
etc.). CountToOffset will efficiently compute the neces-
sary offsets from the counts.

Locators An algorithm sometimes needs to identify which cell
in a mesh contains a point at a given coordinate. For
irregular meshes, finding these cells efficiently requires
special search structures. VTK-m comes with several
types of cell locators, but the only one that requires DPPs
or meta-DPPs to generate is a locator based on a two-
level grid [40].

MapFieldMergeAverage Visualization algorithms sometimes
need to merge elements together. Often this is a simplifi-
cation of a mesh with elements that are coincident or that
can be combined with minimal error. When elements are
merged, the fields on the elements need to be combined
in some way. A straightforward and often valid combina-
tion is to average the field values. MapFieldMergeAver-
age performs this averaging by reusing the data structures
of a previous call to the Reduce By Key meta-DPP.

MapFieldPermutation Many visualization algorithms mod-
ify the structure of a mesh and need to pass data ac-
cording to the modifications. For example, a threshold
algorithm will remove cells from the mesh. MapField-
Permutation can reorder the cell fields on the input mesh
to match the new cell ordering of the output mesh.

3.4. D3: Data Management, DPPs, and Devices

The “D3” portion of our design leverages three existing con-
structs from previous systems. The remainder of this section
discusses relevant aspects of these constructs for MCD3.

3.4.1. Data Management
With our MCD3 design, we make the data management

layer responsible for collecting the necessary data for a meta-
DPP’s functor or convenience routine to execute. This design
is inspired by previous work in both visualization libraries like
Dax [28] and EAVL [29], and general-purpose environments
like that provided by ispc [41]. The data management layer op-
erates by decoupling memory layout from execution — data is
pulled from arrays and delivered to functors as arguments prior
to their execution. This approach has two big benefits. First,
it insulates meta-DPP and convenience routines — and by ex-
tension visualization algorithm developers — from data layout
and reorganization issues. Second, it enables a single code base
to support many data layouts. From the perspective of the func-
tor, the input data is always points, cells, etc., and this data is
always organized in the same way. This is possible because
the data management layer performs the work of reorganizing
the data prior to functor execution. With our design, the reor-
ganization can manage both standard data layout issues (e.g.,
structure-of-arrays versus array-of-structures) and data model
issues (e.g., isolating cells from unstructured meshes or regu-
lar meshes). These reorganizations are non-trivial, but they are
done in the core MCD3 design, meaning that visualization al-
gorithm developers are spared.
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The data management layer is crucial for our overall goals.
In situ processing is a major motivator for our design, and simu-
lation codes have varied data layouts and data models. Through
the data management layer, MCD3 is able to adapt without
penalty.

3.4.2. Data-Parallel Primitives (DPPs)
Section 2.2 provided details on DPPs. For our design, we

found the following DPPs to be useful: Copy, CopyIf, Copy-
SubRange, CountSetBits, Fill, LowerBounds, Reduce, Reduce-
ByKey, ScanInclusive, ScanInclusiveByKey, ScanExclusive,
ScanExclusiveByKey, ScanExtended, Sort, SortByKey, Syn-
chronize, Transform, Unique, UpperBounds. Further descrip-
tion of the DPPs can be found in our supplemental material.

3.4.3. Devices
The device represents the physical hardware on which a

MCD3 algorithm is run. Different devices from different ven-
dors require different compilers with different language syntax
to generate programs. Our MCD3 approach assumes that the
compiler for each device provides a common base language
(C++ in the case of our implementation), and the extended lan-
guage features are hidden from developers using MCD3.

The data management and DPPs discussed previously work
together to unify the interface to devices and simplify porting.
The data management, in addition to providing a common inter-
face to varying layouts, prepares data for use on devices. This
could include copying data for devices with separate memory
spaces or allocating memory for managed uniform memory.

Each device has a unique implementation for the DPPs. Be-
cause each DPP can be customized for each device, the MCD3

design can provide the best possible implementation for each
device. The DPP implementations work with the data manage-
ment to place data in the appropriate location and format for the
device.

4. Results

We organize results into three areas:

• Section 4.1 evaluates developer efficiency.
• Section 4.2 considers the efficacy of the overall MCD3

system.
• Section 4.3 evaluates performance efficiency.

The results in the first two areas consider the usage of
MCD3 constructs within the VTK-m library. To generate the
data for these results, we analyzed the current collection of 57
algorithms within the VTK-m source code. The process for col-
lecting this data was automated, and is discussed in Appendix
A. Finally, several figures in this section refer to VTK-m’s algo-
rithms by name. While the names are mostly self-explanatory,
description of each algorithm can be found in the VTK-m’s
User Guide [42].

4.1. Evaluating Developer Efficiency

This section focuses on developer efficiency. As discussed
in Section 3, the MCD3 design benefits from three layers of ef-
ficiency: (1) meta-DPPs and convenience routines taking the
place of multiple DPPs, (2) the data management layer provid-
ing support for many data layouts and mesh types, and (3) the
DPP and device layers providing support for multiple hardware
architectures. The benefits of the latter two layers have already
been established [4, 29, 30, 43], so our focus is on evaluating
the benefit of meta-DPPs and convenience routines.

Figure 8 shows the rate at which our meta-DPPs and con-
venience routines are used in VTK-m. The rates inform the
opportunity for benefit, i.e., visualization algorithm developers
can only benefit if these constructs are used at a high rate. Fur-
ther, this usage is indeed high — the 57 visualization algorithms
use a total of 85 meta-DPPs, 44 convenience routines, 32 Copy
DPPs, and 78 non-Copy DPPs. (The Copy DPP is differenti-
ated since it is so fundamental that developers may not even be
aware that they are even using a DPP.) Of all the algorithms,
97% (all but two) use at least one meta-DPP, 47% use a conve-
nience routine, 56% use a Copy DPP and 47% use a non-Copy
DPP. On average, an algorithm uses 1.5 meta-DPPs, 0.8 conve-
nience routines, 0.6 Copy DPPs and 1.4 non-Copy DPPs.

