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Abstract

Data-parallel particle advection algorithms contain multiple controls that affect their execution characteristics and perfor-
mance, in particular how often to communicate and how much work to perform between communications. Unfortunately, the
optimal settings for these controls vary based on workload, and, further, it is not easy to devise straight-forward heuristics that
automate calculation of these settings. To solve this problem, we investigate a machine learning-based autotuning approach for
optimizing data-parallel particle advection. During a pre-processing step, we train multiple machine learning techniques using
a corpus of performance data that includes results across a variety of workloads and control settings. The best performing of
these techniques is then used to form an oracle, i.e., a module that can determine good algorithm control settings for a given
workload immediately before execution begins. To evaluate this approach, we assessed the ability of seven machine learning
models to capture particle advection performance behavior and then ran experiments for 108 particle advection workloads on
64 GPUs of a supercomputer. Our findings show that our machine learning-based oracle achieves good speedups relative to
the available gains.

CCS Concepts
• Human-centered computing → Scientific visualization; Visualization techniques;

1. Introduction

Particle advection is used to calculate the trajectory a massless
particle follows when placed at some seed location within a vec-
tor field. These trajectories are built through a series of displace-
ments called “advection steps,” each of which involves solving
an ordinary differential equation. Particle advection is a founda-
tional operation for many flow visualization techniques, which use
these trajectories to form their own visual output: Poincaré analysis,
Finite-Time Lyapunov Exponents (FTLE), Line Integral Convolu-
tion (LIC), or just plotting the trajectories directly (by animating
particles or via pathlines and streamlines). The workload of parti-
cle advection tasks can vary highly based across flow visualization
techniques, ranging from one particle to billions, advecting for few
steps or many, whether seeds are placed close together or far apart,
etc. This variation can significantly affect the performance of the
particle advection algorithm.

Particle advection algorithms become more complicated in the
context of supercomputers. In this setting, the vector field is typ-
ically so large that it cannot fit into the memory of an individual
compute node, and so it must be decomposed into blocks. Further,
this makes parallel processing more difficult — particle and data
must be brought together at the same time to perform an advection
step. Many techniques have been proposed for efficient parallelism
(see 2.1). With this work, we consider the “parallelize-over-data”

(POD) approach, where blocks are partitioned over compute nodes,
and particles are sent between compute nodes as they move from
block to block.

Within POD, there are still many decisions to make, and the best
choices for these decisions are not clear. This is the central chal-
lenge motivating this research work. In particular, we consider two
tunable characteristics (“knobs”) of the POD algorithm and how to
select their values. First, when particle advection work is sent to
the GPU, the execution happens in an atomic fashion. If there is a
lot of work to perform and if all of that work is sent to the GPU
as one atomic operation, then that compute node may slow down
overall processing — the compute node is not available to take on
new work and also it is not sending out particles that exit its blocks
to the other compute nodes. At the other extreme, if only a small
amount of work is sent to the GPU at a time, then the GPU is forced
to do many kernel executions, which increases overhead. In all, the
first control is how much work to send to the GPU in one execution.
The second control is how often to communicate between compute
nodes. If particles are sent on an individual basis, then the com-
pute network can be flooded with many, small messages. However,
having a compute node wait and collect these particles into large
messages can also cause problems, as it introduces a delay before
the next compute node can start advecting.

With this work, we investigate machine learning (ML) based au-
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totuning for determining good control settings for POD particle ad-
vection. We follow a two-phase process, first training a variety of
machine learning models on a corpus of performance data and sec-
ond generating an oracle that uses effective ML models to choose
control settings. We then run a series of experiments on supercom-
puters using this oracle. Our central research questions are:

• RQ1: Which machine learning techniques can sufficiently model
the performance of the POD particle advection algorithm?
• RQ2: How much speedup does POD particle advection receive

from this autotuning approach? Further, how does this speedup
compare to optimal settings?

While our primary contribution is on improving particle ad-
vection performance, secondary contributions include (1) showing
how machine learning-based autotuning can be applied to the sci-
entific visualization space and (2) showing which machine learning
models are most useful for this specific problem.

2. Related Work

2.1. Particle Advection on Supercomputers

There are two fundamental ways of parallelizing the problem, POD
and “parallelize over particles” (POP), as well as hybrid methods
that use elements of both approaches. In the POD method [PPG12],
data blocks are distributed over processes. Each process advects the
particles located in its data block until each terminates or exits the
spatial bounds of the block. When a particle exits a block, it is
communicated to the that processor working on its new block. This
process continues until all particles terminate.

A number of extensions to POD have been considered to im-
prove the performance of the algorithm. Sisneros et al. [SP16]
studied the impact of communication granularity in the POD al-
gorithm. Optimizations for spatial decomposition have been stud-
ied by Peterka et al. [PRN∗11] to improve load balance. Hybrid
parallelism (i.e., both shared and distributed memory) has also
been considered for particle advection. Camp et al. [CGC∗11] first
looked at these methods for streamlines, followed by work look-
ing at the performance on different types of workloads and hard-
ware types [CKP∗13, CBP∗14]. Finally, Pugmire et al. [PYK∗18]
provided a hardware-portable method for shared memory particle
advection using VTK-m [MSU∗16].

2.2. Optimizing and Tuning Algorithm Performance

Optimization and autotuning has long been an active area of re-
search. Balaprakash et al. [BDG∗18] provides a comprehensive
overview of autotuning oriented optimization techniques for high
performance computing applications. These approaches cover a
wide spectrum of use cases across the lifecycle of applications, and
include the use of search- and machine learning-based techniques.
Machine learning-based techniques typically construct a surrogate
model over the parameter space of the application and then per-
form a search over this model to find an optimal configuration.
Herodotou et al. [HCL20] provide a survey for autotuning big data
software systems using a number of strategies, including heuristic
rule, cost model, simulation and machine learning-based methods.
There have been many autotuning works in HPC, including the fol-
lowing notable efforts. Zhang et al. [ZDH∗] described RLSched-

uler, an automated system using reinforcement learning to pro-
vide optimal scheduling of batch jobs on high performance com-
puting systems. Yigitbasi et al. [YWLE13] assessed several ma-
chine learning models’ efficacy in autotuning MapReduce parame-
ters and found that a support vector regression model had good ac-
curacy and computational efficiency. Autotuning for performance
and energy usage of stencil-based applications running on multi-
core hardware was addressed using statistical machine learning by
Ganapathi et al. [GDFP09].

