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Abstract—Data driven science is becoming increasingly more
common, complex, and is placing tremendous stresses on visual-
ization and analysis frameworks. Data sources producing 10GB
per second (and more) are becoming increasingly commonplace
in both simulation, sensor and experimental sciences. These data
sources, which are often distributed around the world, must be
analyzed by teams of scientists that are also distributed. Enabling
scientists to view, query and interact with such large volumes
of data in near-real-time requires a rich fusion of visualization
and analysis techniques, middleware and workflow systems. This
paper discusses initial research into visualization and analysis of
distributed data workflows that enables scientists to make near-
real-time decisions of large volumes of time varying data.

I. INTRODUCTION

Data driven sciences are placing enormous stresses on
existing visualization and analysis frameworks. These stresses
are occurring across several different axes.

First, increasingly larger volumes of data are being gen-
erated, and at increasing frequency as well. For example,
in the test case that we are exploring, large scale parallel
plasma fusion simulation codes, 10+ GB of data are being
generated each second. Similar amounts and frequency of
data are generated from sensors inside fusion experiments that
are in operation already, and will only increase when large
experiments, such as ITER [1], become fully operational.

Second, scientists and data are often distributed in multiple
geographic locations. This requires that either the scientists be
moved closer to the data, which is fraught with logistical and
convenience difficulties, or move data (either all, or selected
portions) to where the scientists are located.

The movement of data leads to additional stresses. It is
often not possible to move the large volumes of data to remote
locations such that scientists can interact, analyze and visualize
it in a timely manner that will allow them to make critical
decisions. Scientists need to be able to interact with their data
in near-real-time in order to monitor and assess the evolution of
the science, to determine when problems are arising, or when
important phenomena are occurring. Only then can scientists

make timely and informed decisions on what actions to take.
Finally, the workflows (both simple and complex) required by
scientists can require computational resources that may not be
available at the remote sites where the scientists are located.

In this paper, we describe initial work from an active
research effort to explore data coupling and near-real-time
analysis and visualization between two geographically sepa-
rated sites. In this instance, Singapore and Atlanta, Georgia,
USA. Specifically, a plasma fusion simulation running at the
A*STAR Computational Resource Centre in Singapore, and
the visualization and analysis running at Georgia Tech in
Atlanta. We demonstrated this working system at the Su-
perComputing 2015 Conference in Austin, Texas. At each
timestep of the simulation running in Singapore, summary data
are being generated and transferred to Georgia Tech where it
would be displayed by visualization tools. The scientist is then
able to select regions of interest and extract features from the
summary data. Once the features are identified, a query is sent
for particle data contained within the feature. These queried
particles are extracted and transferred to to Georgia Tech for
visualization.

In this work we are exploring fusion of a variety of different
technologies. We are using a high-level API to provide location
independent data access and remote reading and writing. The
middleware components implement RDMA over wide-area
networks and support data indexing for optimized filtering
operations. The data analysis and visualization components
use this middleware to facilitate rich interactions with the
data. These components use the data subsetting and filtering
operations of the middleware to achieve near-real-time inter-
action with the running simulation. These results show that
near-real-time interaction can be achieved, even with the sites
are separated by tens of thousands of miles. Further, we are
able to show end-to-end data selection and visualization within
the tight 10 second time constraint window imposed by the
running simulation.

In the remainder of this paper we discuss related work,
discuss some of the broader motivations for this work, provide
a detailed discussion of the system and the results obtained



to date. Finally we discuss areas of continuing and future
research.

II. RELATED WORK

The work that we present in this paper is a fusion of
technologies and ideas that builds upon work in several key
areas including simulation monitoring and steering, in situ
visualization techniques, and past XGC1 visualizations.

Past work in the area of simulation monitoring and steering
has focused a lot of effort into designing methods for quickly
and efficiently visualizing data across a network. Some notable
examples include Visapult [2], Visualization Dot Com [3],
VisPortal [4], and a Real-Time Monitoring framework for
large scientific simulations [5]. VisPortal and Visualization
Dot Com build on the foundations of Visapult, and provide
a remote distributed visualization framework for efficient vi-
sualization of remote simulation data. This framework uses
both the local visualization client and the remote data client
to perform parallel renderings, decreasing the time to produce
the final visualizations. By leveraging Visapult, VisPortal and
Visualization Dot Com are able to provide convenient access to
simulation data to scientists through an easy to use and access
online interface.