Evaluating developer savings from meta-DPPs and conve-
nience routines is difficult, and our process for doing so is an
approximation. We started by studying each meta-DPP and
convenience routine and analyzed how many DPPs each used.
The results of this analysis are in Table 2.

Feature # DPPs

m
et

a-
D

PP

Visit Point With Cells 6
Reduce By Key 6
Scatter Counting 4
Visit Cell With Points 1
Point Neighborhood 1
Map Field 1

C
on

ve
ni

en
ce Locator 18

MapFieldMergeAverage 6
FieldMapPermutation 1
CountToOffset 1
ArrayRange 1

Table 2: Number of DPPs used for each meta-DPP and convenience routine.

We then combined this analysis with our data from Figure 8
to estimate developer cost with and without MCD3. Formally,
for a visualization algorithm A and a programming construct
X (where X ∈ {meta-DPP, DPP, convenience}), we define the
following:

• Uses(A, X) is 1 if algorithm A uses X, 0 if it does not.
Considering an example, if X is the Map Field meta-DPP
and A uses Map Field three times, then Uses(A, X) = 1.

• Equiv(X) is the cost to implement X in a DPP-only sys-
tem. Equiv is the sum of two terms: (1) the number of
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Figure 8: Counting the usage of each MCD3 construct by visualization algo-
rithm. The Copy DPP is separated from the other DPPs due to its trivial nature
(literally copying an array), and since visualization algorithm developers often
do not even realize they are using a DPP when they invoke it.

DPPs required to implement X (taken from Table 2) and
(2) the data layout and management cost. For the data
layout and management cost (which can be substantial),
we use a flat value of 1, i.e., a savings equivalent to call-
ing one DPP. We believe this is a reasonable floor to the
complexity of an efficient data management layer. Again
considering the example of Map Field, we would assign
Equiv(MapField) = 2, since Table 2 has a score of 1 and
the data management for Map Field (arranging many ar-
rays, designating what is an input and what is an output,
etc.) receives the flat value of 1.

Using the functions Uses and Equiv, we can then define
functions for calculating algorithm development costs. We de-
fine the following: CMCD3 (A) (cost estimate for developing
algorithm A using MCD3), CDPP−Only(A) (cost estimate using
only DPPs): and CDPP+Conv(A) (cost estimate for developing al-
gorithm A using only DPPs and convenience routines). This fi-
nal cost, CDPP+Conv(A), acknowledges the fact that convenience

Savings Factor
Algorithm Uses DPP-Only DPP + Conv

Visit Points with Cells 4.1X 3.5X
Visit Cells with Points 3.2X 2.3X
All Other 2.7X 1.4X
Other: Particle Advection 8.8X 1.4X
Other: Non-Particle Advection 1.6X 1.4X

Table 3: Development cost savings factor of MCD3 compared to DPP-Only
and DPP+Convenience using data shown in Figure 9. These savings factors
are computed as CDPP−Only/CMCD3 and CDPP+Conv/CMCD3 , respectively. The
cost savings factors are broken up into three major categories: algorithms that
use Visit Points with Cells MCD3, algorithms that use Visit Cells with Points
MCD3, and all others. Because of the large cost differential between algorithms
in the Other category that use particle advection and those that do not, it is
broken out into separate categories.

routines could be used in a DPP-only system. Formally, these
definitions are as follows:

CMCD3 (A) =
∑

m∈M Uses(A,m) +
∑

d∈D Uses(A, d)
CDPP−Only(A) =

∑
m∈M Uses(A,m) × Equiv(m)

+
∑

c∈C Uses(A, c) × Equiv(c)
+
∑

d∈D Uses(A, d)
CDPP+Conv(A) =

∑
m∈M Uses(A,m) × Equiv(m)

+
∑

d∈D Uses(A, d)
where M is the set of all meta-DPPs, C is the set of all con-

venience routines, and D is the set of all DPPs. Of note, CMCD3

and CDPP+Conv do not include a cost for convenience routines,
since they can be invoked with a single line of code, and also
CDPP−Only does not apply the Equiv function to DPPs, since our
counting is based on the number of DPPs (i.e., Equiv(d) = 1
for any DPP d).

Figure 9 shows the results of this analysis for the 57 visual-
ization algorithms in our corpus. The total implementation cost
for these algorithms in MCD3 is 195 (i.e.,

∑
a∈VisAlgs CMCD3 (a)),

while the total implementation cost in a DPP-only environ-
ment is 605 (i.e.,

∑
a∈VisAlgs CDPP−Only(a)), for a savings of

3.1X in the aggregate. The total implementation cost in a
DPP-only plus convenience routines environment is 399 (i.e.,∑

a∈VisAlgs CDPP+Conv(a)), for a savings of 1.5X in the aggregate.
The data in Table 3 further quantifies the implementation sav-
ings using MCD3 by the algorithm categories used in Figure 9
(i.e., blue bars for Visit Point with Cells, red bars for Visit Cells
with Points, and orange bars for Other). Within the Other al-
gorithms, those that involved particle advection had significant
savings compared to the CDPP−Only implementation due to the
locator convenience routines. The Other algorithms that did
not involve particle advection were generally simple algorithms
doing one or two operations and likely would not justify the
MCD3 design on their own.

