
Performance-Portable Particle Advection with VTK-m

David Pugmire1, Abhishek Yenpure2, Mark Kim1, James Kress1,2, Robert Maynard3, Hank Childs2 and Bernd Hentschel4

1Oak Ridge National Laboratory, Oak Ridge TN, USA
2University of Oregon, Eugene OR, USA

3Kitware, Inc. Clifton Park, NY, USA
4RWTH Aachen University, Aachen, Germany

Abstract
Particle advection is the fundamental kernel behind most vector field visualization methods. Yet, the efficient parallel computation
of large amounts of particle traces remains challenging. This is exacerbated by the variety of hardware trends in today’s HPC
arena, including increasing core counts in classical CPUs, many-core designs such as the Intel Xeon Phi, and massively parallel
GPUs. The dedicated optimization of a particle advection kernel for each individual target architecture is both time-consuming
and error prone. In this paper, we propose a performance-portable algorithm for particle advection. Our algorithm is based on
the recently introduced VTK-m system and chiefly relies on its device adapter abstraction. We demonstrate the general portability
of our implementation across a wide variety of hardware. Finally, our evaluation shows that our hardware-agnostic algorithm
has comparable performance to hardware-specific algorithms.

1. Introduction

In order to keep up with the amounts of raw data generated by state
of the art simulations, modern visualization algorithms have to be
able to efficiently leverage the same, massively parallel hardware
that is used for data generation, i.e. today’s largest supercomputers.
This holds true for both classical post processing and modern in
situ strategies. Specifically, as the latter have to run at simulation
time, they have to be able to deal with a large variety of hardware
platforms efficiently. Even more challenging, as visualization is
oftentimes not seen as a first class citizen, it might have to run on
different resources whenever they are available, e.g. utilizing idle
CPU cores while the simulation is advanced on GPUs or using
a local GPU while the simulation is blocked by communication.
Custom-tailoring visualization algorithms to specific hardware plat-
forms and potential usage scenarios is both time-consuming and
error-prone. This leads to a gap with regard to practically available
visualization methods for large data: either they are portable across
a number of architectures, but do not feature ultimate performance,
or they are highly-optimized, yet work only on a very limited sub-
set of today’s diverse hardware architectures. Performance-portable
formulations of key algorithms have the potential to bridge this
gap: the developer specifies what can be run in parallel while an
underlying run-time system decides the how and where. Further, the
runtime system is optimized once to make good use of a specific
target architecture. Ideally, the result is that all previously formu-
lated kernels will be available — with good, if not fully optimal,
performance — on the newly addressed system. In the past, this
approach has been demonstrated to show good results for inherently

data parallel visualization problems, e.g. ray tracing [LMNC15] and
direct volume rendering [LLN∗15].

In this paper, we extend the body of performance-portable ap-
proaches with a method for parallel particle advection. Particle
advection is the basic algorithmic kernel of many vector field
visualization techniques. Applications encompass, e.g., the di-
rect representation of field lines [SKH∗05, EBRI09], dense vec-
tor field visualization methods [CL93, vW02, LEG∗08], flow sur-
faces [FBTW10, GKT∗08, Hul92], and the computation of derived
data fields or representations [ACG∗14, GGTH07, Hal01, SP07] or
statistical measures [WP06, Wan10]. These techniques depend on
the ability to compute large numbers of particle trajectories through
a vector field. The resulting workloads are taxing with respect to
both their computational requirements and their inherent depen-
dence on high data bandwidth. In contrast to the aforementioned
visualization kernels — isosurfacing and ray casting — particle
tracing computations are not trivially data parallel. Worse, work-
loads are highly dynamic, as the outcome inherently depends on the
input vector field. The computations’ overall demands are therefore
hard to predict in advance. This complicates — among other things
— the efficient scheduling of parallel particle advection computa-
tions. In the recent past, a variety parallelization strategies has been
proposed, all sharing the goal of providing many particles fast (see,
e.g., [BSK∗07,PCG∗09,CGC∗11,CKP∗13,CSH16,NLS11,NLL∗12,
MCHG13]).

Our approach is based on the parallelize-over-seeds (POS) strat-
egy. In order to facilitate performance portability, we rely on the
concepts of the recently introduced VTK-m framework [MSU∗16].

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

This facilitates the direct use of classical CPUs and GPUs without
the need to implement and maintain two distinct code paths. We
evaluate our algorithm’s performance for a set of five well-defined
workloads which cover a wide range of vector field visualization
tasks. Our results show that our technique performs as expected,
and matches the performance characteristics identified in previously
published work. Further, we demonstrate that there are minimal per-
formance penalties in our portable implementation when compared
to hand-coded reference implementations.

To summarize, we make the following contributions. We propose
a performance-portable formulation of POS particle tracing embed-
ded in the VTK-m framework. We demonstrate general effectiveness
and performance-portability based on the results of several perfor-
mance experiments. As part of these experiments, we assess the cost
of performance portability by comparing our method’s performance
to that of native implementations on a variety of execution platforms.
Against this backdrop, we discuss the advantages and limitations of
our approach with respect to natively-optimized techniques.

2. Related Work

In this section, we briefly review related work under two different
aspects: parallel visualization systems and particle advection.

Parallel Visualization Systems The increasing need for
production-ready, scalable visualization methods led to the
development of several general purpose packages such as Par-
aview [ABM∗01, Aya15] and VisIt [CBB∗05]. These tools have
primarily focused on distributed-memory parallelism, which is
complementary to our own focus.

Recent changes in both HPC hardware and software environments
led to the development of new frameworks, which address certain
aspects of the changing HPC environment.

The DAX toolkit [MAGM11], introduced by Moreland et al., is
built around the notion of a worklet: a small, stateless construct
which operates — in serial — on a small piece of data. Worklets are
run in an execution environment under the control of an executive.
They help programmers to exhibit fine-grained data parallelism,
which is subsequently used for data-parallel execution.

Lo et al. proposed to use data parallel primitives (DPP) [Ble90]
for a performance-portable formulation of visualization ker-
nels [LSA12] in the Piston framework. Based on NVidia’s Thrust
library [BH11], Piston supports both GPUs and CPUs as target ar-
chitectures, by providing a CUDA and an OpenMP backend, respec-
tively. Performance results demonstrated the ability to achieve good
performance on different platforms using the exact same source
code for each.

Meredith et al. introduce EAVL, a data parallel execution library
with a flexible data model that addresses a wide range of potential
data representations [MAPS12]. With this data model, they aim
at increased efficiency – both in terms of memory use and com-
putational demand – and scalability. The generic model proposed
for EAVL allows developers to represent (almost) arbitrary input
data in a way that accounts for hardware-specific preferences. For
example, it allows them to switch between structure-of-arrays and

array-of-structures representations of multi-dimensional data fields.
Low-level parallelism is supported by an iterator-functor model:
iteration happens in parallel, applying a functor to each item of a
range.

Eventually, the experiences gathered in the development of
these libraries resulted in the consolidated development of VTK-
m [MSU∗16]. It integrates an evolution of EAVL’s data model with
the two-tier control/execution environment of DAX and the idea
to facilitate performance portability by formulating visualization
workloads in terms of data parallel primitives. Currently, it offers
parallel backends for CUDA and Intel Threading Building Blocks
(TBB). Moreland et al. discuss the cost of portability for a vari-
ety of visualization workloads. Their findings are inline with and
partially based on work by Larsen et al., who studied DPP-based
formulations for ray tracing and direct volume rendering, respec-
tively [LMNC15, LLN∗15]. In this paper, we focus on an efficient
formulation of a basic, general-purpose particle advection kernel
running in a shared memory parallel environment. Hence, we chose
VTK-m as our development platform.