There have been fewer works on optimizing visualization per-
formance using autotuning and/or machine learning. Bethel et
al. [BH12] used a parameter sweep across the input data, output
size, hardware and algorithm parameters to identify trends and best
practice recomendations. Bruder et al. [BFE17] used a machine-
learning based method to predict the performance of interacitve
ray casting. This prediction model was used to modify the algo-
rithm parameters in real-time to maintain high frame rates and im-
age quality. Frey et al. [FE16] used a search-based autotuning tech-
nique to find optimal paramemters used for in situ generation of
data extracts for post processing. The goal of the autotuning was
to identify parameters that minimized data size, while at the same
time maximising the time required and quality of post processing
results.

3. Our Approach

Our approach has two phases. The first phase creates machine
learning models that inform particle advection algorithm perfor-
mance (§3.1). The second phase constructs an “oracle” that visual-
ization practitioners can then use to autotune a POD particle advec-
tion algorithm (§3.2).

3.1. Definitions

3.1.1. Machine Learning Model

A trained machine learning model is developed from two compo-
nents: a data corpus and a particular machine learning architecture
(e.g., a neural network, support vector machine).

A data corpus is a set of samples, where each sample is an or-
dered pair: (abscissa, ordinate). In this study, the abscissa and or-
dinate refer respectively, to the inputs and outputs for the model.
Here, the absicissa (input) contains information about both the
workload characteristics (WC), and the algorithm characteristics
(AC). The ordinate (output) defines the execution characteristics
(EC). Explicitly, these characteristics consist of the following:

• WC: Particle advection workload characteristics (abscissa/in-
put): Flow field, seeding strategy, number of particles, number
of advection steps.
• AC: Particle advection algorithm characteristics (abscissa/input).

These are the “knobs” used for the amount of work given to
the GPU (Batch size), and frequency of communication (Delay
send).
• EC: Execution characteristics (ordinate/output): Speedup over

the default algorithm characteristics.

Each sample in the corpus are of the form: {(WC,AC), (EC)}

A machine learning (ML) technique trains on a data corpus, and
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infers relationships between the input (abscissa) and output (ordi-
nate) of the data corpus. After training, the ML technique can pre-
dict an output for a given input. Thus, after a training phase, an ML
model can take workload and algorithm characteristics, (WC,AC)
and predict execution characteristics, (EC). That is, given the num-
ber of seeds, steps, batch size, etc., an ML model can predict the
speedup. Looking ahead to our experiments (§4.1.3), we consid-
ered seven machine learning techniques. We also considered two
different data corpora for training: workloads that included flow
field as an explicit characteristic (“flow field sensitive”) and those
that excluded flow field (“flow field agnostic”). In all, we consid-
ered 14 types of machine learning models.

3.1.2. Oracle

An oracle can be thought of as a function that takes in work-
load characteristics as input, and outputs a prediction of whether
speedup of a particle advection algorithm is possible compared to a
baseline and, if so, provides the particle advection algorithm char-
acteristics that it believes will achieve maximum speedup. Note that
this is subtly different than our machine learning model.

• Given WC and AC, the machine learning model (ML) gives EC:
ML(WC,AC) = EC
• Given WC, the oracle gives AC that maximizes speedup:

Oracle(WC) = AC

In our approach, an oracle uses the predictions from a machine
learning model to decide the best algorithm characteristics. Explic-
itly, for a given WC (i.e., number of particles, steps, and flow field),
an oracle returns the AC (i.e., batch size and delay) that it believes
will provide the optimal performance. There is some flexibility in
how an oracle utilizes its machine learning model, and we consider
two variants (see §3.3.2). These two variants, combined with 14
machine learning models yields a total of 28 possible oracles.

3.2. Workflow

Our worfklow, reflected in Figure 1, consists of two phases, model
generation and oracle generation, which are described in §3.2.1 and
§3.2.2.

3.2.1. Phase 1: Assembling a Machine Learning Model

The purpose of the first phase is to generate a good ML model that
can be used in the oracle. It contains two steps.

Step 1: Generate a diverse set of candidate ML models which
draw from different architectures, hyperparameters, and data prepa-
ration techniques. Many authors have described techniques for de-
veloping and applying individual machine learning models to a spe-
cific problem. We find the nine-step technique by researchers from
Microsoft in [ABB∗19] to be particularly informative as a practical
framework for constructing individual models.

There are two areas of critical importance for the successful
modeling of phenomena. These are: (1) data collection and prepa-
ration into appropriate input for a machine learning technique, (2)
selection of the hyperparameters and other settings of the machine
learning technique. Frequent points of failure in the development
of an ML model hinge on inappropriate choices made in (1) or (2).

Step 2: Once each machine learning model in our set has been

Best Oracle 

Incorporation into 
Technology A

Incorporation into 
Technology B

Incorporation into 
Technology C

Phase 1: Machine Learning

Machine 
Learning 
Development 
Workflow

Data 
Articulation

Parameter 
Tuning

Candidate 
ML Model 

Performance Data

Machine 
Learning 
Development 
Workflow

Data 
Articulation

Parameter 
Tuning

Candidate 
ML Model 

Machine 
Learning 
Development 
Workflow

Data 
Articulation

Parameter 
Tuning

Candidate 
ML Model 

...

Decision: Assess models. Is one sufficiently good?

Yes. Proceed to Phase 2 
with best model.

No. Reassess input data, 
its articulation, tuning, and 
base models considered.