Overall, however, we feel the savings are significant for vi-
sualization algorithm developers, and the magnitude of savings
across all visualization algorithms justifies the cost of devel-
oping the MCD3 system. For this latter point, the investment
in the system can continue to be amortized in the future, since
additional algorithms will incur no further MCD3 development
costs.
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Figure 9: Comparing development costs for each of the algorithms in VTK-m using our CMCD3 , CDPP+Conv and CDPP−Only functions. The algorithms are grouped
into three categories: those that use only the Visit Point with Cells meta-DPP (colored blue), those that use only the Visit Cell with Pointss meta-DPP (colored red),
and all other algorithms (colored orange). Each algorithm has three vertical bars: the darkest color is CMCD3 , the medium color is CDPP+Conv, and the lightest color
is CDPP−Only.

4.2. System Efficacy
With this section, we seek to evaluate the efficacy of our

choices for our constructs (i.e., meta-DPPs, convenience rou-
tines, and DPPs) and their specific instances (e.g., Visit Point
With Cell, Array Range, and CopyIf). Our choices could be
poor if we hit either extreme with respect to complexity. First, it
could be overly complicated, i.e., we have generated more con-
structs/instances than are needed to solve our target problem.
Second, it could be too simple, i.e., we do not have sufficient
constructs/instances to solve our target problem.

Is the MCD3 design overly complicated? We feel the an-
swer to this question is no, since all of our constructs (meta-
DPP, convenience routine, and DPP) are used, and many of the
instances are heavily used (see Figure 10 for details). While
DPPs represent half of all usage, the other constructs repre-
sent the other half, justifying their inclusion. Of course, this
analysis is not definitive, as some instances could potentially be
removed, and their functionality could be replaced by a combi-
nation of others.

Is the MCD3 design too simple? We feel the answer to
this question is again no, since the design is expressive enough
to implement diverse visualization algorithms, and more im-
portantly the visualization algorithms we find to be useful. We
offer two pieces of evidence that the algorithms we have im-
plemented provide a useful feature set for stakeholders. First,
VTK-m is the main visualization library behind Ascent [44], an
in situ visualization library that is used by over a dozen compu-
tational simulation teams. That VTK-m can meet these teams’
collective needs is significant evidence that its 57 algorithms
provide a sufficient feature set. Second, at the inception of the
VTK-m project, the team identified 20 core algorithms that it
felt were necessary to deliver a useful product. Each of these
algorithms is now implemented in VTK-m, and some required
more exotic usage than originally envisioned, like the use of
hash tables. Of course, these two pieces of evidence do not ex-
haustively cover the space of possible visualization algorithms,

Figure 10: Measuring the usage by visualization algorithms of individual meta-
DPPs (dark blue), convenience routines (light blue), and DPPs (orange). Each
row corresponds to usage for a given operation. For example, the MapField
meta-DPP was used by 72% of the visualization algorithms (41 of the 57).
(Note that any DPP not used directly by any visualization algorithm imple-
mentation are not listed here. Hence, some DPPs listed in Section 3.4.2 used
elsewhere in VTK-m are not listed here.)

and it is possible that a future algorithm will be difficult to fit
within the framework.

4.3. Evaluating Performance Efficiency

To evaluate MCD3 performance, we surveyed ten studies on
MCD3, and collate their results. We feel this provides a holis-
tic picture of MCD3 performance, as it evaluates a considerable
number of algorithms, platforms, data sets, and comparators.
That said, it is not possible to directly link these studies with
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individual algorithms from 4.1, since some studies consider
MCD3-based modules that are not considered “algorithms” (fil-
ters) in VTK-m (like hashing and ray tracing) and others con-
sider combined performance of multiple algorithms. Regard-
less, we feel the existing set of published performance studies
greatly informs the performance of all MCD3 algorithms.

We divide our results into two sections. The first section
(4.3.1) evaluates how the hardware-agnostic approach of MCD3

performs versus hardware-specific comparators for nine differ-
ent algorithms. The second section (4.3.2) considers studies
that focused on scaling properties on CPU hardware — when
given more cores, did performance improve proportionally?
This section considers five such studies, although four of the
studies also had hardware-specific comparators and appeared
in section 4.3.1.

Figure 11: MCD3 performance against hardware-specific comparators for nine
algorithms. The horizontal axis represents the ratio in MCD3 performance
against its comparator — 2−1 means MCD3 took twice as long, 21 means
MCD3 took half the time, and 20 (1) means MCD3 took the same amount of
time. The glyphs indicate both the hardware type (glyph color and glyph type)
and the size of the data set being processed (glyph size). For data size, all plot-
ting is relative — the largest data set considered in that study gets the largest
glyph size, the smallest data set gets the smallest glyph size, and the other
glyphs are scaled proportionally between the two extremes. Finally, specifics
about hardware and comparators can be found in Table 4.

4.3.1. MCD3 Versus Hardware-Specific Comparators
Table 4 and Figure 11 show the results from nine stud-

ies comparing individual algorithms. The hardware-specific
comparators came from a mix of well-known visualiza-
tion/rendering software (Embree [53], HAVS [54], OptiX [55],
VisIt [2], VTK [8], Vapor [56]) and direct implementations
(CUDA, OpenMP, pthreads, TBB, Thrust). While Table 4 lists
the range of comparisons, Figure 11 shows the outcome for
each individual experiment.

Algorithm Architecture Comp. Perf.