One notable example of work in simulation steering is
SCIRun [6]. SCIRun presents a programming environment
to simulation scientists and easily allows them to modify
their simulations interactively as well as create automatically
changing parameters based on boundary conditions.

Our work also builds on in situ processing paradigms. In
this paradigm, data are processed while they are being pro-
duced. This is contrasted with a post hoc paradigm where data
that was previously written to disk are read back into memory
and processed. A wide range of research for in situ methods
has occurred, as surveyed in [7]. Our particular focus is on in
transit methods where data are transferred asynchronously over
the network to the memory space of a set of data staging nodes.
The ADIOS [8] middleware system, which uses an abstraction
of I/O, has the ability to use a variety of transport methods
for the movement of data, including in transit techniques.
These transport methods include DataSpaces [9], which allows
memory coupling between processes running on different sets
of nodes, FlexPath [10], which supports a publish/subscribe
interface for direct memory access, and ICEE [11] which
supports RDMA transfers over wide area networks.

Past work on XGC1 visualization has looked at addressing
the data needs of scientists during the course of a simulation
run. One successful tool that was developed for XGC1 simula-
tion monitoring was an online dashboard called eSimon [12].
This dashboard was launched with each simulation run, and
was responsible for several different common visualization and
analysis tasks in XGC1. First, the dashboard was responsible
for creating and updating plots of approximately 150 different
variables every 30 seconds and plotting 65 different planes for
the live simulation. At the conclusion of a run the dashboard
would automatically output movies of each of these plots of
interest for quick review. In addition this dashboard catalogued
simulation output allowing users to search for and retrieve
data of interest, without having to locate and search through
simulation output files. Finally, this dashboard was available

to scientists anywhere in the world through their internet
browsers, making the data quickly and readily available.

Following this effort, work shifted towards researching
in transit visualization opportunities within XGC1, to take
advantage of their use of the ADIOS middleware system. This
research focused on the development of scalable visualization
plugins that operate within data staging [13]. This work
demonstrated the use of the EAVL [14] visualization library
used in conjunction with ADIOS and DataSpaces to perform
more intensive visualization operations than were possible in
the dashboard environmentt.

Our work leverages the ideas from these past projects, and
has allowed us to create a visualization and analysis pipeline
that is extensible and operates on user driven subselections of
live simulation data.

III. OBJECTIVES

Our objectives in this research are to explore data cou-
pling and near-real-time analysis and visualization between
timevarying producers of large data, and distributed data
consumers. This capability for near-real-time access to data
will help scientists observe, monitor, analyze the science as it
happens, and enable them to make time-critical decisions.

We are working with the XGC1 [15] simulation code, a
highly scalable physics code used to study plasmas in fusion
tokamak devices. XGC1 is a multiphysics code, including
many of the physics effects important for simulating a whole-
device, including turbulence, strong-gradient regions, neutral
particle effects, full magnetic geometry, and more. This gives
the XGC1 simulations the advantage of accurately approx-
imating real-life fusion devices, with the cost being added
complexity in identifying and isolating salient features of the
simulation.

XGC1 is a particle-in-cell (PIC) code, a common and
important method for solving physics problems. As such,
XGC1 represents a large class of many different simulation
codes. XGC1, like other particle-in-cell codes uses a grid, or
mesh, to represent a set of cells, and a large number (billions)
of charged particles. At each timestep, each particle’s state is
updated according to the underlying physics equations, and
then the particles are statistically deposited onto the cells
within the grid in order to solve a field equation for the
electrostatic potential, and also to calculate reduced moments
of the particle distribution function (e.g. density, velocity,
temperature, etc.). Scientists are interested in both the mesh
quantities (potential and moments) and the particles.