Phase 2: Oracle Assembly

ML Model of 
Performance

Oracle Algorithm Design & Construction

Run many 
simulations 
using ML 
model.

Candidate 
Oracle 

Incorporate 
domain 
specific 
knowledge.

Use
optimization 
techniques.

Oracle 
Algorithm 
Design & 
Construction...

Candidate 
Oracle 

Decision: Assess oracles. Is one sufficiently good?

Yes. Incorporate best 
oracle into frameworks.

No. Reassess oracle 
construction and underlying 
ML model rigour.

S
te

p 
1

S
te

p 
2

S
te

p 
1

S
te

p 
2

Figure 1: Flowchart describing our approach for generating an
oracle to optimize particle advection performance.

trained, it will then be assessed for efficacy in modeling phenom-
ena. Models should be assessed on their own merits (e.g., does
model X have high enough accuracy to be useful), as well as eval-
uated through direct comparison with the other models under as-
sessment (e.g., is model X more accurate than model Y). The end
outcome of assessment determines whether there is a viable model
that sufficiently predicts the targeted execution characteristic. Vi-
able models can be used in the creation of an oracle.

Finally, one possibility from this phase is that no ML model
adequately captures particle advection performance. In this case,
we iterate through the model creation process again. Two common
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points for machine learning modeling faiulre are (1) a lack of ade-
quate data integrity and preparation, and (2) insufficient tuning of
settings and parameters of the machine learning architecture.

3.2.2. Phase 2: Assembling an Oracle

Oracle development consists of two steps: generation and assess-
ment.

Step 1: This step targets the construction of variant algorithms.
The key principle of Phase 2 is that all oracle generation techniques
which use our approach will utilize the predictive power of the ML
models generated in Phase 1 to simulate many runs of our parti-
cle advection algorithms; far more runs than were provided to train
our ML models in the first place. The design of oracles may also in-
clude optimization processes and the use of domain specific knowl-
edge which is explicitly known by human developers and may
have implicitily been learned by the ML model. As described in
§3.3.2, we construct two oracle variants. Both variants use a naive
optimization technique, wherein we search over the ML model to
determine the algorithm characteristics which maximizes speedup
across a wide swath of parameters. One variant also incorporates
domain specific knowledge about the underlying behavior of the
particle advection algorithm.

Step 2: Once an oracle is constructed it will then be assessed for
efficacy in predicting performance characteristics. Oracles that pre-
dict execution and algorithm characteristics when given workload
characteristics should be assessed against the true execution char-
acteristics of runs defined by those workload and algorithm charac-
teristics. As with machine learning models, oracles should also be
evaluated through direct comparison with the other oracles under
assessment (e.g., is oracle X more accurate than oracle Y).

3.3. Oracle Generation

We construct two oracles which use information gleaned from the
best machine learning model to predict optimal algorithm charac-
teristics based on a given workload. Both of these oracles make use
of a lookup table (LUT).

3.3.1. Table Based Optimization Approach

In an offline process (described in §4.2.1), we calculate the optimal
algorithm characteristics for a set of workload characteristics by
using the best machine learning model from Phase 1. This informa-
tion is then stored in a lookup table that can be used subsequently
by our oracles. Given a specific workload characteristic, the oracles
provide algorithm characteristics that give the maximum predicted
speedup. Since lookup table creation is done as an offline process,
the calculation time does not affect algorithm performance. More
importantly, lookup times are O(1). This speed is the motivating
reason for using a lookup table over another optimization algo-
rithm applied to the machine learning model which simulates the
particle advection algorithm. Future work could investigate using
online optimization strategies which have higher lookup time com-
plexities, yet don’t require a priori construction of a lookup table.

3.3.2. The Two Oracles Considered

We consider two variants of oracles as defined below. Let WC be
workload characteristics, LUT be the lookup table from §3.3.1,

and AC be the answer returned by the lookup table, i.e., AC =
LUT (WC). Further, assume the attributes of characteristics are ac-
cessible. Specifically, let AC.BATCH_SIZE be the recommended
batch size for AC, AC.SPEEDUP be the predicted speedup for AC,
and WC.ADV _ST EPS be the number of advection steps for WC.
Finally, denote the algorithm characteristics for default execution
as DEFAULT . Both of our oracles rely heavily on the lookup table
from §3.3.1 and Oracle 1 modifies it only slightly.

Algorithm 1: Oracle Variant I
A=LUT(W)
if A.SPEEDUP > 1 then

return A
else

return DEFAULT

One important modification for the variant given by Ora-
cle 2 involves when to detour from the default configuration.
The default configuration of our parallel particle advection al-
gorithm (“batch size == all”) is actually a good configuration
in many cases, and so setting the batch size to a finite value
will typically lead to slowdowns. In fact, we suspect that when
batch size > number of advection steps the de-
fault settings will almost always be a better choice. In this case,
we want the oracles to recommend the default algorithm config-
uration, and is an example of using decision logic predicated on
domain specific knowledge.

Algorithm 2: Oracle Variant II
A=LUT(W)
if A.SPEEDUP > 1 and A.BATCH_SIZE < W.ADV _ST EPS

then
return A

else
return DEFAULT

Summarizing, both variants capture the desired behavior of us-
ing the default mode if no speedups are possible. The distinguish-
ing component to Oracle Variant II is that it also checks to see if
the batch size is less than the number of advection steps. This is
because the batch size limits how many steps can be taken, If that
batch size is larger than the number of advection steps, then impos-
ing this limit just causes an overhead with no benefit.

4. Experimental Overview

This section provides an overview of two sets of experiments that
were performed. The experiments for Phase 1 (§4.1) considered the
accuracy of 14 machine learning models. The most accurate models
were used as input for the experiments for Phase 2 (§4.2).

4.1. Experimental Overview for Phase 1

These experiments are described in three parts: description of the
input data (§4.1.1), machine learning techniques (§4.1.3), model
validation and assessment strategy (§4.1.4).