Ray Tracing I I7 4770K Embree 0.28-0.48
[45] I Ivy Bridge Embree 0.4-0.58

N GTX Titan Blk OptiX 0.44-0.56
N Tesla K80M OptiX 0.37-0.51
N GeForce 750Ti OptiX 0.69-0.89
N GeForce 620M OptiX 0.73-1.16

Volume I Ivy Bridge (1) VisIt 0.73-9.1
Rendering I I7 4770K (8) VTK 2
[46] N GTX Titan Blk HAVS 0.33-2

External I Ivy Bridge (1) VTK 0.50-1.4
facelist [47] I Ivy Bridge (1) VisIt 0.08-0.25

Wavelet I Haswell (16) Vapor 0.8-1.5
Compression N Tesla K40 CUDA 0.6-0.8
[48]

Particle I Ivy Bridge (16) VisIt 2.4-3.6
Advection I Haswell (28) pthreads 0.03-1.6
[49] IB Power8 (20) pthreads 0.05-1.03

N Tesla K20x CUDA 0.37-2.26
N Tesla K80 CUDA 0.54-2.45
N Tesla P100 CUDA 0.48-4.08

Point Merge IB Power9 (1) VTK 1.07-6.86
[39] IB Power9 (40) VTK 1.4-2.5

N Tesla V100 VTK-m 0.48-4.0

Probabalistic Graphical Modeling (PGM) 2018 [50]
I Ivy Bridge (24) OpenMP 2-7
I Phi 7250 (68) OpenMP 0.75-4.25

PGM 2020 I Ivy Bridge (8) {OpenMP, 2.2, 2.6
[51] I Xeon Phi 7250 pthreads} 0.04, 1.58

Hashing [52] I Skylake (32) {TBB, 1.2-37
N Tesla K40 CUDPP, 0.09-13
N Tesla V100 Thrust} 0.27-5.96

Table 4: Studies comparing performance for algorithms implemented in MCD3

against hardware-specific implementations. In the architecture column, num-
bers in parentheses specify number of multi-core CPU cores used in the experi-
ments. In the comparator column (abbreviated as “Comp”), the last two studies
picked the best from multiple comparators, and the set of comparators are listed
with curly braces. Finally, in the performance column, the numbers represent
the range of outcomes. As an example of how to interpret this table, the entry in
the top row indicates that an MCD3 ray tracing algorithm only had 28% to 48%
of the performance (i.e., from almost 4X slower to nearly 2X slower) compared
to Intel’s Embree ray tracer when run on the Intel I7 architecture.

Two of the algorithms, external facelist and ray tracing,
had significantly worse performance with MCD3 implementa-
tions than with its hardware-specific comparators. For external
facelist, the cause was an asymmetric comparison — the com-
parator was a serial algorithm that could skip any overhead nec-
essary for any parallel algorithm. Specifically, the serial com-
parator could update its internal tables without fear of colli-
sions, whereas the MCD3 code had to be designed to prevent
collisions when running in parallel. For ray tracing, the cause
was that the comparators are extremely efficient — NVIDIA’s
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OptiX and Intel’s Embree are the product of dedicated teams
embedded at their respective hardware vendors. The difference
in performance, then, is likely more a reflection of respective
development time than a statement about MCD3. Further, the
MCD3 approach actually beat OptiX on older NVIDIA cards,
speaking to the extent that OptiX is tuned for the latest NVIDIA
hardware and to the portable performance of MCD3.

Algorithm CPUs GPUs X. Phi Serial Total

External - - - 0.34 0.34
facelist

PGM 18 3.32 - 0.87 - 1.69

PGM 20 2.39 - 0.25 - 0.78

Particle 0.38 1.53 - - 0.76
advection

Point 1.82 - - 3.10 2.38
merge

Ray 0.47 0.55 - - 0.51
tracing

Volume 1.13 0.83 - 3.10 1.43
rendering

Wavelet 1.13 0.75 - - 0.92
compression

Hashing 5.97 1.45 - - 2.94

Total 1.45 0.95 0.47 1.48 1.14

Table 5: Aggregate performance of MCD3 performance against hardware-
specific comparators for nine algorithms on four hardware architectures. Each
entry in the table represents a geometric mean over its experiments. For exam-
ple, if algorithm X on hardware Y had three experiments, where MCD3 was
five times as fast, half as fast, and one fourth as fast as its hardware comparator,
then the table will contain 0.85 (= (5 × 0.5 × 0.25)

1
3 ). We use the geomet-

ric mean since it captures aggregate behavior better than an arithmetic mean
(which would be 1.92 for the previous example). We also combined results in
algorithm and in hardware, i.e., if algorithms X, Y, and Z had results on hard-
ware W, we calculated performance on W as the geometric mean of results for
X, Y, and Z on W. One benefit of this approach is that is unaffected by the num-
ber of experiments run for a given study — if one study contained one hundred
experiments and another study contained two, then the findings from the first
study do not overshadow the second. Finally, we calculated the geometric mean
over all hardware-algorithm pairs, which was 1.14.

Table 5 summarizes aggregate performance over the nine al-
gorithms from their respective studies, and we use the method-
ology for calculating individual table entries as our best esti-
mate at relative performance. Four of the nine algorithms are
faster than their hardware comparators, whereas five are slower.
This provides evidence that MCD3 enables good performance,
as the expected outcome if MCD3 is as good as hardware-
specific implementation would be a 50/50 mix of faster and
slower. On the hardware side, we saw that serial and CPU
experiments were faster. This could possibly demonstrate a
benefit of DPP programming, as it is not possible to incorpo-
rate serial bottlenecks. We felt the GPU performance of 0.95X

was quite good, and matches our team’s experiences with good
GPU performance. Similarly, we have felt that Xeon Phi per-
formance was poor, which is borne out in the table. In partic-
ular, the study by Perciano et al. [51] demonstrated poor per-
formance at high scale. MCD3 performance was competitive
at lower concurrency, but not when the hyperthreads were in-
volved. This may indicate a shortcoming in Xeon Phi device
adapters. Finally, the aggregation of the experiments demon-
strates a 1.14X speedup from using MCD3 over hardware-
specific comparators. As previously discussed, these gains are
coming from serial and multi-core CPU improvements, and
likely from limiting programmers to only using fast program-
ming constructs. That said, the GPU results (0.95X) indicate
that MCD3 is competitive.