Particle Advection The computation of integral lines is a funda-
mental kernel of vector field visualization [MLP∗10]. Pugmire et al.
review the two fundamental approaches – parallelize-over-seeds
(POS) and parallelize-over-blocks POB – in a distributed memory
environment and introduce a hybrid master-slave scheme that ad-
dresses load-balancing issues [PCG∗09]. POS distributes the seeds
of a target particle population across processing elements (PEs) and
computes them independently of each other. In contrast, POB as-
signs the individual blocks of a domain decomposition to PEs; then,
each PE is responsible for generating the traces that enter one of
its assigned blocks. The newly introduced hybrid scheme, which
dynamically – and potentially redundantly – assigns blocks to PEs
addresses load-balancing problems that typically become a problem
for pure POB while also limiting redundant I/O operations which
oftentimes limit POS’ scaling. An overview of distributed memory
parallel particle advection methods is given in [PPG12].

Camp et al. propose a two-tier scheduling scheme: they use MPI
to parallelize computations across multiple nodes and then execute
local advection using OpenMP-parallel loop constructs [CGC∗11].
Subsequently, Camp et al. analyze the effects exchanging the
OpenMP-based advection for a CUDA-based solution [CKP∗13].
We use a refined version of Camp’s original CUDA advection
scheme for comparisons in Sec. 4.

Kendall et al. propose a method inspired by MapReduce to
parallize the domain travseral inherent to parallel particle trac-
ing [KWA∗11].

Yu et al. propose a data-dependent clustering of vector fields
which enables the development of a data-aware POB strat-
egy [YWM07]. Nouanesengsy et al. accumulate information about
the probable propagation of particles across blocks and subsequently
formulate the task of partitioning the set of blocks to PEs as an opti-
mization problem [NLS11]. Subsequently, Nouanesengsy et al. pro-
pose to extend the basic POB idea to the time dimensions, distribut-
ing time intervals to PEs in order to generate the pathlines needed
to compute the Finite Time Lyapunov Exponent (FTLE) [NLL∗12].

Guo et al. propose a method using K-D tree decompositions to

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

dynamically balance the workload for both steady and unsteady
state particle advection [ZGY∗17].

Mueller et al. investigate the use of an alternative, decentral-
ized scheduling scheme, work requesting: whenever a process runs
out of work – i.e. particles to integrate – it randomly picks a peer
and requests half its work in order to continue [MCHG13]. Hence
scheduling overhead only occurs when there is actual imbalance in
the system.

Being a key computational kernel for an array of vector field
visualization algorithms, the optimization of particle advection for
different architectures has garnered significant interest in the vi-
sualization research community. Initially, this was fueled by the
advent of modern, programmable graphics hardware (GPUs). Inter-
active particle integration has been targeted for steady-state uniform
grids [KKKW05], time-varying uniform grids [BSK∗07], and tetra-
hedral meshes [SBK06], respectively. Bussler et al. propose a CUDA
formulation for particle advection on unstructured meshes and ad-
ditionally investigate the use of 3D mesh decimation algorithms in
order to reduce the GPU memory requirements. Hentschel et al. pro-
pose the tracing of particle packets which facilitates the use of SIMD
extensions in modern CPU designs [HGK∗15]. They found that sig-
nificant gains can be achieved specifically due to the optimization
of memory accesses. Chen et al. follow a similar idea: they propose
to integrate spatially coherent bundles of particles through time-
varying, unstructured meshes in order increase memory locality on
the GPU [CSH16].

The studies presented in [CKP∗13, CBP∗14] compare CPU and
GPU-based hardware architectures w.r.t. their suitability for parallel
integral curve computations. Sisneros et al. performed a parameter
space study for a round-based POB advection algorithm [SP16].
Their findings suggest that naïvely chosen default settings – e.g.
advecting all particles in each round – often lead to significantly
degraded performance.

In summary, we find a great variety of optimization efforts target-
ing the important yet seemingly inconspicuous computational kernel
of particle integration. In light of studies like [CKP∗13, CBP∗14,
HGK∗15], we argue that making good use of any new hardware
architecture or even of new features on the one hand requires an
intimate knowledge of said features and on the other hand can be
very time consuming, particularly due to the required low-level pro-
gramming. This observation provides the major motivation for the
performance-portable approach proposed in the following section.

3. Parallel Particle Advection in VTK-m

As stated above, the VTK-m framework is a response to the grow-
ing on-node parallelism that is available on a wide variety of new
architectures. In order to be able to efficiently cater to a variety of
different hardware platforms, VTK-m relies on the concept of data
parallel primitives. VTK-m distinguishes two different realms: the
control environment and the execution environment. The control
environment is the application-facing side of VTK-m. It contains
the data model and allows application programmers to interface
with algorithms at large. In contrast, the execution environment
contains the computational portion of VTK-m. It is designed for
massive parallelism. Worklets (c.f. Sec. 2) are an essential part of

INPUTS :
Seed , V e c t o r F i e l d , NumberOfSteps , S t e p S i z e
OUTPUTS:
Advected

Advected = Advect (Seed , V e c t o r F i e l d ,
NumberOfSteps , S t e p S i z e)

F u n c t i o n :
Advect (pos , v e c t o r F i e l d , numberOfSteps , s t e p S i z e) :

S = 0
w h i l e S < numberOfSteps :
{

i f pos i n v e c t o r F i e l d :
newPos = RK4(pos , s t e p S i z e , v e c t o r F i e l d)
pos = newPos
S = S+1

e l s e :
b r e a k

}

r e t u r n pos

F u n c t i o n :
RK4(p , h , f)

k1 = f (p)

k2 = f (
h
2

k1)

k3 = f (p+
h
2

k2)

k4 = f (p+hk3)

r e t u r n
h
6
(k1 +2k2 +2k3 + k4)

Figure 1: Pseudo code for our implementation of Advect, our
particle advection for a routine parallelize-over-seed (POS) strategy.
This routine operates on a single particle and provides the definition
of our elementary unit of work.

the execution environment, and are the mechanism for performing
operations on elements of the data model in parallel. Finally, device
adapters provide platform-specific implementations of generic DPPs
and memory management. Specifically — where necessary — they
abstract the transfer of data between host and device memory.

Algorithms in VTK-m are created by specifying a sequence of
DPP operations on data representations. When compiled, the parallel
primitives are mapped to the particular device implementation for
each primitive. This indirection limits the amount of optimization
that can be done for a particular algorithm on a particular device,
which in turn raises the question of costs for performance portability.
In the following, we describe a DPP-based realization of parallel
particle advection which will eventually lead to a parallelize-over-
seeds scheme.

3.1. A Data-Parallel Formulation of Particle Advection

In formulating a design for particle tracing using the DPP in VTK-m,
our primary task was to determine the definition for the elementary
unit of work. This elementary work unit can then be mapped onto

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

INPUTS :
Seeds , v e c t o r F i e l d , numberOfSteps , s t e p S i z e
OUTPUTS:
Advected

Advected = map<Advect >(Seeds ,
v e c t o r F i e l d ,
numberOfSteps ,
s t e p S i z e)

Figure 2: Pseudo code for our implementation of particle advection
using DPP. The Advect function is defined in Figure 1. It serves as
the functor to the map DPP which calls it – in parallel – for all seeds.
The DPP is shown in the form of primitive<functor>(arguments).

the set of execution threads to perform the total amount of work
using massive parallelism. The most natural elemental unit of work
is the advection of a single particle. However there are subtleties in
providing a precise definition. The traditional option, and the one
we selected, is to define the unit of work as the entire advection of
an individual particle. Other options include those studied in [SP16]
where the unit of work is defined as a fixed number of advection
steps for an individual particle, or a group of particles. These other
options provide smaller granularity which provide opportunities for
better load balancing of total work. This, however, comes at the cost
of increased overhead for scheduling.