4.1.1. Input Data

The input to Phase 1 was performance data collected from several
thousand runs with varied workloads of our particle advection algo-
rithm on the supercomputer Summit [VdB∗18]. The selected runs
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and workloads represented a broad range of use cases for particle
advection with algorithm settings selected by a visualization expert.
A statistician later augmented these with additional experiments to
provide better coverage of the overall space.

Each workload was run with the default algorithm parame-
ters, ACD, and with a number of non-default parameter settings,
AC1,AC2, ...ACN , where N is the number of times it was run. If the
runtime for a workload using the default settings is TD, and Ti when
using settings ACi, the speedup, Si, is defined as Si = TD/Ti.

We then form a sample for our input data as follows:
(WC,ACD,ACi,Si).

To ensure equal coverage of the search space of non-default set-
tings across a range of workloads, the following method was em-
ployed to select training data:

1. A visualization practitioner selected control settings thought to
be good.

2. A statistician assessed each control setting and standardized it.
Namely, control features which had an exponential distribution
as selected by the visualization practitioner had the natural log
applied to it, and then was normalized by subtracting the mean
of each non-Boolean feature and dividing by the standard devi-
ation.

3. The statistician applied a principal component analysis (PCA)
to the standardized data. This projection, when visualized, had
gaps in where the data lay.

4. Gaps in the PCA projection were filled by superimposing a rec-
tilinear grid and selecting the coordinate in the grid which filled
the largest hole. This was done by a naive approach, where the
grid coordinate which was furthest away from all its neighbors
in the PCA projection’s Euclidean space was the one selected.

5. The information represented by the PCA selected coordinate
was then inverted back into a raw set of control features which
could be run on Summit and treated as a new sample.

6. The constructed sample was then added to the set of existing
samples. We then repeated this process from point 3. until the
PCA projection had no visible gaps in the training data.

In the end, we had a representative corpus of more than 2500
samples to use as our training data.

Specifically, a sample (WC,ACD,ACi,Si) is drawn from one of
the following combinations:

• WC: Particle Advection Workload Characteristics

– Flow Field: Three flow fields were selected by a visualization
practitioner. The three flow fields (Fishtank, Fusion and As-
tro) are vector fields from the NEK5000 thermal hydraulics
code [FLK08], NIMROD plasma fusion code [SGG∗04] and
GenASiS [ECBM10] core-collapse supernova code, respec-
tively.

– Seeding Strategy: Two seeding strategies were selected,
“sparse seeding” and “whole seeding.” The sparse seeding
strategy placed the seeds at random locations in a confined
region of interest in the dataset. The whole seeding strategy
placed seeds at random locations inside the total extents of
the dataset.

– Number of Particles: Varied between 1,000 and 500,000,000.

– Number of Advection Steps: Varied between 100 and 10,000.

• ACD and ACi: Particle Advection Algorithm Characteristics

– Batch Size: Varied between 2 and 100,000,000.
– Delay Send: A Boolean value (i.e., true or false).

• Si: Speedup when using Non-Default Algorithm Characteristics
compared to Defaults.

– Speedup: Varied between 0.003139 and 1.604249.

4.1.2. Data Articulation to Machine Learning Techniques

Data cleaning was done to standardize the samples of the form
(WC,ACD,ACi,Si) before being fed to our machine learning tech-
niques as a vector~i. This included taking the natural log of features
with an exponential distribution, normalizing data by subtracting
the mean of each non-Boolean feature and dividing by the stan-
dard deviation – as was done in the data sampling process – and
removing the default settings for a workload, ACD, from consider-
ation. Additionally, we created two variants of our corpus, “flow
field sensitive” and “flow field agnostic.” In the “flow field sensi-
tive” variant, the flow field is explicitly stated in~i. In the “flow field
agnostic” variant,~i does not contain the flow field.

We define the vector~i =
[

inputs =~x
target =~y

]
, with the following two

forms:

Flow field sensitive

input =~x =



Flow Field Is “Astro” ∈ {0,1}
Flow Field Is “Fishtank” ∈ {0,1}
Flow Field Is “Fusion” ∈ {0,1}

Seeding Strategy Is “Sparse” ∈ {0,1}
Seeding Strategy Is “Whole” ∈ {0,1}

Delay Send ∈ {0,1}
Normalize(Ln(Number of Particles)) ∈ R

Normalize(Ln(Number of Advection Steps)) ∈ R
Normalize(Ln(Batch Size)) ∈ R


target =~y =

[
Speedup ∈ R

]
Flow field agnostic

input =~x =


Seeding Strategy Is “Sparse” ∈ {0,1}
Seeding Strategy Is “Whole” ∈ {0,1}

Delay Send ∈ {0,1}
Normalize(Ln(Number of Particles)) ∈ R

Normalize(Ln(Number of Advection Steps)) ∈ R
Normalize(Ln(Batch Size)) ∈ R


target =~y =

[
Speedup ∈ R

]
We use 10-fold cross validation (see §4.1.4) as our machine

learning assessment strategy, which preempts the need to set aside
a single testing dataset. Parameters used for external validation are
discussed in §4.2.2 and were preprocessed the same as the training
data (e.g., natural log taken and features normalized).

4.1.3. Machine Learning Techniques

The seven machine learning techniques we considered included
three neural network and four classical machine learning mod-
els: linear regression, random forest, support vector machine and
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k nearest neighbors regression. These seven models and two data
corpora (“flow field sensitive” and “flow field agnostic”) make a
total of fourteen machine learning models that were considered.

In the description of the seven models, we use the following no-
tation: Let ~x ∈ Rn denote an individual sample that is input to a
machine learning model and let ~y ∈ Rm denote the output of this
model for an individual sample. Further, let X = {~x, · · ·} denote
the set of inputs for all the samples used in training.We note that
n = 9 for “flow field sensitive,” n = 6 for “flow field agnostic,” and
m = 1 for both corpora.