In particular, the scientists working with XGC1 are in-
terested in understanding the effects from and drivers of
turbulence within the plasma, which substantially degrade
plasma performance. A key to this understanding is the anal-
ysis and visualization of nonlinear, turbulent eddies in XGC1
simulations, including their 3D structure and the perturbation
they cause to particle orbits.

Because of the large volumes of data generated by XGC1,
it serves as an excellent test-case for our research. XGC1
simulations routinely generate several TBs of data, and larger
runs, such as recent runs for ITER have produced 20 TB of
data. Similarly, sensor networks and diagnostics attached to an
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Fig. 1: The data flow pipeline for our workflow showing the distribution of the simulation and data querying in relation to the
interactive visualization system.

experimental device like ITER are also expected to generate
TBs of data. Simulations and experiments in other domains
produce similar amounts of data. Data volume estimates for
the Square Kilometer Array Radio Telescope are even larger:
around a TB of data every second.

Simulation centers and experimental facilities are scarce,
and very expensive resources, and scientists have only fixed
windows of time to do their science. Simulations that go
awry, or encounter run-time problems translate into real loss
of time to do science and the costs associated with running the
facility. Experimental facilities face an even bigger problem.
For instance, in the case of the ITER reactor, the buildup of
instabilities within the plasma could cause physical damage
to the reactor vessel. This results in significant costs for
repairs, and downtime where other experiments are not able
to run. Additionally, all of the data generated by current
simulations is difficult to save without incurring significant I/O
overhead, reducing the compute cycles available for science
computations.

Allowing the scientists to remotely monitor and track their
simulations and experiments in near-real-time will allow them
to make important decisions. These include:

• Aborting when the simulation or experiment appear to
be in an error state, not converging, or not answering
the anticipated questions being posed.

• Continue the simulation or experiment as it is pro-
gressing as expected.

• Identification of the most important datasets to save
or analyze from a simulation before data are lost.

• Steering the simulation or experiment as the results
for each timestep are observed and analyzed.

IV. SYSTEM IMPLEMENTATION

The system we deployed was designed to provide a
production-level environment to study near-real-time visualiza-
tion and analysis for workflows distributed across very large
distances. This system allowed us to integrate and study a
variety of core components, including interactive visualization,
feature detection, interactive querying of very large data, and
the management of data movement over a wide area network
connection.

The system, shown in Fig. 1, is spread across two different
geographic locations, The A*STAR Computational Resource
Centre in Singapore and Georgia Tech in Atlanta, Georgia.
Two major components were running in Singapore on the
A*STAR Ulam supercomputer; the XGC1 simulation code,
and a data staging service. At each timestep of the simulation,
output data from the simulation nodes are transferred over
the interconnect to the data staging nodes where in-memory
data processing operations are performed. Summary data for
each timestep are transferred over the WAN to a data staging
node at Georgia Tech. These summary data are displayed
using interactive analysis and visualization tools. The scientist
can then specify regions of interest in the visualization tools.
Features in the region of interest from the summary data are



Fig. 2: An example of a mesh in XGC1. A number of planes
are equally spaced around the central axis of the tokamak.

extracted and displayed. Additionally, the region of interest
is communicated back to Singapore over the WAN where
additional data contained in the region of interest are extracted
and then transferred for visualization.

Our system consists of a synthesis of a number of differ-
ent tools and frameworks. The visualization tools located at
Georgia Tech include the large-scale parallel production tool
VisIt [16], and a simple selection tool we developed. A de-
tailed description of the visualization components are given in
Section IV-B. The output from the XGC1 simulation, and data
movement between Singapore and Georgia Tech is handled
by the ADIOS [8] middleware with WAN support provided
by several different transport methods. A brief description of
the simulation running in Singapore is given in Section IV-A.
Details about the data management and WAN transfer are given
in Section IV-C.