For our study, we decided to define the entire advection of a
single particle as the elementary unit of work for the following
reasons. First, this choice naturally encodes a map from an input
position — the seed location — to an output position — the advected
particle. Second, this map can directly be expressed by a data parallel
primitive. Finally, since this is the most widely used approach, we
felt it was imperative to thoroughly understand this method as it
would inform directions for future improvements.

The pseudo-code in Figure 1 shows the implementation of our
elementary unit of work, the Advect(. . .) function. The input to
this function consists of a seed location, a vector field, an integration
step size, and the maximum number of integration steps. The particle
trajectory is computed using a numerical integration scheme. For this
paper, we use the well-established 4th order Runge-Kutta method.
Advection terminates when a maximum number of steps is reached,
or when the particle leaves the spatial domain of the vector field.
To advect multiple seeds, the Advect kernel is applied to each
individual seed.

The advection of each seed position, i.e. each loop iteration, is
independent of all other seed locations. This leads to the following
two observations: First, the computation for each seed can be per-
formed in parallel without the need for any form of synchronization.
Second, as stated above, this forms a basic unit of work that is to
be executed per seed. Hence, we express the handling of a single
seed by means of a functor that operates on an elementary piece of
data — the seed location and wrap this functor as a VTK-m worklet.
In order to keep the worklet description hardware-independent, it is
important to note that all accesses to raw memory are encapsulated
by so called array handles. In this way, the exact location of a data

item in memory — specifically if it resides in host or device memory
— is hidden from the worklet. This enables the flexible, automatic
management of the actual memory by the underlying device adapter.

With the elementary operation of advection of an individual parti-
cle formulated in a generic fashion, the remaining task is to enable
a concurrent execution for multiple particles. This is realized by
means of a specific data parallel primitive: the map operation. In this
specific case, we aim to map an input seed position to its eventual
end position after advection. The map operation is one of the DPPs
which is implemented in a highly optimized form by the VTK-m
runtime. Hence its use — illustrated in Figure 2 — entails a platform-
specific, parallel execution of the Advect functor on each particle
on the underlying parallel hardware. In particular, if the runtime
environment is an accelerator device, all data that is consumed or
produced by the advection operation is automatically transferred
to/from device memory. In this way, the decision of where the advec-
tion operation is executed is completely hidden from the developer
of the worklet. This is the main reason why worklets can access data
only via so called array handles (see above). Using the map DPP, we
now have obtained a data parallel formulation of particle advection
that resembles the basic parallelize-over-seeds principle.

Finally, we note that for the purposes of this study we are focused
exclusively on the performance of particle advection techniques
where only the final location of the seeds is computed. This is
the exact formulation for analysis techniques such as FTLE, and a
fundamental building block for other techniques which use the saved
trajectories of seeds such as streamlines, pathlines, streamsurfaces,
and Poincaré methods.

4. Performance Evaluation

In this section we discuss the experimental setup, including data sets,
workloads, and hardware platforms, followed by the performance of
our approach on each experiment.

4.1. Experimental Setup

In order to evaluate our work, we have selected a number of different
experiments that cover a range of uses cases for particle advection.
We use three different parameters for our study, which we vary
independently. The first parameter is the vector field data. The types
of flow structures present in a data set has a tremendous impact on
the performance of an implementation, and so we capture various
types of flows by using multiple data sets. The second parameter
is the workload, which consists of the number of particles and
the number of integration steps. The various types of vector field
analysis techniques tend to use different classes of workloads, and
so we have selected a set of workloads that capture the common
use cases. The third and final parameter that we vary in our study
is the execution hardware in order to capture performance on both
CPU and GPU environments. We vary this third parameter at an
even finer level of granularity by performing each test on several
different types of CPUs and GPUs.

Data Figure 3 provides information on the three different data sets
used in our study. The Astro data set contains the magnetic field
surrounding a solar core collapse resulting from a supernova. This

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

Astro Fusion Thermal Hydraulics

Figure 3: Sample streamlines show typical vector field patterns in the three data sets used in this study.

data set was generated by the GenASiS [ECBM10] code which is
used to model the mechanisms operating during these solar core
collapse events. The Fusion data set contains the magnetic field
in a plasma within a fusion tokamak device. This data set was
generated by the NIMROD [SGG∗04] simulation code which is
used to model the behavior of burning plasma. The plasma is driven
in large measure by the magnetic field within the device. Finally,
the Thermal Hydraulics data set contains the fluid flow field inside a
chamber when water of different temperatures is injected through a
small inlet. This data set was generated by the NEK5000 [FLPS08]
code which is used for the simulation computational fluid dynamics.
The vector fields for all of our representative data sets are defined on
uniform grids. All three data sets feature a resolution of 512×512×
512 accounting for 1,536MB per vector field. We have specifically
chosen the simplest type of data representation to exclude additional
performance complexities that can manifest with more complex grid
types, e.g., point location in unstructured meshes.

Workloads As stated above, a workload consists of a set of particles
and the number integration steps to be taken. The particles are
randomly distributed throughout the spatial extents of the data set
grid. We chose a set of five workloads that we felt mimicked the
behavior of common uses cases, e.g., from streamlines to FTLE
computations. Further, we specifically choose this set based on work
by Camp et al. [CKP∗13], who studied the performance of both
CPU and GPU implementations, and identified workloads that were
well suited to each architecture.

These five workloads are defined as follows:

• W1: 100 seeds integrated for 10 steps.
• W2: 100 seeds integrated for 2000 steps.
• W3: 10M seeds integrated for 10 steps.
• W4: 10M seeds integrated for 100 steps.
• W5: 10M seeds integrated for 1000 steps.

Hardware The execution environment for our study consists of
the three systems deployed at the Oak Ridge Leadership Compute
Facility (OLCF) (c.f. Table 1).

Table 1: Hardware used in study.

Machine CPU GPU

Rhea
Partion 1

Dual Intel Xeon E5-2650
“Ivy Bridge”, 2.0 GHz

16 total cores
128 GB RAM

None

Rhea
Partition 2

Dual Intel Xeon E5-2695 v3
“Haswell”, 2.3 GHz

28 total cores
1 TB RAM

2x NVIDIA K80
12 GB Memory

Titan Not used
NVIDIA K20X
6 GB Memory

SummitDev

Dual IBM Power8
3.5 GHz

20 total cores
256 GB RAM

4x NVIDIA P100
16 GB Memory

• Titan is a Cray XK7, and is the current production supercomputer
in use at the OLCF. It contains 18,688 compute nodes and has a
peak performance of 27 petaflops.

• Rhea is a production cluster used for analysis and visualization
via pre- or post-processing. It is a 512 node commodity Linux
cluster that is configured in two partitions. The first partition is
targeted for processing tasks requiring larger amounts of memory
and/or GPUs. The nodes in its second partition do not have GPUs.