Neural Network Models: Each of our neural network models
shared the following characteristics:

• The model is a fully connected, feed-forward neural network.
• The identify activation function is used for the output layer.
• Dropout is not incorporated at any point.
• The optimization algorithm used for training is Hinton’s RMS

Propagation [HSS12].
• The loss function is mean squared error.
• Neural network “training batch size” (not to be confused with

the “batch size” in the data corpus) was chosen to be b
√
|X |c.

• 250 and 500 training epochs were used respectively for the “flow
field agnostic” and “flow field sensitive” corpora. This selection
was due to observed convergence of the loss function.

The neural network models only differed in the composition of
their hidden layers, all of which used Rectified Linear Units (Re-
LUs). We describe the structural configurations for each using the
following notation:

# Inputs︸ ︷︷ ︸
Input

→ # Nodes in Layer︸ ︷︷ ︸
Layer Type

→ ·· · → # Outputs︸ ︷︷ ︸
Output

• Neural Network A (Model A):

n︸︷︷︸
Input

→ d1
2
· (n+m)e︸ ︷︷ ︸

ReLU Layer

→ m︸︷︷︸
Output

• Neural Network B (Model B):

n︸︷︷︸
Input

→ d2
3
· (n+m)e︸ ︷︷ ︸

ReLU Layer

→ d1
3
· (n+m)e︸ ︷︷ ︸

ReLU Layer

→ m︸︷︷︸
Output

• Neural Network C (Model C):

n︸︷︷︸
Input

→ d1
2
· (n+m)e2︸ ︷︷ ︸

ReLU Layer

→ m︸︷︷︸
Output

Classic Machine Learning Models: The four models used
were:

• Linear Regression (Model D): We fit a linear model using ordi-
nary least squares fitting. We expect poor performance, but use it
a point of comparision given its simplicty, speed and popularity.
• Random Forest (Model E): A forest of 100 regression trees,

each using Gini impurity as its discrimination function. The for-
est included bootstrap sampling to build its trees, and used mean
squared error as its discriminating criterion. All trees were fully
expanded until each leaf node was pure.
• Support Vector Machine (Model F): Support Vector Regres-

sion using a radial basis kernel and gamma of 1/(n ·Var(X)).

• K Nearest Neighbors (Model G): A k Nearest Neighbors model
was used, where the number of neighbors = b

√
|X |c.

The neural networks, models A, B, and C, were implemented
in Keras [C∗15] with a Tensorflow [AAB∗15] backend. Models D,
E, F, and G were implemented with Scikit-Learn [PVG∗11]. Unless
otherwise specified, the default parameters for the machine learning
algorithms implemented in these libraries were utilized.

4.1.4. Machine Learning Assessment Strategy

Each machine learning model was evaluated by 10-fold cross val-
idation. The model with the lowest Mean Absolute Error and least
Unexplained Variance was considered the “best”, and subsequently
used for all of the oracles in Phase 2.

4.2. Experimental Overview for Phase 2

The overview for phase 2 is divided into two parts: construction
details of a lookup table for optimal performance (§4.2.1), and in-
formation on our verification runs (§4.2.2). Phase 2 was executed
twice, once for each of the best performing models that were trained
on the flow-field sensitive and flow-field agnostic corpora.

4.2.1. Lookup Table Construction Details

The lookup table was constructed by running an ML model for a set
of commonly encountered workload characteristics with ≈ 25,000
algorithm characteristics. For batch size, the values were selected in
a logarithmically-spaced manner from 2 to 100,000,000. The value
with the highest speedup was the recommend value for a given
workload and was stored in the lookup table. The samples used for
our experiments were contained in the ≈25,000 samples. In prac-
tice, for workloads not contained in the lookup table, there are sev-
eral options. First, a distance metric could be used to determine the
closest workload in the table and then use that entry. Second, inter-
polation between adjacent table entries could be used to determine
the optimal settings. However, we have not studied which type of
interpolation should be used to ensure accuracy. Third, a new type
of oracle that does not use lookup tables could be embedded di-
rectly into the particle advection source code. That said, such an
oracle would need to do significant searching over algorithm char-
acteristics, and this search process would need to be optimized in
order to have a negligible impact on performance.

If a lookup table is used, creation can be done as a one-time
offline process done whenever a new supercomputer is deployed
and the resulting table embeded into the production software. The
actual realization of the oracle in production visualization software
is an area requiring further investigation.

4.2.2. Oracle Assessment Strategy

To evaluate the performance of our oracles (and thus our overall
approach), we ran 108 experiments. Each experiment was run mul-
tiple times: once with the default settings and once with each oracle
we considered. The 108 experiments came from considering a cross
product of particle advection workload factors:

• Number of particles (6 options): 103,104,105,106,107,108.
• Number of steps (3 options): 102,103,104.
• Seeding strategy (2 options): sparse, whole.
• Flow Field (3 options): Fishtank, Fusion, Astro
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4.3. Hardware Used

The particle advection algorithm was implemented in VTK-
m [MSU∗16, PYK∗18] and run using 64 GPUs on the Summit
supercomputer at Oak Ridge National Laboratory [VdB∗18]. Each
Summit node consists of 6 NVIDIA Volta V100 GPUs, 2 POWER9
CPUs, 608 GB of RAM and connected with a Mellanox EDR 100G
InfiniBand. The machine learning model training, lookup table con-
struction, and oracle output generation was performed on an Acer
Aspire E 15 personal computer running on a 2.6GHz Intel Core
i7-6500U CPU and 32 GB or RAM.

5. Results and Analysis

This section is organized by research question, with §5.1 focusing
on RQ1 and §5.2 focusing on RQ2.

5.1. RQ1: Using Machine Learning to Model Performance

This section considers RQ1: “Which machine learning techniques
can sufficiently model the performance of the POD particle advec-
tion algorithm?” Further, the analysis is organized by phase, with
Phase 1 (§3.2.1, 4.1) in §5.1.1 and Phase 2 (§3.2.2, §4.2) in §5.1.2.