4.3.2. MCD3 Scaling on Multi-Core CPUs
For each of the studies that ran scaling studies on multi-

core CPUs (not Xeon Phi), Table 6 shows the parallel efficiency
and Figure 12 shows the behavior with increasing numbers of
cores. For the most part, scaling is quite good, as the MCD3

algorithms get proportionally faster as more cores are added.
The two exceptions are for contour trees (where scalability
is similar for a native OpenMP implementation due to algo-
rithm complexities) and for the point merge algorithm when it
switches to hyperthreading. That said, we find the overall scala-
bility is good evidence that MCD3 is an effective programming
paradigm for multi-core CPUs.

Algorithm Architecture Max Parallel
Cores Efficiency

Volume I Ivy Bridge 24 0.73
Rendering [46]

External I Ivy Bridge 16 0.77
Facelist [47]

Contour I Sandy Bridge 32 0.24
Tree [57]

Point IB Power 9 40 0.55
Merge [39]

Particle I Haswell 28 0.78
Advection [49]

Table 6: Surveying multi-core CPU scaling studies for five visualization al-
gorithms. While these studies considered many concurrency levels, this table
shows the maximum concurrency, as well as the parallel efficiency achieved at
that maximum concurrency.

5. Conclusion and Future Work

Overall, we feel our results demonstrate the efficacy of
MCD3 for our twin goals of minimizing developer time while
achieving efficient portable performance on many-core archi-
tectures. For developer performance, we feel our analysis cal-
culating the effort for a DPP-only equivalent library to VTK-m
is compelling. While the 3.1X number has approximations, the
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Figure 12: Plotting scaling study results for five visualization algorithms on
multi-core CPUs. Each visualization algorithm is plotted as its own line, with
a unique color, and the ideal scaling line is drawn as a dotted black line. Hy-
perthreading experiments for the Point Merge algorithm are indicated with a
dotted line. These experiments go to 80 threads, since hyperthreading enabled
running with double the number of physical cores.

number is high enough that we feel it clearly speaks to savings
for the VTK-m development team due to MCD3 principles, es-
pecially when combined with the usage of meta-DPPs and con-
venience routines. For efficient performance, we feel our anal-
ysis indicating that MCD3 is faster than hardware-specific com-
parators (1.14X in total) is surprising. An ideal outcome would
have been 1.0X, and — in our opinion — a realistic goal at the
onset would have been to achieve a number between 0.8X and
0.9X. As discussed, we feel that part of our strong result is due
to the disciplined nature of MCD3 programming, which avoids
serial bottlenecks. Regardless, the 0.95X result for GPUs is
(in our opinion) compelling. Finally, the CPU scaling numbers
provide further evidence of good performance overall.

There are additional benefits to MCD3, in particular with
meta-DPPs, that are not discussed in Section 4 because they are
not measurable. For example, there are forms of scatters and
masks that are not captured in Section 4 because they do not
directly use a DPP but rather provide efficient and convenient
index manipulation. Although these features are certainly valu-
able to developers, there is no way to identify in our corpus
when an algorithm uses its own alternate index manipulation.
To avoid such one-sided comparisons, we left these meta-DPP
benefits out of Section 4.

There are several drawbacks for MCD3. One is the time
to implement the underlying system, although we feel this is
amortized over saved developer time. Second, our MCD3 im-
plementation makes heavy use of template meta-programming,
which raises the barrier to entry for developers and also in-
creases compile time. Third, the MCD3 design differs from a
traditional approach, which also raises the barrier to entry —
visualization algorithm developers must learn new constructs.

Future work centers around our twin goals of developer
time and performance efficiency. We will continue to moni-
tor the VTK-m library and see if new algorithms challenge the
MCD3 design (e.g., needing new meta-DPPs). We also will be
interested to see performance studies on upcoming hardware, in

particular Intel and AMD GPUs.
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Appendix A. Analysis of VTK-m’s Source Code

Sections 4.1 and 4.2 use a corpus documenting what MCD3

are used in VTK-m source code. This corpus was generated
using VTK-m’s logging mechanism. VTK-m’s logging records
each time an algorithm or an MCD3 is executed. The log further
records the execution of each algorithm or when MCD3 starts
and ends so that these calls can be nested to identify when a unit
is called from within another unit.

We ran VTK-m’s regression test for each algorithm while
recording the performance logs. We then used a Python script
to read the log, identify when an algorithm was run, and gener-
ate a record of when an algorithm used MCD3. Nested MCD3

calls were ignored. For example, we did not record when a
meta-DPP called a DPP as the intention of this analysis is to
determine what MCD3s an algorithm uses, not how meta-DPPs
are implemented. If an algorithm internally used another algo-
rithm, then any MCD3 calls were attributed to the inner algo-
rithm and not for the outer algorithm.

After processing the logs, the records of algorithm MCD3

use were aggregated to generate a table that identified for each
algorithm which MCD3s it used. For each algorithm/MCD3

combination a binary value of “yes, it was used” or “no, it
was not used” was created. It should be noted that an algo-
rithm may use a different combination of MCD3 depending on
the type of data it processes or the parameters chosen. We did
not attempt to differentiate the different call parameters of algo-
rithms. Rather, we recorded whether an MCD3 was employed
by any algorithm configuration.

14



Supplemental Material

This supplemental material contains more detail on aspects
of the MCD3 approach, specificially descriptions of the DPPs
we use, implementation details for the meta-DPPs and conve-
nience routines, and an example of algorithm development us-
ing MCD3.

DPP Descriptions

This section contains descriptions of the DPPs in our MCD3

system.