• SummitDev is an early access 54 node system that is one genera-
tion removed from Summit, the next supercomputer that will be
installed at the OLCF.

We note that both Rhea and SummitDev contain multiple GPUs on
each node, however in this study we are only studying our imple-
mentation on a single GPU.

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

Table 2: Timings (in seconds) for VTK-m implementations for each test in our experimental setup.

GPU
with data transfer

GPU
without data transfer

CPU

File K20X K80 P100 K20X K80 P100 Intel16 Intel28 IBM P820

W1

Astro 0.627s 0.521s 0.389s 0.000s 0.011s 0.014s 0.001s 0.001s 0.001s
Fusion 0.627s 0.521s 0.387s 0.001s 0.011s 0.015s 0.001s 0.001s 0.001s
Thermal 0.627s 0.521s 0.392s 0.001s 0.011s 0.024s 0.001s 0.001s 0.001s

W2

Astro 0.648s 0.543s 0.404s 0.021s 0.033s 0.029s 0.071s 0.046s 0.053s
Fusion 0.649s 0.543s 0.400s 0.023s 0.033s 0.028s 0.071s 0.051s 0.052s
Thermal 0.648s 0.541s 0.395s 0.021s 0.031s 0.027s 0.074s 0.048s 0.051s

W3

Astro 1.511s 0.946s 0.577s 0.884s 0.436s 0.202s 3.003s 1.257s 2.327s
Fusion 1.509s 0.961s 0.582s 0.883s 0.451s 0.210s 2.948s 1.208s 2.609s
Thermal 1.508s 0.945s 0.583s 0.881s 0.435s 0.215s 2.801s 1.179s 2.691s

W4

Astro 5.193s 2.851s 1.765s 4.566s 2.341s 1.390s 28.702s 10.688s 20.708s
Fusion 5.327s 2.795s 1.776s 4.701s 2.285s 1.404s 26.295s 10.785s 19.949s
Thermal 5.099s 2.785s 1.777s 4.472s 2.275s 1.409s 26.641s 11.266s 19.365s

W5

Astro 38.660s 23.322s 13.338s 38.033s 22.812s 12.963s 256.900s 107.806s 185.852s
Fusion 41.116s 24.450s 13.648s 40.490s 23.940s 13.276s 272.165s 107.113s 186.455s
Thermal 39.444s 24.153s 13.626s 38.817s 23.643s 13.258s 260.740s 106.881s 193.110s

Compilers Our VTK-m code was compiled on Rhea and Titan
using the 4.8.2 version of the GCC compiler, the most stable version
for Titan. For SummitDev we used the closest available version,
which was 4.8.5. On Rhea and Titan we used version 7.5.18 of
CUDA as it is the most stable version for Titan. On SummitDev
the only version of CUDA available was version 8.0.54. On all
platforms, our code was compiled using full optimization flags, -O3

4.2. Results

In this section we present the results from our experiments. In
Section 4.2.1 we present results for our VTK-m implementation
across the workloads described above and discuss the performance.
We also demonstrate the parallel efficiency of our implementation
for CPUs. Finally, in Section 4.2.2 we compare our implementation
with two hand-coded hardware specific implementations and discuss
the performances.

4.2.1. VTK-m Results

The data in Table 2 contains the runtimes for our VTK-m imple-
mentation for the cross-product of the five workloads, the three data
sets, and hardware types. We ran the GPU experiments under two
different scenarios, which are shown in the first two sets of three
columns each. For the first scenario, we assume that the vector field
data resides in host memory and has to be uploaded to the device
before tracing. The timings for this scenario are shown in the set of
three columns of the table labeled “GPUs with data transfer”.

The second scenario assumes an in situ setting: the vector field
resides on the device already, either because it has been generated
there or because it is uploaded once for subsequent interactive ex-
ploration. This second scenario is representative for, e.g., an in situ
change of the data’s representation [ACG∗14] or an exploratory
visualization where particles are seeded and displayed in a highly

interactive fashion [BSK∗07, SBK06]. The timings for this in situ
scenario are shown in the set of three columns of the table labeled
“GPUs without data transfer”.

For workloads with few particles (e.g., W1 and W2) the overhead
for data transfers to the GPU is clearly evident. As would be ex-
pected, as more work is available for the GPUs this data transfer
overhead can be better amortized over the particle advection work.

Analogous timings for various CPU settings are shown in the last
three columns of Table 2.

In comparing the GPU and CPU implementations, we offer the
following observations. CPUs tend to perform better than GPUs for
lower seed counts. We observe this behavior in workloads W1 and
W2 where a small number of seeds are advected very short and very
long distances respectively. In contrast, GPUs tend to perform better
with higher seed counts, and more advection steps. We observe this
behavior in workloads W3, W4, and W5. In workload W3, which
features a large number of particles advected for a medium number
of steps, we see only moderate wins for the GPU. These observations
are in line with earlier studies by Camp et al. [CGC∗11, CKP∗13].

We note that the particle advection source code was identical
for all tests; in particular, it was not hand-tuned to any hardware
platform. Hence, these results provide evidence of the portable
performance of a single implementation on a broad set of execution
environments.

In addition, we see the expected trends in performance across
hardware families. For example, the NVIDIA P100 is faster than
the K80, which in turn outperforms the K20X. We see a similar
trend when comparing the times for the two different generations of
Intel processors on each of the Rhea partitions. We also note that the
performance on the IBM Power8 CPUs that contain 20 cores each
falls between the performance of the 16 and 28 core Intel processors,
which aligns with expectations.

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

1 2 4 8 12 16 20 24 28
number of threads

0.2

0.4

0.6

0.8

1.0

pa
ra

lle
l e

ffi
ci

en
cy

TBB parallel efficiency (astro, short)
10k
100k
1M
10M

1 2 4 8 12 16 20 24 28
number of threads

0.2

0.4

0.6

0.8

1.0

pa
ra

lle
l e

ffi
ci

en
cy

TBB parallel efficiency (fusion, short)
10k
100k
1M
10M

1 2 4 8 12 16 20 24 28
number of threads

0.2

0.4

0.6

0.8

1.0

pa
ra

lle
l e

ffi
ci

en
cy

TBB parallel efficiency (thermal hydro, short)
10k
100k
1M
10M

1 2 4 8 12 16 20 24 28
number of threads

0.2

0.4

0.6

0.8

1.0

pa
ra

lle
l e

ffi
ci

en
cy

TBB parallel efficiency (astro, long)
10k
100k
1M
10M

1 2 4 8 12 16 20 24 28
number of threads

0.2

0.4

0.6

0.8

1.0

pa
ra

lle
l e

ffi
ci

en
cy

TBB parallel efficiency (fusion, long)
10k
100k
1M
10M

1 2 4 8 12 16 20 24 28
number of threads

0.2

0.4

0.6

0.8

1.0

pa
ra

lle
l e

ffi
ci

en
cy

TBB parallel efficiency (thermal hydro, long)
10k
100k
1M
10M

Figure 4: Parallel efficiency for the VTK-m implementation running on the CPU of the Rhea Partition 2. The workloads shown are for 10k,
100k, 1M, and 10M seeds on all three data sets. The top row shows advections for short durations, and the bottom row shows advections for
long durations. Note: Our allocation was exahusted before we could complete the data collection for the 10M seed case in the bottom, far
right, and so these numbers are not included. Overall, we feel the scaling behavior is good, as efficiency often drops as more and more cores
are used.