A. XGC1 Simulation

XGC1 is a particle in cell (PIC) code. The simulation
proceeds by computing the interactions of a very large number
of particles, and then depositing the particles onto a finite
element mesh. XGC1 uses a mesh illustrated in Fig. 2. A
number of 2D planes are positioned uniformly around the
torroidal shape of the tokamak. The particles interact within the
torrodial space defined by this mesh. The particle deposition
step provides important statisical information to the scientists,
as well as helps increase the speed and efficiency of the
simulation. The number of planes chosen for a simulation run
is specified by the scientist in such a way to capture all of the
waveform distributions that are expected for the particular run.
The number of planes used is typically in the range of 32 and
64.

Because we were interested in the fine scale tracking of 3D
turbulent eddies, it was determined that we needed many more
planes than typically used. Reconstruction of 3D turbulent
eddies from too few planes would lead a high degree of error,
as eddies could split or die off in between planes that were too
far apart. Because of this, we configured XGC1 to run with
a total 512 planes. The variable of interest for computing the
eddies is the derivative of the potential, called “dpot”. XGC1
already uses the ADIOS API for data output. In this particular
configuration, we configure the ADIOS output to be directed
to the data staging nodes, which is described in Section IV-C.

B. Interactive Visualization and Analysis

On the visualization and analysis side located at Geor-
gia Tech, our system consists of three major components:
VisIt [16] to allow for interactive visualization (though our
pipeline is agnostic to the interactive visualization tool and
others such as ParaView [17], EnSight [18], or FieldView [19]
could have been employed), an eddy picker to allow the
scientist to specify areas of interest, and an ADIOS staging
service to manage the movement of data. A small python
process is used to coordinate between the ADIOS staging
service and the visualization tools, and perform some basic
data processing. Python is used to coordinate communication
between VisIt and eddy picking tool, and perform some basic
data analysis. The eddy picking tool, shown in Fig. 3, was
written from scratch using PyQt. The eddy picking tools
displays a summary slice from the simulation, and is updated
at each timestep from the simulation. It also allows the scientist
to interactively select regions of interest that control the feature
extraction, and the querying of particle data from XGC1.

Eddies in turbulent fusion plasmas are typically elliptical
in shape, so the picking tool supports selecting an ellipse
with 3 points: the center point, and two points that lie on
the ellipse. From these three points the major and minor
radii are computed, as well as the direction of the major
axis. Additionally, a dial is provided to control how many
revolutions around the torus are used for construction of the
3D eddies.

Selecting a region of interest triggers three things: (1)

Fig. 3: The eddy selection interface demonstrating the selection
of an eddy on a plane of the simulation data.



The magnetic field line at the center point of the ellipse is
calculated and displayed. The magnetic field line can be seen in
yellow in Fig. 4. (2) The 3D eddy is computed and displayed.
Computing the 3D eddy is done by sequentially identifying 2D
eddies at each plane in the simulation. A 3D representation
of the eddy is obtained from the set of 2D eddies using a
ruled surface. Determination of the 2D eddy in each plane is
done by computing isocontours within the elliptical area of
interest. The value used to construct the isocontours is the
value at the pick point in the region of interest. In the case of
multiple isocontours within the elliptical region, the isocontour
closest to the magnetic field line is chosen, as eddies tend
to follow magnetic field lines. The 3D eddy can be seen in
orange in Fig. 4. (3) A bounding volume around the eddy in
3D space is calculated. This 3D bounding volume is created
by placing a 2D bounding box around each of the isocountour
features identified in the previous step, and then connecting the
bounding box points in sequence between the planes. Once this
3D bounding volume is calculated, it is sent to Singapore using
ADIOS. Once the Singapore side receives the 3D bounding
volume information, it extracts the particles that lie within
the bounding volume. The extracted particles are sent using
ADIOS to Georgia Tech and visualized. The particles, along
with the magnetic field line and 3D eddy are shown visualized
together in Fig. 5.

The scientists expressed the need to track particles con-
tained in an eddy at a particular time and observe their
evolution over time. This capability is activated with a toggle
on the picker tool. If “ID Tracking” is turned on, then the
IDs of the particles contained in the 3D eddy are cached, and
at every timestep these particles are sent from Singapore to
Georgia Tech for visualization. With this option, the scientists
can follow the evolution of the particle orbits over time, and
study their relationship to the field line and the 3D eddy
feature. Fig. 6 shows an example of tracking particles by ID.