5.1.1. Phase 1

Evaluation of the machine learning technique(s) which best cap-
tured POD behavior was performed by identifying trained models
with the lowest mean absolute error (defined as |truth - prediction|)
and unexplained variance under 10-fold cross validation. Unex-
plained variance is a measure of the degree to which our model fails
to explain variation in the data. We found that R2 scores, another
popular measure of model goodness-of-fit, and explained variance
were equal up to three decimal places for all of the models and data
corpora we considered. As the unexplained variance is defined as
1−explained variance, unexplained variance can be thought of as
1−R2 for the purposes of this study. These metrics provide evi-
dence that the model has a good understanding of the relationship
between a model’s inputs and outputs and can therefore provide
useful predictions.
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Figure 2: Plots showing the performance of each model with re-
spect to unexplained variance and mean absolute error. Plots are
shown for both flow field agnostic (left) and flow field sensitive
(right) corpora. Models closer to (0,0) are better.

Figure 2 plots the mean absolute error and unexplained variance
for all seven models and both data corpora. This plot shows that the
most effective model for the flow field agnostic corpus is Neural
Network C, as it has nearly the lowest mean absolute error and
the most explained variance. For the flow field sensitive corpus,
Figure 2 shows that the Random Forest model is the most effective,
as it clearly has the lowest error and unexplained variance.

5.1.2. Phase 2

This subsection analyzes the efficacy of the two oracles from
§3.3.2: “Oracle I” and “Oracle II.” Oracles have a key distinction
from the models from Phase 1. Where models take workload and
algorithm characteristics as input and output a predicted speedup,
oracles take only workload characteristics as input and output algo-
rithm characteristics (ideally the settings that maximize speedup).
These oracles achieve their task by using the best machine learn-
ing models from Phase 1 as their engines. For brevity, we denote
Neural Network C (the best flow field agnostic model) as NN C
and Random Forest (the best flow field sensitive model) as RF. The
Cartesian product of the two oracles (I and II) and the two models
(NN C and RF) results in four oracle-model configurations.

We evaluated 108 validation runs (described in §4.2.2) optimized
over the two Delay Send options and more than 12,500 potential
Batch Sizes. For both NN C and RF, the {Batch Size, Delay Send}
combination with the highest predicted speedup was returned. This
optimization was a one-time cost and the results were stored in
a lookup table. We then executed runs with a predicted speedup
greater than one on Summit. We refer to such runs as “accelerat-
able,” since there is an opportunity to have them run faster than
the default. The results for all four oracle-models are plotted in
Figure 3, which shows the actual and predicted speedups for each
configuration that was considered “acceleratable” by that oracle-
model.
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Figure 3: Scatter plots of predicted speedup versus actual speedup
for “acceleratable” runs for all four oracle-models. The red line in
each figure represents perfect accuracy, i.e., the predicted speedup
and actual speedup are the same.

Table 1 lists information about the error for each of the four
oracle-model configurations. For this analysis, “error” is the differ-
ence between the predicted speedup and the actual speedup. Posi-
tive values mean the predicted speedup was larger than the actual
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speedup, while negative values mean that the actual speedup was
larger than predicted. Further, the analysis also considers the ab-
solute value of error, which captures the extent to which the pre-
diction was wrong. Finally, while we report outlier behavior (i.e.,
how much faster or slower a workload performed than the predic-
tion), we feel the most important aspect is mean behavior (i.e., how
much compute time is saved in aggregate by using the predicted
best settings on a set of workloads).

Oracle Variant: I II I II
ML Model: NN C NN C RF RF
Min |Error| 0.001 0.004 0.001 0.001
Mean |Error| 0.111 0.141 0.079 0.091
Max |Error| 0.945 0.945 1.089 1.089

Table 1: Summary of absolute errors for each of the four oracle-
model configurations’ “acceleratable” runs.

All four oracle-models have mean absolute errors close to their
mean absolute errors of the ML models they depend on. Comparing
with results from §5.1.1, the mean absolute errors of NN C - Oracle
I and NN C - Oracle II are within 5% of the mean absolute error
of the NN C model, and RF - Oracle I and RF - Oracle II are also
within 5% of the RF model. This provides evidence that the oracles
are producing algorithm characteristics that provide good speedups
with reasonable accuracy, despite the extremal results (i.e., highest
speedup) of an oracle’s search. Oracles with mean absolute error
of significantly different value than the mean absolute error of their
underlying ML models would be cause for much greater concern.

Finally, several of our validation runs were excluded, for one of
two reasons. First, some of our runs had workload characteristics
which prevented the baseline algorithm from completing within a
two-hour timeout window. These workload characteristics always
involved many particles and many advection steps. Second, one of
large workload runs had communication degradation. This degra-
dation was by an order of magnitude between compute nodes, and
appeared to be due to severe network congestion unrelated to the
POD advection algorithm. These cases constituted fewer than 5%
of our validation runs and are excluded from further analysis. These
<5% of cases are excluded since analysis of cases where time-to-
completion is unrelated to the particle advection algorithm itself
(e.g., by network noise or default timeout windows) would form an
apples-to-oranges comparison when analyzing cases which com-
pleted naturally.

5.2. Answer to RQ2: Achieved Speedups & Contextualization

This section considers RQ2: “How much speedup does POD parti-
cle advection receive from this autotuning approach? Further, how
does this speedup compare to optimal settings?” §5.2.1 discusses
the speedups achieved and §5.2.2 contextualizes these results.