Finally, we are interested in understanding the scalability of the
VTK-m implementation on the CPU. Figure 4 shows the efficiency
with respect to number of cores used for several workloads run on
the Rhea Partition 2 CPU. For low seed counts, parallel efficiency is
lacking. Quite simply, there is not enough concurrently executable
work in the system to enable efficient scheduling and thus good
resource utilization. However, once enough parallelism becomes
available – afforded by increased number of particles – we see
excellent efficiency: for short duration workloads, and populations
of 1 million particles or more, parallel efficiency remains above
60%; for longer duration workloads, the efficiency is around 80%.

4.2.2. Comparisons to Other Implementations

Since our implementation is per definition agnostic of the even-
tual execution environment, we are particularly interested in any
performance penalties due to portability. To explore these impacts,
we compare our results to two different reference implementations.
These comparison codes were run on the same hardware, and com-
piled using the same compilers as our VTK-m implementation.

First, we compare our code to hand-coded implementations for
CPUs and GPUs using pthreads and CUDA, respectively. The refer-
ence code has been evaluated in [CGC∗11, CKP∗13].

The data in Table 3 lists the runtimes for each workload using
the CUDA specific implementation, and a performance factor for
the VTK-m runtimes. This factor gives the relative speed-up of
our implementation over the reference implementation, i.e. factors

larger than 1 indicate our implementation is faster. For many of
the tests run, we observe that the VTK-m version outperforms the
hand-coded implementation by factors up to 4X .

These performance improvements are largely a function of two
differences. The first difference is that VTK-m’s CUDA device
adapter performs all global device memory accesses through texture
cache lookups. Hence, it is able to perform random accesses at a
granularity of 32 bytes per load instead of 128 bytes. This gives the
VTK-m implementation a significant advantage for workloads that
heavily depend on highly random read operations, such as particle
advection. Second, we note that the reference implementation is a
more fully-featured system that can be run in a distributed memory
parallel setting using several parallelization strategies (e.g., POS
and POB). As such there are overheads associated with running this
code on a single node using a POS approach. A combination of
these factors explains the good performance of the VTK-m imple-
mentation.

We also note tests where the hand-coded implementation outper-
forms the VTK-m version.

First, for the Astro data set in W5, the hand-coded implementation
performs significantly better. In the particular vector field for this
data set, there are regions of the flow where particles quickly exit
the grid. Rapidly terminating particles, however, induce imbalanced
workloads which in turn is detrimental to overall performance. The
hand-coded implementation handles these situations better than our
implementation, and as a result achieves better performance for high

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

workloads. We see this same situation in W4 for the Astro data set,
but since this workload consists of less work than that of W5 the
impact of this imbalance is not nearly as dramatic.

Second, we note performance on the K80 GPU for workloads
W1 and W2. For these tests the performance of the VTK-m imple-
mentation is roughly half. We suspect that the hand-coded CUDA
implementation has better work management for the low seed counts
of W1 and W2 on the K80 architecture, but we are at a loss to pro-
vide a specific explanation. We note that for the performance for
workloads W1,W2 on the K80 GPU is better than the performance
on the newer P100 GPU. For workload W3, where there are more
particles, the difference in performance between the K80 and P100
is less dramatic. For workloads W4 and W5 where there is much
more work, the performance maps directly onto the generation of
the GPU, as expected. We note that the hand-coded GPU implemen-
tation we are using to compare was written, tuned and optimized in
the time frame of the Kepler generation of GPUs. It is possible that
such optimizations specific to a particular generation of hardware
might not perform well on later generation hardware and need to be
optimized differently.

The data in Table 4 lists the runtimes for each workload using
the pthreads specific code path of the reference implementation,
and a performance factor for the VTK-m runtimes. For workloads
where there is less work to be done (W1, W2), the hand-coded ph-
treads code performs much better than the VTK-m implementation.
However, it should be noted that when there are very few particles,
run times are very small, and the overheads associated with each
implementation tend to dominate the comparison.

In subsequent workloads, where is more work to be performed,
the performance of our VTK-m implementation is comparable in
many instances. We note that in general, the VTK-m implementation
performs better on the Intel CPUs. This fact is not too surprising
given that TBB, an Intel product, is likely optimized for Intel hard-
ware.

One outlier in the Table 4 that is worth exploring is W5 for the
Astro and Thermal data sets. As discussed above for the GPU imple-
mentations, the quickly exiting particles in the Astro data set leads
to imbalance. We are seeing this same effect in the CPU implementa-
tion. For the Thermal data set, there is a similar issue. In the Thermal
data set there are regions of the flow where particles stagnate due
to zero velocities. These stagnating particles can also lead to load
imbalance which in turn is detrimental to overall performance. The
GPUs have enough parallelization to better amortize these stagnant
particles, but in CPUs where there is less parallelization, these ef-
fects cannot be overcome. The hand-coded pthreads code handles
these situations better than our VTK-m implementation, and as a
result, achieves better load balancing in these situations. The issues
identified in both of these data sets are planned on being addressed
in the future for our VTK-m implementation.

Our final comparison is made with a fully featured production
visualization and analysis software tool. The data in Table 5 contains
a comparison of our VTK-m implementation to VisIt [CBB∗05].
These tests were run on a CPU on the Rhea Partition 1, and compiled
with the same compiler and options as our VTK-m implementation.

VisIt uses a serial execution model, and so we compare two dif-

ferent workloads on all three data sets using a single core execution
of the VTK-m implementation. We also provide timings made with
a 28 core execution for the VTK-m implementation for additional
comparisons.

On the single core example, we see a clear performance increase
of VTK-m that is 2−3X faster than the VisIt implementation across
both workloads. For the 28 core example, there is not enough work
in the small workload to see improvements in performance when
more cores are used.

However, for the larger workload we see increased performance
when using 28 cores, as is expected. We note, that VisIt is a fully
featured production tool, and so there are overheads associated
with the implementation in VisIt. Further, the tests run in VisIt
are computing streamlines, as opposed to simply advecting seed
locations. As such, there are overheads associated with the storing
and managing of the particle trajectories.

4.3. Discussion

Overall, we argue that our results support our aim of creating a
performance-portable formulation for particle tracing. Across all
workloads, our implementation usually outperforms the reference
codes. In rare cases it takes around twice the time to complete a given
benchmark, with the worst case scenario (W5, Astro on Power8)
taking approximately 3.5× as long as the reference implementation.
We note that for most of these cases we understand the reasons
for the performance, and are planning to address these cases in the
future.

Moreover, our implementation — by virtue of the underlying
VTK-m runtime — shows good scaling on multi-core, shared mem-
ory machines. However, during preliminary experiments we discov-
ered an aspect that affected both the TBB and the CUDA backends
of VTK-m. Specifically, we noticed that the performance behavior of
our test workloads was susceptible to changes in the underlying run-
time’s granularity settings: for TBB this would be the grainsize
whereas for CUDA it would be the blocksize parameter for 1D
scheduling. Changing both had a significant effect on performance.
For the TBB device adapter, our experiments helped inform the
decision in favor of a new, smaller default setting in VTK-m. In
contrast, the general performance impact of the CUDA blocksize
parameter on workloads outside particle advection is harder to assess
and may require solutions like autotuning.

Beyond such technical issues, we observe that the performance
of our implementation across the five chosen workloads matches the
findings in published results that studied performance of hand coded
CPU and GPU implementations. We therefore conclude that it is
mostly bounded by the same limitations as the reference code. This
gives us confidence that the portability of our VTK-m implementa-
tion is not introducing significant overhead issues. Further, we re-
state that our implementation does not contain the platform-specific
optimizations that are typically found in hand-coded, hardware-
specific implementations.