C. Simulation and Data Processing

The simulation and data processing side, located in Singa-
pore, consists of two primary components: XGC1 running on a
set of simulation nodes, and a data staging service running on
a separate set of nodes. The ADIOS middleware is integrated
in both components and used to glue them together to provide
in-situ data management and handle data transfers over the
WAN.

Fig. 4: The VisIt interface window demonstrating the tracking
of the magnetic field line and eddy corresponding to the eddy
selection in in the picker shown in Fig. 3.

Fig. 5: The VisIt interface window demonstrating particle
tracking and disbursement in a turbulent eddy over multiple
simulation timesteps.

Fig. 6: The VisIt interface window demonstrating particle
tracking by ID of particles that were inside a 3D eddy at a
particular timestep in the past.

The XGC1 simulation code, which uses ADIOS APIs to
handle I/O operations, produces new timesteps once every
10 seconds. The data produced each timestep includes field
variables associated with the mesh, and particle data. Com-
pared with the particle data, the field variables are smaller
in size and used to monitor simulation progress and analyze
the development of turbulent eddies. On the other hand, the
particle data is significantly larger (around 62 GB per timestep
in our configuration of the simulation). Because of the size, and
the small time window available between simulation timesteps,
the particle data must be indexed in order for queries from the
visualization tool to be retrived in the allowable time frame.
As the XGC1 simulation progresses both the field variables
and particle data are transferred from the simulation nodes to
the staging nodes via the ADIOS middleware APIs.

The data staging service plays four main roles: 1) managing
the in-memory data objects (fields and particles) generated
from XGC1, 2) indexing particle data for fast retrieval, 3)
transferring the field data through the WAN to the visualization
side at Georgia Tech, and 4) responding to queries for particle
data retrieval from the visualization tools at Georgia Tech.
These functions are all integrated within ADIOS, and are
executed transparently through calling the ADIOS APIs.

In order to maintain responsiveness to remote users across
the world, our system employs two indexing strategies: Fast-
Bit [20] indexing and bloom-filter [21] based chunk indexing.
FastBit provides a storage efficient way to index data for range
queries, while bloom-filter indexing works with chunk-based



data. FastBit operates on particle properties, such as spatial
coordinates, weights, velocities, etc, and provides results with
no false positive, while bloom-filter applies to index particle
IDs per chunk but query results can contain false positive
answers. In the bloom-filter indexing, the level of false positive
rate can be controllable at the expense of index size and
performance.

When new simulation data are available, or a query arrives
from the visualization tool at Georgia Tech, the data staging
service transmits the data through the WAN using transport
methods available in ADIOS. We used several different trans-
port methods: ICEE [11], FlexPath [10], and DataSpaces [9].
ICEE and FlexPath were used for long-range RDMA and
TCP/IP and DataSpaces was used to synchronize two remote
locations over RDMA. These data movement technologies
allowed us to perform memory to memory data delivery from
one side of the pipeline to the other. The ADIOS middleware
makes this delivery transparent to the simulation and visual-
ization at either ends of the pipeline.

V. SYSTEM RESULTS AND PERFORMANCE

The performance and viability of our system was demon-
strated at The A*STAR booth on the SC15 Demo floor. We
demonstrated that our system enabled near-real-time interac-
tion with large data sets located around the world. Tests of
our system were conducted between Singapore and Georgia
Tech with Xwindow forwarding to the showroom floor. We
gave our visualization and analysis routines a maximum of
10 seconds to perform an update. This time budget included
the time to send 512 planes from Singapore to Georgia Tech,
calculate the bounding boxes for the feature of interest on each,
send that data back to Singapore, perform the data and particle
sub-selection, send that data to Georgia Tech, and perform the
visualization update. This maximum time limit kept us below
the average time for a new timestep to be produced by the
XGC simulation, allowing us to visualize each one as it was
produced. Table I presents the size of the data being produced
by the simulation, as well as the average data being sent to
Georgia Tech after the user made a selection.