For these results, we consider three types of speedup. If TR(AC)
is the runtime for some run R using some algorithm characteristics
AC, if ACD is the default algorithm characteristics, and if ACO is
the oracle-selected algorithm characteristics, then:

• Speedup, denoted SR, compares the oracle-enabled algorithm
compared to the default algorithm:

SR =
TR(ACD)

TR(ACO)
• Mean Speedup considers the average speedup over a set of N

runs {R1, R2, · · · , RN}:
SR1 +SR2 + · · ·+SRN

N
• Aggregated Speedup considers the speedup achieved if every

member of a set of N runs {R1, R2, · · · , RN} is run one time
(i.e., the result is weighted by run-time):

TR1(ACD)+TR2(ACD)+ · · ·+TRN (ACD)

TR1(ACO)+TR2(ACO)+ · · ·+TRN (ACO)

5.2.1. Achieved Speedup

To assess how much speedup is obtainable with our approach, we
ran 108 validation runs with varying workload characteristics (dis-
cussed previously in §4.2.2 and §5.1.2) for each of the four oracle-
model configurations. For a given workload, each oracle-model
configuration provided both algorithm characteristics and a pre-
dicted speedup when using those algorithm characteristics. Table 2
reports the mean speedup for these validation runs.

Oracle Variant: I II I II
Machine Learning Model: NN C NN C RF RF
Mean Speedup Achieved 1.0516 1.0569 1.0586 1.0629

Table 2: Overall mean speedup for each of the four oracle-model
configurations.

Next, we once again considered “acceleratable” configurations,
i.e., the runs R where SR > 1. Table 3 shows the rates at which each
oracle-model predicts an “acceleratable” workload, and the rate at
which acceleration is actually achieved. With respect to the lat-
ter rate, we determined this by running all “acceleratable” runs on
Summit. Oracle Variant I is more aggressive in predicting speedup
for both NN C and RF models. However, Variant II is more accurate
than Variant I in predicting which “acceleratable” runs will actually
achieve a speedup. This is true for both NN C and RF models.

Oracle Variant: I II I II
Machine Learning Model: NN C NN C RF RF
Rate of “Acceleratable” Runs 77.78% 47.22% 86.11% 51.85%
Rate of “Acceleratable” Runs
Actually Achieving Speedup

56.96% 73.91% 61.80% 76.92%

Table 3: “Acceleratable” rates for each of the four oracle-model
configurations.

We also used our Summit runs to determine the magnitude
of speedup. Tables 4 and 5 report these results for each of the
four oracle-model configurations for mean speedup and aggregate
speedup, respectively. These tables also consider subsets of runs
that are often most impactful on actual savings: execution times
greater than 5, 10 and 60 seconds (with default settings, i.e., ACD).

These results show that oracle choice varies based on setting.
For runs of only a few seconds in duration, Oracle II obtains higher
speedup for both NN C and RF. As execution time increases, the
difference between Oracle I and Oracle II disappears for both mean
speedup and aggregated speedup. Further, for nearly every analysis
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Oracle Variant: I II I II
Machine Learning Model: NN C NN C RF RF

Mean Speedup Achieved 1.067 1.127 1.068 1.126

Mean Speedup Achieved;
Default Time > 5 seconds

1.131 1.150 1.161 1.161

Mean Speedup Achieved;
Default Time > 10 seconds

1.157 1.171 1.192 1.192

Mean Speedup Achieved;
Default Time > 60 seconds

1.203 1.203 1.239 1.239

Table 4: Mean speedup for workloads considered “acceleratable.”
The top row considers the mean speedup over all acceleratable
workloads, while the remaining rows consider only acceleratable
workloads above certain time thresholds.

Oracle Variant: I II I II
Machine Learning Model: NN C NN C RF RF

Aggregated Speedup Achieved 1.182 1.185 1.204 1.206

Aggregated Speedup Achieved;
Default Time > 5 seconds

1.184 1.185 1.207 1.207

Aggregated Speedup Achieved;
Default Time > 10 seconds

1.185 1.186 1.208 1.208

Aggregated Speedup Achieved;
Default Time > 60 seconds

1.189 1.189 1.213 1.213

Table 5: Aggregated speedup for workloads considered “acceler-
atable.” The top row considers the aggregated speedup over all
acceleratable workloads, while the remaining rows consider only
acceleratable workloads above certain time thresholds.

focusing on longer execution times, RF has a higher mean or ag-
gregated speedup than the same NN C oracle, by as much as 3%.
This difference is very likely due to RF’s lower unexplained vari-
ance and lower error (see §5.1.1). That said, this difference is small
overall, i.e., a 0%− 3% better speedup is likely not meaningful
enough to favor an algorithm that is flow field sensitive (RF) over
one that is flow field agnostic (NN C).

In all, the main finding of this analysis is that a visualization
practitioner should likely utilize Oracle II with NN C — in nearly
all cases, the benefit of being flow field agnostic will outweigh the
modest speedups from being flow field sensitive.

5.2.2. Assessing Speedups Achieved

This section analyzes how effective we are at achieving speedups.
Such an analysis is difficult in nature, as the maximum speedup can
only be knowable by running all possible control settings, which is
either impossible (if the control settings have an infinite number
of values) or merely prohibitively expensive (if the control settings
have a finite number of values).

In our case, we decided to inform the effectiveness of our ap-
proach by comparing with the runs we executed to form our train-
ing corpus. This corpus has good properties and bad properties
for this comparative analysis, which limits the conclusions that we

can draw from our analysis overall. In terms of good properties,
there were a large number of runs (2513) and the experiments rep-
resented “good” choices in the eyes of both a visualization prac-
titioner and statistician (see §4.1.1). In terms of bad properties,
the experiments for computationally expensive workloads were not
as useful for direct comparison. The training corpus actually did
contain computationally expensive workloads, but these workloads
were picked in the interest of good sampling and not in the inter-
est of comparison. For example, for an ML-autotuning experiment
with 10M particles and 10K steps, the closest comparator in the
corpus may have had 9M particles and 11K steps. In all, we have
many direct comparators for small workloads, and fewer for big
ones.

Approach Aggregated Speedup Mean Speedup
NN C / Oracle I 1.095 1.051

RF / Oracle I 1.090 1.048
Best of Corpus 1.124 1.095

All of Corpus 0.489 0.754

Table 6: This table informs the available speedup for our par-
ticle advection workloads. It considers only a subset of the runs
executed in our overall study. In particular, it only considers the
55 particle advection workloads that have at least ten runs in the
training corpus (i.e., rows from Figure 4 where there are at least
ten gray glyphs). The corpus is considered in two ways: best and
all. For the “best” variant, the top performer of the ten-plus runs
is used as the comparator. For the “all” variant, all of the ten-plus
experiments are used as comparators.