In summary, our findings suggest that our implementation shows
competitive performance across a variety of hardware architectures
and workloads. It therefore provides a solid, and efficient basis for
more sophisticated, advection-based visualization methods.

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

Table 3: Timings (in seconds) for the GPU comparison implementation along with a performance factor for the VTK-m timings (factors > 1X
indicate VTK-m is faster).

CUDA Code VTK-m Comparison
File K20X K80 P100 K20X K80 P100

W1

Astro 0.844s 0.285s 0.836s 1.35X 0.55X 2.15X
Fusion 0.845s 0.284s 0.838s 1.35X 0.55X 2.17X
Thermal 0.844s 0.284s 0.837s 1.35X 0.54X 2.14X

W2

Astro 0.869s 0.301s 0.842s 1.34X 0.55X 2.08X
Fusion 0.874s 0.304s 0.845s 1.35X 0.56X 2.11X
Thermal 0.871s 0.304s 0.844s 1.34X 0.56X 2.14X

W3

Astro 3.418s 1.959s 2.353s 2.26X 2.07X 4.08X
Fusion 3.367s 1.824s 2.219s 2.23X 1.90X 3.81X
Thermal 3.327s 1.856s 2.247s 2.21X 1.96X 3.85X

W4

Astro 6.682s 5.067s 3.564s 1.29X 1.78X 2.02X
Fusion 8.803s 6.763s 4.420s 1.65X 2.42X 2.49X
Thermal 8.793s 6.830s 4.500s 1.72X 2.45X 2.53X

W5

Astro 14.353s 12.963s 6.464s 0.37X 0.56X 0.48X
Fusion 63.993s 54.670s 25.694s 1.56X 2.24X 1.88X
Thermal 56.133s 49.172s 23.161s 1.42X 2.04X 1.70X

Table 4: Timings (in seconds) for the CPU comparison implementa-
tion along with a comparison factor to the VTK-m timings (factors
> 1X indicate VTK-m is faster).

pthreads Code VTK-m Comparison
File Intel28 IBM P820 Intel28 IBM P820

W1

Astro 0.0006s 0.0002s 0.59X 0.17X
Fusion 0.0004s 0.0001s 0.43X 0.09X
Thermal 0.0004s 0.0001s 0.43X 0.07X

W2

Astro 0.001s 0.003s 0.03X 0.05X
Fusion 0.003s 0.012s 0.05X 0.22X
Thermal 0.001s 0.006s 0.03X 0.12X

W3

Astro 2.001s 2.408s 1.59X 1.03X
Fusion 1.389s 2.137s 1.15X 0.82X
Thermal 1.048s 1.719s 0.89X 0.64X

W4

Astro 11.675s 14.227s 1.09X 0.69X
Fusion 11.247s 18.076s 1.04X 0.91X
Thermal 8.123s 14.633s 0.72X 0.76X

W5

Astro 38.693s 53.015s 0.36X 0.29X
Fusion 84.129s 156.735s 0.79X 0.84X
Thermal 54.591s 113.881s 0.51X 0.59X

5. Conclusion & Future Work

In this paper, we have introduced a performance-portable, general
purpose formulation for one of the fundamental techniques for the
analysis and visualization of vector fields: particle advection. Our
implementation is based on the VTK-m framework, which has been
developed to address the rapidly changing landscape of execution
environments in HPC systems. The issue of portable performance
across diverse architectures is of growing importance to simulation
and experimental scientists across a wide set of disciplines. The
growing compute and I/O imbalance in current and future HPC
systems is causing a keen interest in scenarios where compute is

Table 5: Timings (in seconds) for the VisIt implementations on two
different workloads along with a comparison factor to the VTK-m
timings (factors > 1X indicate VTK-m is faster).

VTK-m
File VisIt 1 core 28 core

100 Seeds
1000 Steps

Astro 0.0543s 2.36X 2.36X
Fusion 0.0855s 3.56X 3.56X
Thermal 0.0628s 2.61X 2.61X

10,000 Seeds
1000 Steps

Astro 5.5253s 2.46X 8.55X
Fusion 7.9353s 3.22X 12.53X
Thermal 5.9484s 2.45X 9.64X

moved to the data, as opposed to the traditional model where data
are moved to the computational resources. Portability is extremely
important in these use cases: a visualization code has to run with
reasonable efficiency close to the data, regardless of the specific
hardware that generated said data.

We have demonstrated the portable performance of our imple-
mentation on a set of typical workloads, across a representative set
of vector fields, and on a diverse set of CPU and GPU hardware.
We have shown that the behavior of our portable implementation
agrees with previously published results on hand-coded GPU and
CPU implementations. We have also compared the performance of
our portable implementation to several hand-coded implementations
on a variety of workloads and hardware configurations.

As stated previously, we have not performed any hand-tuning of
the VTK-m backend to achieve portable performance. However, we
believe that there are improvements that could be made to the VTK-
m backends that would yield increased performance for particle
tracing methods. We plan to explore and evaluate these aspects

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

and balance them against the general performance of the VTK-m
backend as a whole.

Finally, there are a large number of extensions to this work, in-
cluding support for streamlines where particle trajectories are stored.
Because of early termination of particles, it is unknown at runtime
what memory resources are required for the particle trajectories. In
the future, we plan to explore methods to efficiently support storing
particle trajectories for streamlines. We are also planning on support
for time-varying vector fields and the analysis techniques associated
with these types of vector fields. Eventually, we would like to re-
evaluate performance portability for both of these cases; due to the
dynamic memory allocations (streamlines) and the increased read-
bandwidth requirements (pathlines) we might find different effects.
In that regard, we plan to study the impact of unified memory avail-
able on new GPUs for particle tracing in general, but also to handle
the storing of particle trajectories for streamlines and pathlines.

In summary, we believe that the portable performance of our
implementation makes it a fruitful platform for work in particle-
advection based techniques.

6. Acknowedgements

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of En-
ergy under Contract No. DE-AC05-00OR22725. This research was
supported by the Exascale Computing Project (17-SC-20-SC), a col-
laborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. This material
is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Re-
search, Award Number 14-017566. Dr. Bernd Hentschel gratefully
acknowledges the support through RWTH Aachen’s Theodore von
Kármán Fellowship for Outgoing Scientists. The authors would like
to thank the reviewers for their careful reviews, and suggestions for
this paper.