Copy Copies the data from one array to another array. This can
include copying data between arrays with different struc-
tures. Although this is a DPP because it involves opera-
tions in a device memory space, it is a decidedly simple
one. It is also an operation that would undoubtedly ex-
ist in any data-centric system even if it was not based on
DPP operations. Thus, in our analysis of Section 4.1, we
mark the use of Copy as a special operation that qualifies
as DPP, but only just so.

CopyIf Given an array of values and a stencil array, copies all
values that match the criterion of the stencil.

CopySubRange Copies a contiguous region of data from one
array to a specified location in another array.

CountSetBits A special form of reduction that returns the total
number of 1 bits in a bit field.

Fill Sets all items in a bit field to a specified value.
Reduce Apply a binary operation to all elements in an array

and return the result. A typical use of Reduce is to sum
all the values in an array, but other operations like find-
ing the minimum or maximum value are possible. VTK-
m also provides a variation of Reduce called Reduce-
ByKey. This version additionally takes an array of keys
and partitions the data by regions where adjacent keys are
the same. The Reduce is then applied separately to each
partition and placed in an array containing an entry for
each partition.

Scan Provides a “running sum” of values in the array. That is,
each item in the output array is the sum of all previous
values in the input array. Addition is the most common
scan operation, but others like multiplication are possi-
ble, too. Scan is used extensively in VTK-m for building
indices. There are several variations of the Scan DPP.
ScanExclusive sets the first value of the output to the
initial value of the operation (usually 0), and every sub-
sequent value is the sum of all values before the index
excluding the current value. ScanInclusive sets every
value to the sum of all values before the index includ-
ing the current value. ScanExtended is a combination of
ScanExclusive and ScanInclusive where the output array
is made one larger than the input. The first entry of the
output is set to the initial value and the last entry is set
to the total sum. VTK-m also includes ScanExclusive-
ByKey and ScanInclusiveByKey that take an additional

key array. Like ReduceByKey, these methods partition
the input by regions where consecutive keys are equal
and performs the scan independently on each partition.

Search Finds values in a sorted array. This DPP takes a group
of keys to find in the sorted array simultaneously. There
are two flavors of Search: LowerBounds and Upper-
Bounds. If the sorted array contains multiple copies of
the key, these methods will respectively find the first such
element and the last such element.

Sort Rearranges the values in an array to be in ascending order.
The variation SortByKey also takes a key array used to
partition the input array. Each partition of the array is
sorted separately.

Transform Applies a binary operation element-wise to two in-
put arrays. The binary operation is provided as a functor
that is executed for each pair of input elements.

Unique Removes all duplicate values in an array leaving only
unique values. This operation only works if all dupli-
cated values are adjacent in the input array, which can be
achieved by sorting the array first.

Meta-DPP Implementations

Visit Point With Cells: Before calling the functor, this
meta-DPP references the parameters to the point being visited.
Retrieving point properties changes depending on the structure
of the cell set (e.g. an implicit regular grid versus explicit cell
indices). This is internally managed via templated program-
ming.

The point information contains indices that can be used to
retrieve fields of the incident cells. Points in a mesh have dif-
ferent numbers of incident cells, which complicates passing the
associated data to the functor. Using a dynamically allocated
array or a large allocation on the stack is not feasible on many
GPU devices. Instead, the functor is passed a C++ object that
behaves like an array but actually retrieves data for each inci-
dent cell on demand.

Another complication is that it is common to explicitly de-
fine a cell set by listing the points incident on each cell, but
the reverse connection from points to cells is not captured. If
the links from points to cells are not provided, VTK-m will au-
tomatically generate this information from the links from cells
to points. These links are built using the base DPPs internally
within VTK-m before the meta-DPP schedules itself. The pro-
cedure ComputePointLinks is listed in Figure A.13. Overall,
ComputePointLinks uses 5 DPPs: 2 Copys to initialize an ar-
ray (lines 3 and 8), a Schedule to count cells incident on each
point (line 4), a ScanExtended to compute the offsets into the
link array (line 6), and a final Schedule to fill the link array
(line 9). It should be noted that this is not the only way to
implement ComputePointLinks, but we found that this method
using atomic additions works best across the devices we tried.

After ComputePointLinks is called, the Visit Point With
Cells meta-DPP still needs to call Schedule one more time to
invoke the user-provided function on the cells. This brings the
total DPP calls to 6.
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ComputePointLinks(
cellPointCount, cellLinks, cellLinkOffsets, numPoints)

1 numCells = cellPointCount.size
2 numLinks = cellLinks.size

// Simple way to allocate/initialize array.
3 Copy(ConstantArray(0, numPoints), pointCellCount)

// Parallel for is implemented with the Schedule DPP.
4 parallel for i = 0 to numCells

// Atomic add counts cells referencing each point.
5 AtomicAdd(pointCellCount, cellLinks[i], 1)

// Convert counts to offsets.
6 pointLinkOffsets = ScanExtended(pointCellCount)
7 Allocate(pointLinks, numLinks)

// pointCellCount is correct, but we need to redo the
// atomics to find unique indices in pointLinks.

8 Copy(ConstantArray(0, numPoints), pointCellCount)
9 parallel for i = 0 to numCells

10 pointId = cellLinks[i]
// Binary search index in offsets to find cell id.

11 cellId = UpperBound(cellLinkOffsets, i) − 1
// Atomic add returns value before add.

12 localOffset = AtomicAdd(pointCellCount, pointId, 1)
13 globalOffset = pointLinkOffsets[pointId]
14 pointLinks[globalOffset + localOffset] = cellId
15 return (pointCellCount, pointLinks, pointLinkOffsets)
Figure A.13: Procedure to compute which cells are incident on each point
based on the points incident on each cell. Explicit cell connections are repre-
sented by 3 arrays: an array identifying how many points are incident on each
cell (cellPointCount), an array packing together the variable length sets of point
ids incident on each cell (cellLinks), and an array containing the offset of each
set in cellLinks (cellLinkOffsets). The inverse linking of cells incident on each
point is represented with a similar set of arrays.