Figure 4 plots our comparison with the training corpus. One im-
portant conclusion from this plot is that the default settings are
quite effective — most of the training experiments (gray glyphs)
are slower than the default (blue glyphs). Further, while our ML-
autotuning sometimes performs worse than default settings, it of-
ten does better, and increasingly better as execution time goes up.
And while some of the training corpus experiments beat our ML-
autotuning approach, the large majority are worse and also are
worse than the default. In all, this provides some evidence that
beating default settings is hard, and our ML-autotuning approach
is doing at least a somewhat effective job.

Finally, can we quantify how effectively our approach per-
formed? The results for this question can be found in Table 6. From
this table, we conclude that our approach claims much of the possi-
ble speedup, but that there was more available. Of course, quantify-
ing this further is hard — our training corpus does not represent all
configurations and it remains possible that available speedups are
higher than what this corpus indicates. That said, more runs in our
training data would potentially allow our ML models to become
more accurate.

6. Conclusion and Future Work

This research work considers applying machine learning-based au-
totuning to POD particle advection. We enacted a two-phase work-
flow that ingested training data, produced models, and evaluated
their efficacy. We then ran a series of experiments using the best
models as oracles to set values for POD particle advection controls.
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Figure 4: Scatter plot of speedups achieved over default perfor-
mance by our ML-autotuning approach and by experiments in our
training corpus. Each glyph represents a run we executed, and is
colored based on type: gray for runs with non-default algorithm
characteristics in our training corpus, blue representing a run with
default algorithm characteristics, green for a run with algorithm
characteristics selected using NN C Oracle I (“NNCI”), and red
for those that used RF Oracle I (“RFI”). Not all experiments are
represented in this plot — the two ML-autotuning approaches of
NNCI and RFI both predicted possible speedup for only 78 of our
108 particle advection workloads and only runs which are param-
eterized by these 78 workloads are included. These 78 workloads
were ordered from shortest to longest by the execution time using
default settings, and the index of this sorting became the Y-value
for each glyph. As a result, each row corresponds to a single par-
ticle advection workload, and the runtime for that workload in-
creases as the Y-value increases. Finally, the X-value of a glyph is
its speedup compared to default settings. This is why all the blue
(default) glyphs have X-values of 1.0. Putting it all together, if a
given particle advection workload had the 37th slowest run time
and the algorithm characteristics given by NNCI led to a speedup
1.2X, then a glyph would be placed at (1.2, 37) and colored green.

The results of these experiments varied — for small workloads the
payoff was smaller, and it is doubtful that end-user visualization
tools would reproduce our efforts. For larger workloads, the payoff
was significant enough that the effort behind the methodology and
the compute time could be useful (in the context of delivery within
a tool like ParaView or VisIt on a supercomputer that would have
repeated use). In all, however, we feel the largest utility in our study
is in answering our research questions.

First, RQ1 asked whether machine learning techniques could
sufficiently model POD particle advection performance. We found
that several of our models produced good results, with low unex-
plained variance and mean absolute error. We also looked at how
this knowledge translated in practice and found that our predicted

speedups had good correlation with real-world results. That said,
this correlation could have been even stronger. We also considered
whether the vector field mattered in our ability to predict perfor-
mance. While we found that knowledge of vector field does allow
for more accurate prediction, the difference in performance is likely
not enough to pursue this direction. In particular, the vector field-
agnostic approach makes the approach more broadly applicable.
Further, the three vector fields we trained on are sufficiently di-
verse that we feel these results would hold up when a new vector
field is introduced; confirming this belief would be useful future
work. Finally, another direction of future work would be investi-
gating improved models. In particular, we are interested in whether
expanding our neural network’s architecture (e.g., more nodes per
layer, additional layers) improves oracle efficacy.

Second, RQ2 asked what extent speedup we could achieve with
the approach and whether the ML-autotuning approach success-
fully claimed most of the availale speedup. Our speedup analyses
led to a variety of answers, but the most speedup we would ex-
pect is 20% (which is the number for large workloads). Further,
while the ceiling of speedup is not fully illuminated, we specu-
late that we achieved about 75% of what is possible (loosely rea-
soned as 9% from our techniques versus 12% speedup from the
best of the corpus). While this is a reasonable result, future work
could pursue even better outcomes. In particular, our training data
consisted of “speedup” as our only execution characteristic. More
information may have allowed ML models to infer even deeper un-
derstanding of performance. As a final direction of future work, this
approach could be applied to richer settings — more visualization
algorithms, more control settings, more hardware architectures, etc.

Finally, an important addendum to RQ2, the question of po-
tential speedup, is whether our proposed workflow should be ap-
plied in practice. We consider this question from the perspective of
compute-node hours — developer time was significant in the con-
text of this research project, but this cost could become negligible
going forward. Therefore, this workflow is beneficial if the savings
in production outweighs the training time. In our case, we trained
for about 400 compute-node hours on Summit. If we were able to
achieve a 10% speedup for 4000 compute-node hours of production
usage over the lifetime of Summit, then the costs would balance,
and more usage would lead to savings. It is unclear whether this
many compute-node hours will actually be used for advection. If
all jobs consisted of streamline generation running on eight nodes
for 10 seconds, then there would have to be 180,000 such jobs to
offset the training data. In the context of a four-year life span (1460
days), this would mean over one hundred streamlines per day on
Summit, which we believe is more than current usage. That said,
if the jobs take more nodes or more time, then the benefit is much
more likely to be realized. In an in situ setting, running a 30-second
FTLE computation for 100 cycles of a single simulation that uses
the whole machine (4608 nodes) would offset training costs. In all,
the answer depends on the use of advection workloads. Finally, as
the training time is reduced, it becomes increasingly easy to offset
its time.
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