References

[ABM∗01] AHRENS J., BRISLAWN K., MARTIN K., GEVECI B., LAW
C. C., PAPKA M.: Large-Scale Data Visualization using Parallel Data
Streaming. IEEE Computer Graphics and Applications 21, 4 (2001),
34–41. 2

[ACG∗14] AGRANOVSKY A., CAMP D., GARTH C., BETHEL E. W.,
JOY K. I., CHILDS H.: Improved post hoc flow analysis via lagrangian
representations. In Proceedings of the IEEE Symposium on Large Data
Analysis and Visualization (2014), pp. 67–75. 1, 6

[Aya15] AYACHIT U.: The ParaView Guide – ParaView 4.3. Kitware Inc.,
2015. 2

[BH11] BELL N., HOBEROCK J.: Thrust – a productivity-oriented library
for cuda. In GPU Computing Gems – Jade Edition. Morgan Kaufmann,
2011, pp. 359–371. 2

[Ble90] BLELLOCH G. E.: Vector Models for Data-Parallel Computing.
MIT Press, 1990. 2

[BSK∗07] BÜRGER K., SCHNEIDER J., KONDRATIEVA P., KRÜGER J.,
WESTERMANN R.: Interactive Visual Exploration of Unsteady 3D Flows.
In Proceedings of EG/IEEE VGTC Symposium on Visualization (2007),
pp. 251–258. 1, 3, 6

[CBB∗05] CHILDS H., BRUGGER E., BONNELL K., MEREDITH J.,
MILLER M., WHITLOCK B., MAX N. L.: A Contract Based System for
Large Data Visualizations. In Proceedings ofIEEE Visualization (2005),
IEEE, pp. 191–198. doi:10.1109/VISUAL.2005.1532795. 2, 8

[CBP∗14] CHILDS H., BIERSDORFF S., POLIAKOFF D., CAMP D., MAL-
ONY A. D.: Particle advection performance over varied architectures
and workloads. In Proceedings of the International Conference on High
Performance Computing (HiPC) (2014), pp. 1–10. 3

[CGC∗11] CAMP D., GARTH C., CHILDS H., PUGMIRE D., JOY K. I.:
Streamline Integration Using MPI-Hybrid Parallelism on a Large Mul-
ticore Architecture. IEEE Transactions on Visualization and Computer
Graphics 17, 11 (2011), 1702–1713. doi:10.1109/TVCG.2010.259. 1,
2, 6, 7

[CKP∗13] CAMP D., KRISHNAN H., PUGMIRE D., GARTH C., JOHN-
SON I., BETHEL E. W., JOY K. I., CHILDS H.: GPU Acceleration
of Particle Advection Workloads in a Parallel, Distributed Memory Set-
ting. In Proceedings of the EG Symposium on Parallel Graphics and
Visualization (2013), pp. 1–8. 1, 2, 3, 5, 6, 7

[CL93] CABRAL B., LEEDOM L.: Imaging Vector Fields Using Line In-
tegral Convolution. In Proceedings of the ACM Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH) (1993), pp. 263–270.
1

[CSH16] CHEN M., SHADDEN S. C., HART J. C.: Fast coherent par-
ticle advection through time-varying unstructured flow datasets. IEEE
Transactions on Visualization and Computer Graphics 22, 8 (Aug. 2016),
1960–1973. doi:10.1109/TVCG.2015.2476795. 1, 3

[EBRI09] EVERTS M. H., BEKKER H., ROERDINK J. B., ISENBERG
T.: Depth-dependent halos: Illustrative rendering of dense line data.
IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009),
1299–1306. doi:10.1109/TVCG.2009.138. 1

[ECBM10] ENDEVE E., CARDALL C. Y., BUDIARDJA R. D., MEZZA-
CAPPA A.: Generation of Magnetic Fields By the Stationary Accretion
Shock Instability. The Astrophysical Journal 713, 2 (2010), 1219–1243.
5

[FBTW10] FERSTL F., BURGER K., THEISEL H., WESTERMANN R.:
Interactive Separating Streak Surfaces. IEEE Transactions on Visu-
alization and Computer Graphics 16, 6 (2010), 1569–1577. doi:
10.1109/TVCG.2010.169. 1

[FLPS08] FISCHER P., LOTTES J., POINTER D., SIEGEL A.: Petascale
Algorithms for Reactor Hydrodynamics. Journal of Physics: Conference
Series 125 (2008), 1–5. 5

[GGTH07] GARTH C., GERHARDT F., TRICOCHE X., HAGEN H.: Ef-
ficient Computation and Visualization of Coherent Structures in Fluid
Flow Applications. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1464–1471. doi:10.1109/TVCG.2007.70551.
1

[GKT∗08] GARTH C., KRISHNAN H., TRICOCHE X., BOBACH T., JOY
K. I.: Generation of Accurate Integral Surfaces in Time-Dependent Vec-
tor Fields. IEEE Transactions on Visualization and Computer Graphics
14, 6 (2008), 1404–1411. doi:10.1109/TVCG.2008.133. 1

[Hal01] HALLER G.: Distinguished Material Surfaces and Coherent Struc-
tures in Three-Dimensional Fluid Flows. Physica D: Nonlinear Phenom-
ena 149, 4 (2001), 248–277. doi:10.1016/S0167-2789(00)00199-8.
1

[HGK∗15] HENTSCHEL B., GÖBBERT J. H., KLEMM M., SPRINGER P.,
SCHNORR A., KUHLEN T. W.: Packet-Oriented Streamline Tracing on
Modern SIMD Architectures. In Proceedings of the EG Symposium on
Parallel Graphics and Visualization (2015), pp. 43–52. 3

[Hul92] HULTQUIST J. P.: Constructing Stream Surfaces in Steady 3D
Vector Fields. In Proceedings ofIEEE Visualization (1992), pp. 171–178.
URL: http://dl.acm.org/citation.cfm?id=949685.949718. 1

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P., WESTERMANN
R.: A Particle System for Interactive Visualization of 3D Flows. IEEE
Transactions on Visualization and Computer Graphics 11, 6 (2005), 744–
756. doi:10.1109/TVCG.2005.87. 3

http://dx.doi.org/10.1109/VISUAL.2005.1532795
http://dx.doi.org/10.1109/TVCG.2010.259
http://dx.doi.org/10.1109/TVCG.2015.2476795
http://dx.doi.org/10.1109/TVCG.2009.138
http://dx.doi.org/10.1109/TVCG.2010.169
http://dx.doi.org/10.1109/TVCG.2010.169
http://dx.doi.org/10.1109/TVCG.2007.70551
http://dx.doi.org/10.1109/TVCG.2008.133
http://dx.doi.org/10.1016/S0167-2789(00)00199-8
http://dl.acm.org/citation.cfm?id=949685.949718
http://dx.doi.org/10.1109/TVCG.2005.87

David Pugmire & A. Yenpure / Performance-Portable Particle Advection with VTK-m

[KWA∗11] KENDALL W., WANG J., ALLEN M., PETERKA T., HUANG
J., ERICKSON D.: Simplified parallel domain traversal. In Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (New York, NY, USA, 2011), SC
’11, ACM, pp. 10:1–10:11. URL: http://doi.acm.org/10.1145/
2063384.2063397, doi:10.1145/2063384.2063397. 2

[LEG∗08] LARAMEE R. S., ERLEBACHER G., GARTH C.,
SCHAFHITZEL T., THEISEL H., TRICOCHE X., WEINKAUF T.,
WEISKOPF D.: Applications of texture-based flow visualization.
Engineering Applications of Computational Fluid Mechanics 2, 3 (2008),
264–274. 1

[LLN∗15] LARSEN M., LABASAN S., NAVRÁTIL P., MEREDITH J.,
CHILDS H.: Volume Rendering Via Data-Parallel Primitives. In Proceed-
ings of the EG Symposium on Parallel Graphics and Visualization (2015),
pp. 53–62. 1, 2

[LMNC15] LARSEN M., MEREDITH J., NAVRÁTIL P., CHILDS H.: Ray-
Tracing Within a Data Parallel Framework. In Proceedings of the IEEE
Pacific Visualization Symposium (Hangzhou, China, 2015), pp. 279–286.
1, 2

[LSA12] LO L., SEWELL C., AHRENS J.: PISTON: A Portable Cross-
Platform Framework for Data-Parallel Visualization Operators. In Pro-
ceedings of the EG Symposium on Parallel Graphics and Visualization
(2012). doi:10.2312/EGPGV/EGPGV12/011-020. 2