Visit Cell With Points: Before calling the functor, this
meta-DPP references the parameters to the cell being visited.
Retrieving cell properties changes depending on the structure
of the cell set (e.g. an implicit regular grid versus explicit cell
indices). This is internally managed via templated program-
ming.

The cell information contains indices that can be used to re-
trieve coordinates and other fields of the incident points. Cells
of different types have different numbers of points, which com-
plicates passing the associated data to the functor. Using a dy-
namically allocated array or a large allocation on the stack is not
feasible on many GPU devices. Instead, the functor is passed a
C++ object that behaves like an array but actually retrieves data
for each incident point on demand.

Point Neighborhood: This meta-DPP only works with
structured cells. Before calling the functor provided to it, the
meta-DPP computes the envelope of accessed points based on
the requested network. Special objects are passed to the pro-
vided functor that allow a point field value to be retrieved based
on indices relative to the visited point.

Reduce By Key: Before this meta-DPP schedules itself, it
identifies duplicate keys in its key array input and builds index
arrays to point to associated values. The procedure BuildKey-

Arrays to create these index arrays is listed in Figure A.14.
After initializing an index array with a Copy (line 2), Build-
KeyArrays sorts the keys with a SortByKey to trace back to
the original indices (line 3). It then uses the basic Reduce-
ByKey to count the number of times each key is used and to get
an array of unique keys (line 4). Finally, ScanExtended is used
to derive key group offsets in the index array (line 5).

BuildKeyArrays(keys)
1 numKeys = keys.size

// Initializes valueMap to 0, 1, 2, ...
2 Copy(IndexArray(numKeys), valueMap)

// Group like keys and build a map to original index
3 SortByKey(keys, valueMap)

// Count the number of times each key occurs
4 (uniqueKeys, counts) = ReduceByKey(

keys,ConstantArray(1, numKeys),Sum)
// Convert counts to offsets.

5 offsets = ScanExtended(counts)
6 return (counts, valueMap, offsets)
Figure A.14: Procedure to identify groups of common keys and produce index
arrays to the indices containing each key.

Given these pre-computed arrays, the Reduce By Key
meta-DPP follows the built links from reduced value to dupli-
cate key group to the values in the source arrays to extract infor-
mation to pass to the functor. The number of values associated
with each unique key will vary, so like the other meta-DPPs,
the Reduce by Key meta-DPP passes a C++ object that behaves
like an array but actually retrieves data for each element in the
group.

Overall, a call to the Reduce By Key meta-DPP encapsu-
lates 6 DPPs. In practice, the call first performs a Copy to pre-
serve the key array provided. It then expends 4 DPPs running
the BuildKeyArrays procedure. And finally, it Schedules the
functor provided by the user.

Map Field: This meta-DPP is similar in behavior to the
base Transform DPP, which applies a functor as a binary oper-
ation to two input arrays to produce a new array. However, the
base Transform DPP has a rigid structure of two input arrays
and a single output array, which makes operations leveraging
different numbers of arrays difficult to implement.

Additionally, the Map Field meta-DPP, like all other meta-
DPPs, work with the modifies described in Section 3.2.6, which
allow the meta-DPP to work with the jagged inputs and outputs
typical of visualization algorithms.

The objective metrics collected in Section 4.1 suggest that
the added benefits of the Map Field meta-DPP over the base
DPPs are useful to developers.

Scatter: The behavior of all the previously described meta-
DPPs can be modified by scatter and map structure. The most
common non-trivial modifier is the Scatter Counting, which
takes an array of the number of outputs to be generated by each
input. As described in Section 3.2.6, a Scatter Counting can
be used to either add or remove data from the input.

Any scatter modifier needs to provide an outputToInputMap
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that identifies for each output which input it comes from and
a visitArray that identifies for each output an identifier that is
different than the visit index for any other output sharing the
same input. The Scatter Counting modifier derives these ar-
rays from a provided array of counts for each input value as
described by the BuildScatterArrays in Figure A.15. Build-
ing these arrays requires 4 DPPs: a ScanInclusive to map input
to output (line 1), a UpperBounds to invert this map (line 2), a
LowerBounds to identify where each output group starts (line
3), and a Schedule to fill the visit array (line 5).

BuildScatterArrays(counts)
1 (inputToOutputMap, outputSize) = ScanInclusive(counts)

// Determine the input associated with each output.
2 outputToInputMap = UpperBounds(

inputToOutputMap, IndexArray(outputSize))
// Determine the index to the start of each group.
// Repeated items will all point to the first item.

3 startOfGroups = LowerBounds(
outputToInputMap, outputToInputMap)

4 Allocate(visitArray, outputSize)
// Parallel for is implemented with the Schedule DPP.

5 parallel for i = 0 to outputSize
6 visitArray[i] = outputToInputMap − startOfGroups
7 return (outputToInputMap, visitArray)
Figure A.15: Procedure to map output indices to input indices given an array
of the number of outputs each input produces.

Convenience Routine Implementations

ArrayRange: Computing the range of an array is a sim-
ple application of using the Reduce DPP to compute the min-
imum and maximum values of an array. A trivial implementa-
tion would call Reduce twice, once to compute the minimum
and once to compute the maximum. That said, the base VTK-
m implementation plays tricks with the operator and data type
to compute both minimum and maximum with one call to Re-
duce. Thus, we count the ArrayRange as a DPP complexity of
1 even though a simple implementation would use more.