TABLE I: Breakdown of the data produced by XGC and
processed by our pipeline during the course of the simulation.

Number of Planes Number of Particles Number of Time Steps

512 819,200,00 500

Particle Data Size 3D dpot Data Size Average Data per Selection

62 GB per step 162 MB per step 0.1% subselection: 62 MB

The amount of data that we ended up having to send
from Singapore back to Georgia Tech and process in our
visualization routines is one of the main strengths of our
system. By identifying the critical subsets of data, as defined
by the scientist, we are able provide a near-real-time interac-
tive experience with the running simulation. On average, the
amount of particle data moved on each time step was around
62 MB, a mere 0.1% of the total data size.

Additionally, this selection could be done very quickly
though our use of FastBit and bloom-filter indexing to per-
form queries on the simulation side. By having these indices

precomputed, subselecting the data in Singapore was reduced
to only a few seconds. This allowed our system to remain
responsive to user update requests, and enabled new timesteps
to be displayed as they were produced. This serves as a demon-
stration of a significant step forward in accomplishing our goal
of a data driven, near-real-time, distributed visualization for a
running simulation.

VI. CONCLUSIONS AND FUTURE WORK

Our current work has demonstrated and evaluated several
key building blocks (APIs, data representations and indexing,
wide area data transfer methods, and efficient visualization
engines) to support near real-time analysis and visualization
of data across distant sites. This work was motivated by an
important category of analysis cases: a hypothesis-driven data
analysis case. That is, the analysis workflow, data interactions,
and visualization were designed based on the scientists under-
standing of the formations and paths of turbulent eddies and
the orbits of particles within said eddies. This is an important
use case as it allows scientists to inspect the behavior of their
simulations or experiments and prove/refute hypotheses. In
future work, we plan to extend our implementation to support
(a) validation analyses and (b) exploratory and discovery anal-
ysis use cases. Analysis workflows in such cases may involve
a variety of data processing steps for detecting, extracting,
and quantifying objects and object features. For example,
a validation scenario may access experimental data, extract
objects of interest and compare them to objects extracted from
running simulations. An exploratory scenario may analyze the
data to see if multiple eddies are forming, what the properties
of these eddies are, and how they evolve over time. The
analysis process can be a pipeline of an object (eddie) detection
step, an object segmentation step, a step for computing shape
and signal features, and a machine learning step to classify
eddies. The validation and exploratory analysis scenarios may
involve multiple workflows that are composed and executed
by different teams (based on their scientific interests or the
level of validation). These scenarios will introduce additional
challenges in data management, scheduling of analysis and
visualization processes, and efficient wide area data transfers.
Nevertheless, we expect the building blocks that we have
developed and evaluated in our current work will form a
solid foundation on which to build additional functionality to
support these future use cases.

As this is an area of active research, we are planning
on extending this work in a variety of different directions.
First, we plan on using more complex workflows that utilize
data from more sources. The work with fusion simulations
can be extended to include experimental data, or previously
run simulations for comparison. We will rely heavily on the
ADIOS middleware to manage the complex, and time critical
coordination and movement of data. Additionally, we will
continue to work with the various transport methods in ADIOS
to optimize performance. These more complex workflows, with
different data sources, can employ machine learning techniques
to detect features and events automatically. These methods
will also serve as mechanisms for steering of simulations and
experiments.

We also plan to explore workflows where in situ analysis
and visualization are used as end products, or as pre-processing



steps for other user defined tasks. As such, we plan to
incorporate our previous work with EAVL and ADIOS [13]
into these workflows.

For this particular demonstration of nonlinear turbulent
eddies, we plan to use more advanced techniques for feature
identification and extraction. This includes better identification
of 2D features on each plane of the simulation, as well as the
3D construction of the eddies across a set of 2D planes. There
is a wealth of research and development that can be utilized for
better feature detection. Improved feature detection will allow
for better identification of particles within the eddies, and aid
in the study of their dynamical behavior in the plasma.

Finally, the infrastructures are largely science agnostic, and
so working with additional simulations and experiments will
provide opportunities for further expansion.
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