[MAGM11] MORELAND K., AYACHIT U., GEVECI B., MA K.-L.: Dax
Toolkit: A proposed framework for data analysis and visualization at
Extreme Scale. In Proceedings of the IEEE Symposium on Large Data
Analysis and Visualization (2011), pp. 97–104. doi:10.1109/LDAV.
2011.6092323. 2

[MAPS12] MEREDITH J. S., AHERN S., PUGMIRE D., SISNEROS R.:
EAVL: The Extreme-scale Analysis and Visualization Library. In Pro-
ceedings of the EG Symposium on Parallel Graphics and Visualization
(2012). doi:10.2312/EGPGV/EGPGV12/021-030. 2

[MCHG13] MÜLLER C., CAMP D., HENTSCHEL B., GARTH C.: Dis-
tributed Parallel Particle Advection using Work Requesting. In Proceed-
ings of the IEEE Symposium on Large Data Analysis and Visualization
(2013), pp. 1–6. 1, 3

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R., POST F. H.,
CHEN M.: Over Two Decades of Integration-Based, Geometric Flow
Visualization. Computer Graphics Forum 29, 6 (2010), 1807–1829. 2

[MSU∗16] MORELAND K., SEWELL C., USHER W., TA LO L., MERED-
ITH J., PUGMIRE D., KRESS J., SCHROOTS H., MA K.-L., CHILDS H.,
LARSEN M., CHEN C.-M., MAYNARD R., GEVECI B.: VTK-m: Accel-
erating the Visualization Toolkit for Massively Threaded Architectures.
IEEE Computer Graphics and Applications 36 (2016), 48–58. 1, 2

[NLL∗12] NOUANESENGSY B., LEE T.-Y., LU K., SHEN H.-W., PE-
TERKA T.: Parallel Particle Advection and FTLE Computation for Time-
Varying Flow Fields. In Proceedings of the IEEE/ACM International
Conference on High Performance Computing, Networking, Storage and
Analysis (2012), pp. 1–11. doi:10.1109/SC.2012.93. 1, 2

[NLS11] NOUANESENGSY B., LEE T.-Y., SHEN H.-W.: Load-Balanced
Parallel Streamline Generation on Large Scale Vector Fields. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (2011),
1785–1794. doi:10.1109/TVCG.2011.219. 1, 2

[PCG∗09] PUGMIRE D., CHILDS H., GARTH C., AHERN S., WEBER G.:
Scalable Computation of Streamlines on Very Large Datasets. In Proceed-
ings of the IEEE/ACM International Conference on High Performance
Computing, Networking, Storage and Analysis (2009). 1, 2

[PPG12] PUGMIRE D., PETERKA T., GARTH C.: Parallel integral curves.
In High Performance Visualization: Enabling Extreme-Scale Scientific
Insight, Bethel E. W., Childs H., Hansen C. D., (Eds.). Chapman & Hall,
2012, ch. 6, pp. 91–114. 2

[SBK06] SCHIRSKI M., BISCHOF C., KUHLEN T.: Interactive Particle
Tracing on Tetrahedral Grids Using the GPU. In Proceedings of Vision,
Modeling, and Visualization (VMV) 2006 (2006), pp. 153–160. 3, 6

[SGG∗04] SOVINEC C., GLASSER A., GIANAKON T., BARNES D.,
NEBEL R., KRUGER S., PLIMPTON S., TARDITI A., CHU M., THE
NIMROD TEAM: Nonlinear Magnetohydrodynamics with High-order
Finite Elements. J. Comp. Phys. 195 (2004), 355. 5

[SKH∗05] SCHIRSKI M., KUHLEN T., HOPP M., ADOMEIT P.,
PISCHINGER S., BISCHOF C.: Virtual Tubelets - Efficiently Visual-
izing Large Amounts of Particle Trajectories. Computers & Graphics 29,
1 (2005), 17–27. 1

[SP07] SADLO F., PEIKERT R.: Efficient Visualization of Lagrangian
Coherent Structures by Filtered AMR Ridge Extraction. IEEE Transac-
tions on Visualization and Computer Graphics 13, 6 (2007), 1456–1463.
doi:10.1109/TVCG.2007.70554. 1

[SP16] SISNEROS R., PUGMIRE D.: Tuned to Terrible: A Study of
Parallel Particle Advection State of the Practice. In Proceedings of
the Parallel and Distributed Processing Symposium (IPDPS) (2016).
doi:10.1109/IPDPSW.2016.173. 3, 4

[vW02] VAN WIJK J. J.: Image based flow visualization. ACM Transac-
tions on Graphics 21, 3 (2002), 745–754. URL: http://doi.acm.org/
10.1145/566654.566646, doi:10.1145/566654.566646. 1

[Wan10] WANG L.: On Properties of Fluid Turbulence along
Streamlines. Journal of Fluid Mechanics 648 (2010), 183–
203. URL: http://journals.cambridge.org/action/
displayAbstract?fromPage=online&aid=7464412, doi:doi:
10.1017/S0022112009993041. 1

[WP06] WANG L., PETERS N.: The Length-Scale Distribution Func-
tion of the Distance between Extremal Points in Passive Scalar Tur-
bulence. Journal of Fluid Mechanics 554 (2006), 457–475. doi:
10.1017/S0022112006009128. 1

[YWM07] YU H., WANG C., MA K.-L.: Parallel hierarchical visual-
ization of large time-varying 3d vector fields. In Proceedings of the
IEEE/ACM International Conference on High Performance Comput-
ing, Networking, Storage and Analysis (2007). doi:10.1145/1362622.
1362655. 2

[ZGY∗17] ZHANG J., GUO H., YUAN X., HONG F., PETERKA T.: Dy-
namic load balancing based on constrained k-d tree decomposition for
parallel particle tracing. IEEE Transactions on Visualization and Com-
puter Graphics (108/2017 2017). URL: http://ieeexplore.ieee.
org/document/8017633/, doi:10.1109/TVCG.2017.2744059. 3

http://doi.acm.org/10.1145/2063384.2063397
http://doi.acm.org/10.1145/2063384.2063397
http://dx.doi.org/10.1145/2063384.2063397
http://dx.doi.org/10.2312/EGPGV/EGPGV12/011-020
http://dx.doi.org/10.1109/LDAV.2011.6092323
http://dx.doi.org/10.1109/LDAV.2011.6092323
http://dx.doi.org/10.2312/EGPGV/EGPGV12/021-030
http://dx.doi.org/10.1109/SC.2012.93
http://dx.doi.org/10.1109/TVCG.2011.219
http://dx.doi.org/10.1109/TVCG.2007.70554
http://dx.doi.org/10.1109/IPDPSW.2016.173
http://doi.acm.org/10.1145/566654.566646
http://doi.acm.org/10.1145/566654.566646
http://dx.doi.org/10.1145/566654.566646
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7464412
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7464412
http://dx.doi.org/doi:10.1017/S0022112009993041
http://dx.doi.org/doi:10.1017/S0022112009993041
http://dx.doi.org/10.1017/S0022112006009128
http://dx.doi.org/10.1017/S0022112006009128
http://dx.doi.org/10.1145/1362622.1362655
http://dx.doi.org/10.1145/1362622.1362655
http://ieeexplore.ieee.org/document/8017633/
http://ieeexplore.ieee.org/document/8017633/
http://dx.doi.org/10.1109/TVCG.2017.2744059