CountToOffset: As described in Section Appendix A,
structures like explicit cell sets and key groups are represented
by a packed array of sets with an array of offsets to each set.
However, it is almost always the case when constructing such a
structure that you have an array of set sizes (from counting the
number of entries in each), but no offsets. So converting this
array of counts to an array of offsets is a common operation.
This is easily implemented with a ScanExtended operation on
the counts, and VTK-m provides a convenient wrapper for this.

Locators: A locator takes a point coordinate in 3-space and
determines which cell from a data set contains that coordinate.
VTK-m provides several locator types whose use depends on
the type of cell structure and operation. The most general lo-
cator in VTK-m is a 2-level grid algorithm based on the work
of Kalojanov, Billeter, and Slusallek [40]. We refer the reader

to that work for details on implementation, but we note that the
implementation in VTK-m requires the use of 18 DPPs.

MapFieldMergeAverage: When a VTK-m filter modifies
the topology of a data set, it needs to modify the field arrays of
the input to match the topology of the output. For example, a
filter might modify a topology by merging together points that
are nearby as part of a cleaning or coarsening operation. The
field values of the merged points need to be combined in some
way, and averaging the values is a common method to do that.
Thus, VTK-m provides a convenience function to merge field
values using the average operator. This routine is implemented
with a straightforward application of the Reduce By Key meta-
DPP, which itself uses 6 DPPs.

MapFieldPermutation: Another common change in topol-
ogy is to reorder points or cells in the data, in which case the
field values need to be similarly reordered. For example, the
threshold filter will remove some cells based on a selection cri-
teria, and the remaining cells will be packed. Thus, the cell field
data needs to be similarly repacked. Thus, VTK-m provides a
convenience function to reorder field arrays based on the per-
mutation created by the filter. The implementation is a simple
Schedule that uses the permutation to retrieve the correct input
value for each output.

Example MCD3 Algorithm Development

To demonstrate the value of our MCD3 approach, we pro-
vide a simple example of using them for a basic scientific vi-
sualization algorithm. Note that to make the description easier
to follow, we use pseudocode for functors and a description of
how they interact with meta-DPPs. Details on operating the
meta-DPPs in VTK-m can be found in the software documen-
tation [42].

As a simple example of how MCD3 simplifies algorithm
development, let us consider estimating the normals of a mesh
surface. Normals, which are unit vectors pointing perpendicular
to a surface, are extremely important for lighting calculations
in 3D graphics. Surfaces in scientific visualization are usually
represented as a mesh of flat polygons. Properly estimating
normals allows the rendering to draw the polygons more like
the smooth surface they are supposed to represent.

A simple estimation of smooth normals for a polygonal
mesh, regardless of whether parallel or serial, requires two
steps. The first step is to compute the normal to each flat poly-
gon, and the second step is to average these normals on the
shared vertices of the mesh.

This first step is easily achieved with the Visit Cell with
Points meta-DPP. Figure A.16 shows a functor, PolygonNor-
malFunctor, that takes the vertices of a polygon and uses the
cross product to find a vector perpendicular to it. When this
functor is used with the Visit Cell with Points meta-DPP, it will
generate a cell field array containing vectors perpendicular to
the surface.

For a rendering system to depict a smooth surface, it really
needs normals attached to the points of the mesh so they can
be interpolated across the polygons. The Visit Cell with Points
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PolygonNormalFunctor(vertexCoordinates)
1 v1 = vertexCoordinates[2] − vertexCoordinates[1]
2 v2 = vertexCoordinates[0] − vertexCoordinates[1]
3 n = Cross(v1, v2)
4 return n/‖n‖
Figure A.16: Functor to compute to normal to a single polygon. When used
with the Visit Cell with Points meta-DPP, each functor instance receives the
coordinates for all the vertices of the polygon.

meta-DPP with PolygonNormalFunctor has just produced nor-
mals on each polygon. To move the normals from the polygons
to the points, we can use the Visit Point with Cells meta-DPP
with AverageNormalsFunctor shown in Figure A.17.

AverageNormalsFunctor(cellNormals)
1 aggregateN = [0, 0, 0]
2 for each n ∈ cellNormals
3 aggregateN = aggregateN + n
4 return aggregateN/‖aggregateN‖
Figure A.17: Functor to average normals vectors. When used with the Visit
Point with Cells meta-DPP, each functor instance receives the normals for all
cells incident on a point.

When the Visit Point with Cells meta-DPP is given Av-
erageNormalsFunctor, the polygon mesh, and the previously
computed cell normals, it will provide a point field array con-
taining surface normals.

Although performing these operations is very simple with
MCD3, it is quite complicated with only a basic DPP system.
The base DPPs have no direct way to collect the vertex infor-
mation on each cell. The easiest way to achieve this with a DPP
is to use a ParallelFor to create a kernel to dereference random
access array with indices. This requires much more code and
is more error prone as it does not benefit from the thread safety
provided by DPP and meta-DPP routines.

The second part of the algorithm, averaging the cell nor-
mals to each point, is even more difficult with basic DPPs. A
typical polygon mesh representation captures the points inci-
dent on each cell but does not directly express the cells incident
on each point. Deriving this information requires enumerating
all points of all cells, reordering this enumeration to collect like
points, and rebuilding the variable index lists.

Furthermore, an implementation using basic DPPs would be
specific to a particular layout of the data. The assumption of the
previous description is that a polygonal mesh is represented by
explicitly declaring which point each cell uses. This is typical,
but other representations are possible. For example, one might
represent a surface using a 2D regular grid of quadrilateral cells
with a height field. Our MCD3’s data model integrated with the
meta-DPPs allows our single implementation to work with both
of these representations and more.

License

This preprint is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 In-
ternational License. The final published material is available
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